Select Page

by Jordan Greer

Imagine feeling that simple cold, jog, or even a garden stroll could turn into a life-threatening event. Against your will your breath becomes labored and each inhalation becomes shorter until you feel like you are being choked by your own body.

This is a common fear for those suffering from asthma, which has claimed the lives of many. And while the effects of asthma are widespread, the African-American community continues to be disproportionately affected. According to the University of Illinois Community Assessment of Needs 2016, the percent of African-American asthmatic patients with asthma in Chicago is nearly triple that of their white counterparts and twice the US average.

To combat this disparity, the UChicago Medicine Urban Health Initiative and its collaborators recently launched the Asthma Resource Line, 1-833-3ASTHMA (1-833-327-8462). This toll-free number links community members with caregivers to create an informed dialogue about asthma-related community resources. Brenda Battle, vice president of the UHI, says the line provides both “a one-stop, convenient, and reliable source of information and a pathway for children in the community to get access to the care they need.” The South Side Pediatric Asthma Center operates the line to increase support, especially for those in the University’s neighborhood, the South Side, where there is a disproportionately higher rate of asthma diagnoses.

But what actually causes asthma? On one hand, air quality has been implicated in both initiating the disease and triggering attacks, with smog and vehicle exhaust identified as major culprits. These issues have an even more pronounced effect in Chicago, which the American Lung Association ranks as the 18th most ozone polluted city in the US, with an “F” rating for air quality.

While environment certainly plays a role in asthma, DNA is also a key player in predisposing the Black and Latinx communities to higher rates of the disease. To better understand the genetic factors that lead to asthma both in childhood and later in life, UChicago researchers Carole Ober, PhD, Hae Kyung Im, PhD, Milton Pividori, PhD, and Nathan Schoettler, MD, PhD, recently conducted the largest asthma-related genome-wide association study of childhood-onset asthma and adult-onset asthma. By comparing differences in the DNA of asthma subjects to controls without asthma, they could find genetic variations that may contribute to the onset of these conditions.

They analyzed the genetic data of over 300,000 people from a UK biobank–a repository for biological samples and clinical data. Using this massive data set, Ober’s team could elucidate which genes were associated with early and late-onset asthma.

Their results suggest that while both childhood and adult asthma share an immunologic component, childhood asthma is more heavily influenced by genes involved in other common childhood allergic diseases, like eczema and food allergies. Adult-onset asthma, on the other hand, is more likely to be triggered by environmental factors. Ober and her team’s work thus provides insights to possible genetic pathways that can eventually lead to treatments better tailored to children with asthma, while also suggesting that adult asthma and its complications may be improved by reducing exposure to triggering environmental factors.

Other UChicago studies are looking at how the microbiome, the community of microscopic organisms that live on or within us, plays a role in asthma development. The lungs, much like our skin, gut, and mouths, have their own specific communities of bacteria and fungi which may change in response to disease and indeed make a disease worse.

Steve White, MD and his team have helped confirm that patients with asthma have unique assemblages of microbes residing within their airways. They took swabs of the bronchi, the passages that lead into the lungs, and sequenced the DNA of microbes present in both asthmatic and non-asthmatic patients. Not only did they find evidence for unique bacterial and fungal communities within the airways of asthma patients, but also that the fungi present could help predict the patient’s type of asthma. These results could lead to the creation of biological tests that will help clinicians personalize asthma treatments for their patients.

As US asthma incidence increases (according to the Centers for Disease Control and Prevention, by 28 percent from 2001 to 2011 alone), the over 25 million people currently suffering from the disease and their loved ones can take heart from the work that UChicago is doing to address this growing problem. By tackling asthma with scientific research and community-centered support, a time may soon come where we can all breathe a little more deeply.

Jordan Greer is an Evolutionary Biology graduate student and science communication intern from the University of Chicago.