Game Theory I

A Strategic Situation (due to Ben Polak)

Player 2

Selfish Students

Selfish 2

- No matter what Selfish 2 does, Selfish 1 wants to choose α (and vice versa)
- (α, α) is a sensible prediction for what will happen

Nice Students

Nice 2

- Each nice student wants to match the behavior of the other nice student
- (α, α) or (β, β) seem sensible.
- We need to know what people think about each other's behavior to have a prediction

Selfish vs. Nice

Nice

	α	β
Selfish	α	1,2
	3,0	
	0,1	2,3

- Nice wants to match what Selfish does
- No matter what Nice does, Selfish wants to player α
- If Nice can think one step about Selfish, she should realize she should play α
- (α, α) seems the sensible prediction

Components of a Game

Players: Who is involved?
Strategies: What can they do?
Payoffs: What do they want?

Chicken

Player 2

		Straight	Swerve
Player 1	Straight	0,0	3,1
	Swerve	1,3	2,2

Choosing a Restaurant

Demand Bargaining

N players
Each player "demands" a real number in $[0,10]$
If the demands sum to 10 or less, each player's payoff is her bid

Otherwise players' payoffs are 0

Nash Equilibrium

A strategy profile where no individual has a unilateral incentive to change her behavior

Before we talk about why this is our central solution concept, let's formalize it

Notation

Player i 's strategy

- s_{i}

Set of all possible strategies for Player i

- S_{i}

Strategy profile (one strategy for each player)

- $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{N}\right)$

Strategy profile for all players except i

- $\mathbf{s}_{-\mathbf{i}}=\left(s_{1}, s_{2}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{N}\right)$

Different notation for strategy profile

- $\mathbf{s}=\left(s_{i}, \mathbf{s}_{-\mathbf{i}}\right)$

Selfish Students

Player 2

$S_{i}=\{\alpha, \beta\}$
4 strategy profiles: $(\alpha, \alpha),(\alpha, \beta),(\beta, \alpha),(\beta, \beta)$

Chicken

Player 2

		Straight
Player 1	Swerve	
\begin{tabular}{\|c	}	
\hline		
\end{tabular}	Straight	0,0
3,1		
	Swerve	1,3

$S_{i}=\{$ Straight, Swerve $\}$
4 strategy profiles: (Straight, Straight), (Straight, Swerve),
(Swerve, Straight), (Swerve, Swerve)

Choosing a Restaurant

Rebecca

$S_{E}=? \quad S_{R}=$?
Strategy profiles: ?

Demand bargaining with 3 Players

$S_{i}=[0,10]$

- Player i can choose any real number between 0 and 10

$$
\mathbf{s}=\left(s_{1}=1, s_{2}=4, s_{3}=7\right)=(1,4,7)
$$

- An example of a strategy profile

$$
\mathbf{s}_{-\mathbf{2}}=(1,7)
$$

- Same strategy profile, with player 2's strategy omitted

$$
\mathbf{s}=\left(\mathbf{s}_{-\mathbf{2}}, s_{2}\right)=((1,7), 4)
$$

- Reconstructing the strategy profile

Notating Payoffs

Players' payoffs are defined over strategy profiles

- A strategy profile implies an outcome of the game

Player i 's payoff from the strategy profile \mathbf{s} is

$$
u_{i}(\mathbf{s})
$$

Player i 's payoff if she chooses s_{i} and others play as in $\mathbf{S}_{-\mathbf{i}}$

$$
u_{i}\left(s_{i}, \mathbf{S}_{-\mathbf{i}}\right)
$$

Nash Equilibrium

Consider a game with N players. A strategy profile $\mathbf{s}^{*}=\left(s_{1}^{*}, s_{2}^{*}, \ldots, s_{N}^{*}\right)$ is a Nash equilibrium of the game if, for every player i

$$
u_{i}\left(s_{i}^{*}, \mathbf{s}_{-\mathbf{i}}^{*}\right) \geq u_{i}\left(s_{i}^{\prime}, \mathbf{s}_{-\mathbf{i}}^{*}\right)
$$

for all $s_{i}^{\prime} \in S_{i}$

Best Responses

A strategy, s_{i}, is a best response by Player i to a profile of strategies for all other players, $\mathbf{s}_{-\mathbf{i}}$, if

$$
u_{i}\left(s_{i}, \mathbf{s}_{-\mathbf{i}}\right) \geq u_{i}\left(s_{i}^{\prime}, \mathbf{s}_{-\mathbf{i}}\right)
$$

for all $s_{i}^{\prime} \in S_{i}$

Best Response Correspondence

Player i 's best response correspondence, BR_{i}, is a mapping from strategies for all players other than i into subsets of S_{i} satisfying the following condition:

