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Appendix A: Proofs for Section 2

1 Proof of Corollary 2

For 0 ≤ ς ≤ 1, we denote with U(ς) the on-the-equilibrium value defined as

U(ς) ≡ max
u1,u2,l

ςu1 + (1− ς)u2, (A.1)

subject to (u1, l), (u1, 0), (u2, 0) ∈ dom(C) and

ςp{C(u1, l)− l}+ ς(1− p)C(u1, 0) + (1− ς)C(u2, 0) = 0.

Similarly, we let W (ς) be the off-the-equilibrium value, which is defined as

W (ς) ≡ max
u1,u2,l

ςpu1 + (1− ςp)u2, (A.2)

subject to (u1, l), (u2, 0) ∈ dom(C) and

ςp{C(u1, l)− l}+ (1− ςp)C(u2, 0) = 0.

Therefore, Ufb ≡W (1) and U sb ≡ U(1) and Ῡ = W (1)− U(1).

We begin by proving that Ῡ > 0. More specifically, we prove the more general claim that
W (ς) > U(ς), for all ς > 0. For all ς, U(ς) equals the value of the following auxiliary problem:

U(ς) = max
u1,u2,u3,l

ςpu1 + ς(1− p)u2 + (1− ς)u3

subject to (u1, l), (u2, 0), (u3, 0) ∈ dom(C),

ςp{C(u1, l)− l}+ ς(1− p)C(u2, 0) + (1− ς)C(u3, 0) ≤ 0,
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and
u1 = u2.

Note that, if the last constraint does not bind, the value of the auxiliary problem equals
W (ς) (for ς < 1, by strict convexity of C we have u∗2 = u∗3). We want to show that the last
constraint binds for all ς > 0. Suppose it does not. The problem is convex, thus, its solution
is characterized by a saddle point Lagrangian:

L = ςpu1 + (1− ςp)u2 − ζ[ςp{C(u1, l)− l}+ (1− ςp)C(u2, 0)],

where ζ is the multiplier on the resource constraint. The resource constraint must be binding,
thus, ζ > 0. Lemma 1 in the paper then implies l∗ > 0. We need to consider several cases.
Suppose first that (u∗1, l

∗) is at the lower bound of the domain of C (that is, u∗1 = U(0, l∗)).
Since utility is strictly decreasing in l, we must have u∗1 < u∗2, which violates the constraint.
The same conclusion is true if both (u∗1, l

∗) and (u∗2, 0) are at the upper bound of the domain.
Finally, in any other case u∗1 and u

∗
2 must satisfy the first-order conditions 1 ≥ ζC1(u∗1, l

∗) and
1 ≤ ζC1(u∗2, 0), respectively, with equality if the allocation is interior. However, since C12 > 0,
we have C1(u∗2, 0) ≥ 1/ζ ≥ C1(u∗1, l

∗) > C1(u∗1, 0), which once again implies u∗1 < u∗2. We
conclude that the constraint u1 = u2 must be binding and, therefore, U(ς) < W (ς), for all
ς > 0. In particular, Ῡ > 0.

We now prove the preliminary result that U(ς) is strictly increasing for Υ ∈ (0, Ῡ). Problem
(A.1) is convex, thus, its solution is characterized by a saddle point Lagrangian:

L = ςu1 + (1− ς)u2 − ζ[ςp{C(u1, l)− l}+ ς(1− p)C(u1, 0) + (1− ς)C(u2, 0)],

where ζ is the multiplier on the resource constraint. For any ς ∈ (0, 1), the envelope theorem
gives

U ′(ς) = {u∗1 − ζ[p{C(u∗1, l
∗)− l∗}+ (1− p)C(u∗1, 0)]} − {u∗2 − ζC(u∗2, 0)}.

We want to show that U ′(ς) > 0. Since the resource constraint must bind, ζ > 0. Let
f(u1, l) ≡ u1 − ζ[p{C(u1, l) − l} + (1 − p)C(u1, 0)]. Clearly, f(u2, 0) = u2 − ζC(u2, 0). It is
immediate to see that f is strictly concave and the pair (u∗1, l

∗) maximizes f(u1, l). Inada
conditions imply l∗ > 0. By strict concavity of f , we conclude that f(u∗1, l

∗) > f(u∗2, 0).

Now suppose Υ < Ῡ. We must have ς∗(Υ) < 1, otherwise, we would obtain the contradic-
tion Υ ≥ W (1) − U(1) = Ῡ. Since ς∗(Υ) < 1, the sustainability constraint must bind at Υ,
thus, U(ς∗(Υ)) = W (ς∗(Υ)) − Υ. The latter, together with U(0) = W (0), also implies that
ς∗(Υ) > 0. Since 0 < ς∗(Υ) < 1 problem (6) in the paper must have two solutions, σ∗ = 1 and
σ∗ = 0.

