GAME THEORY I

A STRATEGIC SITUATION (DUE TO BEN POLAK)

Selfish Students

Selfish 2

- No matter what Selfish 2 does, Selfish 1 wants to choose α (and vice versa)
- (α, α) is a sensible prediction for what will happen

NICE STUDENTS

Nice 2

- ► Each nice student wants to match the behavior of the other nice student
- (α, α) or (β, β) seem sensible.
- ▶ We need to know what people think about each other's behavior to have a prediction

Selfish vs. Nice

- Nice wants to match what Selfish does
- \blacktriangleright No matter what Nice does, Selfish wants to player α
- \blacktriangleright If Nice can think one step about Selfish, she should realize she should play α
- (α, α) seems the sensible prediction

Components of a Game

Players: Who is involved?

Strategies: What can they do?

Payoffs: What do they want?

CHICKEN

CHOOSING A RESTAURANT

WORKING IN A TEAM

2 players

Player *i* chooses effort $s_i \ge 0$

Jointly produce a product. Each enjoys an amount

$$\pi(s_1, s_2) = s_1 + s_2 + \frac{s_1 \times s_2}{2}$$

Cost of effort is s_i^2

$$u_i(s_1, s_2) = \pi(s_1, s_2) - s_i^2$$

PLAYER 1'S PAYOFFS AS A FUNCTION OF EACH PLAYER'S STRATEGY

DEMAND BARGAINING

 ${\cal N}$ players

Each player "demands" a real number in [0, 10]

If the demands sum to 10 or less, each player's payoff is her bid

Otherwise players' payoffs are 0

NASH EQUILIBRIUM

A strategy profile where no individual has a unilateral incentive to change her behavior

Before we talk about why this is our central solution concept, let's formalize it

NOTATION

Player i's strategy

 $\triangleright s_i$

Set of all possible strategies for Player *i* • S_i

Strategy profile (one strategy for each player) • $\mathbf{s} = (s_1, s_2, \dots, s_N)$

Strategy profile for all players except i

•
$$\mathbf{s}_{-\mathbf{i}} = (s_1, s_2, \dots, s_{i-1}, s_{i+1}, \dots, s_N)$$

Different notation for strategy profile

$$\blacktriangleright \mathbf{s} = (s_i, \mathbf{s}_{-\mathbf{i}})$$

Selfish Students

Player 2

 $S_i = \{\alpha, \beta\}$

4 strategy profiles: $(\alpha, \alpha), (\alpha, \beta), (\beta, \alpha), (\beta, \beta)$

CHICKEN

Player 2

 $S_i = \{ \text{Straight, Swerve} \}$

4 strategy profiles: (Straight, Straight), (Straight, Swerve), (Swerve, Straight), (Swerve, Swerve)

CHOOSING A RESTAURANT

 $S_E = ?$ $S_R = ?$

Strategy profiles: ?

Demand Bargaining with 3 players

 $S_i = [0, 10]$

 \blacktriangleright Player i can choose any real number between 0 and 10

$$\mathbf{s} = (s_1 = 1, s_2 = 4, s_3 = 7) = (1, 4, 7)$$

► An example of a strategy profile

 $s_{-2} = (1,7)$

▶ Same strategy profile, with player 2's strategy omitted

$$\mathbf{s} = (\mathbf{s}_{-2}, s_2) = ((1, 7), 4)$$

► Reconstructing the strategy profile

NOTATING PAYOFFS

Players' payoffs are defined over strategy profiles

▶ A strategy profile implies an outcome of the game

Player *i*'s payoff from the strategy profile ${\bf s}$ is

 $u_i(\mathbf{s})$

Player *i*'s payoff if she chooses s_i and others play as in \mathbf{s}_{-i}

$$u_i(s_i, \mathbf{s}_{-\mathbf{i}})$$

NASH EQUILIBRIUM

Consider a game with N players. A strategy profile $\mathbf{s}^* = (s_1^*, s_2^*, \dots, s_N^*)$ is a **Nash equilibrium** of the game if, for every player i