- For each $\mathbf{s}_{-\mathbf{i}}$, the mapping yields a set of strategies for Player $i, \mathrm{BR}_{i}\left(\mathbf{s}_{\mathbf{-}}\right)$, such that s_{i} is in $\mathrm{BR}_{i}\left(\mathbf{s}_{\mathbf{-}}\right)$ if and only if s_{i} is a best response to $\mathbf{s}_{-\mathbf{i}}$

An Equivalent Definition of NE

Consider a game with N players. A strategy profile $\mathrm{s}^{*}=\left(s_{1}^{*}, s_{2}^{*}, \ldots, s_{N}^{*}\right)$ is a Nash equilibrium of the game if s_{i}^{*} is a best response to $\mathbf{s}_{-\mathbf{i}}{ }^{*}$ for each $i=1,2, \ldots, N$

Selfish vs. Nice

Nice

Selfish

Chicken

Player 2

You Solve Choosing a Restaurant

Rebecca

Another Practice Game

The War of Attrition

2 countries (1 and 2) are fighting over a territory
Each country i decides how long it is willing to hold out, $t_{i} \geq 0$

The winner is the country that is willing to hold out for the longest time

- If both hold out the same amount of time, they split the territory

The war ends as soon as one country gives in

Country i's Payoffs

Value of winning whole territory is $v_{i}>0$
Value of winning half the territory is $\frac{v_{i}}{2}$
Cost of holding out for length of time t_{i} is t_{i}

$$
u_{1}\left(t_{1}, t_{2}\right)= \begin{cases}-t_{1} & \text { if } t_{1}<t_{2} \\ \frac{v_{1}}{2}-t_{1} & \text { if } t_{1}=t_{2} \\ v_{1}-t_{2} & \text { if } t_{1}>t_{2}\end{cases}
$$

Country 1's Best Response if $t_{2}<v_{1}$

If Country 1 chooses $t_{1}<t_{2}$, its payoff is $-t_{1}$

- Maximized at 0

If Country 1 chooses $t_{1}=t_{2}$, its payoff is $\frac{v_{1}}{2}-t_{1}$
If Country 1 chooses $t_{1}>t_{2}$, its payoff is $v_{1}-t_{2}$

Any $t_{1}>t_{2}$ is a best response

Country 1's Best Response if $t_{2}=v_{1}$

If Country 1 chooses $t_{1}<t_{2}$, its payoff is $-t_{1}$

- Maximized at 0

If Country 1 chooses $t_{1}=t_{2}=v_{1}$, its payoff is $\frac{v_{1}}{2}-t_{1}<0$
If Country 1 chooses $t_{1}>t_{2}$, its payoff is $v_{1}-t_{2}=0$
$t_{1}=0$ or any $t_{1}>t_{2}$ are best responses

Country 1's Best Response if $t_{2}>v_{1}$

If Country 1 chooses $t_{1}<t_{2}$, its payoff is $-t_{1}$

- Maximized at 0

If Country 1 chooses $t_{1}=t_{2}$, its payoff is $\frac{v_{1}}{2}-t_{1}<0$
If Country 1 chooses $t_{1}>t_{2}$, its payoff is $v_{1}-t_{2}<0$
$t_{1}=0$ is the best response

Nash Equilibria

$$
\begin{aligned}
& t_{1}=0 \text { and } t_{2}>v_{1} \\
& t_{1}>v_{2} \text { and } t_{2}=0
\end{aligned}
$$

Why Nash Equilibrium?

No regrets

Social learning
Self-enforcing agreements

Analyst humility

Take Aways

A Nash Equilibrium is a strategy profile where each player is best responding to what all other players are doing

You find a NE by calculating each player's best response correspondence and seeing where they intersect

NE is our main solution concept for strategic situations