To prove the converse result, it is enough to show that the sustainability constraint does
not bind when Υ ≥ Ῡ. The latter follows immediately from strict monotonicity of U .

Finally, we show that ς∗(Υ) is strictly increasing for all Υ ≤ Ῡ. Take any pair Υ, Υ̂
such that Υ < Υ̂ ≤ Ῡ and suppose ς∗(Υ̂) ≤ ς∗(Υ). Since Υ < Ῡ, previous arguments
imply ς∗(Υ) < 1, thus, the sustainability constraint must be binding at Υ. Then U(ς∗(Υ)) =
W (ς∗(Υ))−Υ > W (ς∗(Υ))−Υ̂. Thus, sustainability constraint is slack at ς∗(Υ) ≥ ς∗(Υ̂). Since
U(ς) is strictly increasing, the latter contradicts optimality of ς∗(Υ̂). Therefore, ς∗(Υ̂) > ς∗(Υ)
for all Υ < Υ̂ ≤ Ῡ.
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2 Proofs for Section 2.1.1

We extend the model of Section 2 to allow for agent heterogeneity. More specfically, agents
differ for some payoff-irrelevant publicly-observed characteristic ξ which, wuthout loss of gen-
erality, is uniformly distributed on [0, 1]. In addition, we introduce sunspot variables as in
Section 2. In particular, we consider the following three-stage game:

0. The government announces functions {cH (z, ξ) , cL (z, ξ) , l (z, ξ)}, for all z ∈ [0, 1] and
ξ ∈ [0, 1].

1. Each agent learns about his job opportunity and draws a random publicly-observed signal
z. Signals z are drawn from a uniform distribution on [0, 1], independently for each agent.
An agent who has a job opportunity chooses the probability σ(z, ξ) with which he reveals
this information by reporting H; he reports L otherwise. A jobless agent reports L with
probability 1.

2. The government chooses allocations of consumption and labor {c̃H (z, ξ) , l̃ (z, ξ)} and
consumption {c̃L (z, ξ)} for agents who report H and L, respectively. Bundles must be
feasible, that is, total consumption cannot exceed total output. The government incurs
a utility cost Υ > 0 if allocations differ from those announced in stage 0 for any positive
measure of agents.

Utility of the agents and the associated function C satisfy the same properties as in the
paper. In particular, utility function satisfies Assumption 1 and, as a result, Lemma 1 holds.
In addition, we define the set X of incentive-compatible allocations and the set C of allocations
in the domain of C exactly as in the main paper.

Given a collection of measures {ψξ}ξ on X, the highest payoff that a deviating government
can achieve is still given by W̃ ({ψξ}ξ):

W̃
(
{ψξ}ξ

)
≡ max
{ũH(x),ũL(x),l̃(x)}x∈X

∫ ∫
[pσ (x) ũH (x) + (1− pσ (x)) ũL (x)]ψξ (dx) dξ −Υ,

(A.3)
subject to∫ ∫ [

pσ (x)
(
C
(
ũH (x) , l̃ (x)

)
− l̃ (x)

)
+ (1− pσ (x))C (ũL (x) , 0)

]
ψξ (dx) dξ ≤ 0

and (ũH (·) , ũL (·) , l̃ (·)) ∈ L1(X, C, ψ).
In particular, note that upon deviation the government maximizes a welfare function in

which all agents have equal weights.
Finally, to make notation compact, we define functions g and f exactly as in the paper.

A Perfect Bayesian Equilibrium (PBE) is a collection of measures {ψξ}ξ on X such that
allocations are feasible,

∫ ∫
fdψξdξ ≤ 0, and sustainable,

∫
gdψξdξ ≥ W̃

(
{ψξ}ξ

)
. A collection

of measures {ψ∗ξ}ξ on X is a best PBE if it is a PBE and there is no other PBE that gives
a weakly higher utility to all agents and a strictly higher utility to a positive mass of agents.
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Any best PBE is a PBE that maximzes a weighted average of agents’expected utility, i.e. that
is a solution to

max
{ψξ}ξ

∫
α̂(ξ)

∫
gdψξdξ, (A.4)

subject to ∫ ∫
fdψξdξ ≤ 0,∫ ∫
gdψξdξ ≥ W̃

(
{ψξ}ξ

)
,

for some sequence of Pareto weights {α̂(ξ)}ξ. Without loss of generality, we focus on non-
decreasing sequences of Pareto weights.