$$u_i(s_i^*, \mathbf{s_{-i}}^*) \ge u_i(s_i', \mathbf{s_{-i}}^*)$$

for all $s'_i \in S_i$

Best Responses

A strategy, s_i , is a **best response** by Player *i* to a profile of strategies for all other players, \mathbf{s}_{-i} , if

$$u_i(s_i, \mathbf{s}_{-\mathbf{i}}) \ge u_i(s'_i, \mathbf{s}_{-\mathbf{i}})$$

for all $s'_i \in S_i$

Best Response Correspondence

Player *i*'s **best response correspondence**, BR_i , is a mapping from strategies for all players other than *i* into subsets of S_i satisfying the following condition:

▶ For each s_{-i}, the mapping yields a set of strategies for Player i, BR_i(s_{-i}), such that s_i is in BR_i(s_{-i}) if and only if s_i is a best response to s_{-i}

AN EQUIVALENT DEFINITION OF NE

Consider a game with N players. A strategy profile $\mathbf{s}^* = (s_1^*, s_2^*, \dots, s_N^*)$ is a **Nash equilibrium** of the game if s_i^* is a best response to $\mathbf{s}_{-\mathbf{i}}^*$ for each $i = 1, 2, \dots, N$

SELFISH VS. NICE

CHICKEN

You Solve Choosing a Restaurant

ANOTHER PRACTICE GAME

WORKING IN A TEAM

$$u_1(s_1, s_2) = \pi(s_1, s_2) - s_1^2 = s_1 + s_2 + \frac{s_1 s_2}{2} - s_1^2$$

Find Player *i*'s best response by maximizing for each s_2

$$\frac{\partial u_1(s_1, s_2)}{\partial s_1} = 1 + \frac{s_2}{2} - 2s_1$$

First-order condition sets this equal to 0 to get $BR_1(s_2)$

$$1 + \frac{s_2}{2} - 2\operatorname{BR}_1(s_2) = 0$$

$$BR_1(s_2) = \frac{1}{2} + \frac{s_2}{4}$$
 $BR_2(s_1) = \frac{1}{2} + \frac{s_1}{4}$

PLAYER 1'S BEST RESPONSE

NASH EQUILIBRIUM

Solving for NE

Since best responses are unique, a NE is a profile, (s_1^\ast,s_2^\ast) satisfying

$$s_1^* = BR_1(s_2^*) = \frac{1}{2} + \frac{s_2^*}{4}$$
 $s_2^* = BR_2(s_1^*) = \frac{1}{2} + \frac{s_1^*}{4}$

Substituting

$$s_1^* = \frac{1}{2} + \frac{\frac{1}{2} + \frac{s_1^*}{4}}{4}$$
$$s_1^* = \frac{2}{3} \qquad s_2^* = \frac{2}{3}$$

PRACTICE GAME WITH CONTINUOUS CHOICES

2 players

Each player, i, chooses a real number s_i

There is a benefit of value 1 to be divided between the players

At a strategy profile (s_i, s_{-i}) , Player *i* wins a share

$$\frac{s_i}{s_i + s_{-i}}$$

The cost of s_i is s_i

Solving

Write down Player 1's payoff from (s_1, s_2)

Calculate Player 1's best response correspondence

$\operatorname{Solving}^2$

Player 2 is symmetric to Player 1, so write down both players' best response correspondences

At a NE each player is playing a best response to the other. Write down two equations that characterize equilibrium.

Use substitution to find Player 1's equilibrium action

Now substitute this in to find Player 2's equilibrium action

WHY NASH EQUILIBRIUM?

No regrets

Social learning

Self-enforcing agreements

Analyst humility

TAKE AWAYS

A Nash Equilibrium is a strategy profile where each player is best responding to what all other players are doing

You find a NE by calculating each player's best response correspondence and seeing where they intersect

NE is our main *solution concept* for strategic situations