The analysis follows the same steps as in Section 2 of the paper. First, Lemma 2 and
Corollary 1 in Section 2 extend almost immediately to the case with heterogenous agents.
Thus, we can replace W̃

(
{ψξ}ξ

)
with

∫ ∫
W (x)dψξdξ, where W (x) is defined exactly as in

Lemma 2. Second, the maximization problem (A.4) can be rewritten in the Lagrangian form
as

max
{ψξ}ξ

∫
[α̂(ξ)g − ζf − χW ] dψξdξ, (A.5)

for some multipliers ζ > 0 and χ ≥ 0. Finally, linearity of (A.5) allows us to solve the overall
problem in two steps. First, given a Pareto weight α = α̂(ξ) and a reporting probability σ, we
find the allocations (uH,α,σ, uL,α,σ, lα,σ) that solve

κ (α, σ) ≡ max
uH ,uL,l

α(pσuH + (1− pσ)uL)− ζ [pσ (C (uH , l)− l) + (1− pσ)C (uL, 0)] , (A.6)

subject to uH ≥ uL, (1− σ) [uH − uL] = 0 and (uH , uL, l) ∈ C. Second, any optimal reporting
strategy σ∗α can be found by solving

max
σ∈[0,1]

κ (α, σ)− χW (σ) . (A.7)

The following proposition, which is the analogue of Proposition 1 in the paper, characterizes
value functions and optimal reporting strategies.

Proposition A.1 For all α > 0, κ(α, ·) is strictly increasing, convex and not linear. W is
strictly increasing and linear. Therefore, the optimal σ∗α satisfies σ

∗
α ∈ {0, 1}. When both

σ∗α = 0 and σ∗α = 1 are optimal, corresponding allocations are unique and satisfy uL,α,0 >
uL,α,1 = uH,α,1.

Proof. The only difference between this proposition and its analogue in the paper is that
here the Pareto weight α can be any strictly positive number, whereas in the paper it was
restricted to be 1. However, none of the arguments in the proof of Proposition 1 relies on this
restriction, therefore, the same arguments apply here.

4



Lemma A.1 The solution to problem (A.7) takes one of the following forms:
(i) there is a threshold ᾱ (which might be ∞) such that σ∗α = 1 for α < ᾱ, σ∗α = {0, 1} for
α = ᾱ, and σ∗α = 0 for α > ᾱ;
(ii) there is a threshold ᾱ such that σ∗α = {0, 1} for α ≤ ᾱ, and σ∗α = 0 for α > ᾱ.
Furthermore, if utility is unbounded below, only case (i) is possible.

Proof. Let h(α) ≡ (κ(α, 1)−χW (1))−(κ(α, 0)−χW (0)). We show that h is non-increasing
and strictly decreasing for suffi ciently high α. h is differentiable and, by the envelope theorem,
its derivative is h′(α) = uα,1 − uα,0, where uα,1 and uα,0 are the solution to the maximization
problem (A.6) for σ = 1 and σ = 0, respectively. We prove that uα,1 − uα,0 ≤ 0 for all α, with
a strict inequality if (uα,1, 0) is interior.

First, observe that we cannot have h(α) < 0 for all α, otherwise σ∗α = 0 would be the unique
solution for all α and the sustainability constraint would be slack, leading to a contradiction.
Therefore, we must have h(α) ≥ 0 for some α. Second, using the same arguments in the proof
of Proposition 1 in the paper, we can exclude both (i) the case in which (uα,1, 0) is at the
upper bound of dom(C) for some α, and (ii) the case in which (uα,1, 0) is at the lower bound
of dom(C) for all α. Thus, there exists some α̂ such that (uα̂,1, 0) is interior.

Now, suppose that (uα,1, 0) is at the lower bound of its domain, then obviously uα,1 ≤ uα,0.
If, instead, (uα,1, 0) is interior, then it must satisfy the first-order condition

α− ζ{pC1(uα,1, lα,1) + (1− p)C1(uα,1, 0)} = 0. (A.8)

If uα,1 ≥ uα,0, then we would have C1(uα,0, 0) ≤ C1(uα,1, 0) and C1 (uα,0, 0) < C1 (uα,1, lα,1),
which, together with the fact that uα,0 must satisfy α ≤ ζC1 (uα,0, 0), contradict equation
(A.8). Thus, uα,1 < uα,0.

We now prove that, if (uα,1, 0) is interior, then so is (uα̃,1, 0) for all α̃ > α. To see this,
suppose on the contrary that (uα̃,1, 0) is at the lower bound of dom(C). Then, uα̃,1 < uα,1 and
C1(uα̃,1, 0) < C1(uα,1, 0). Also, lα,1 satisfies the first-order condition C2(uα,1, lα,1) = 1 and,
since C11C22 − C2

12 > 0 from the proof of Lemma 1 in the paper, we have C1(uα̃,1, lα̃,1) ≤
C1(uα,1, lα,1). Since (uα,1, 0) is interior, it must satisfy equation (A.8). The latter conditions
therefore imply

α̃− ζ{pC1(uα̃,1, lα̃,1) + (1− p)C1(uα̃,1, 0)} > 0,

which contradicts optimality of uα̃,1. Thus, (uα̃,1, 0) must be interior.
The arguments above prove that h(α) ≥ 0 for some α, h is non-increasing and becomes

strictly decreasing for suffi ciently high α. In addition, h may fail to be strictly decreasing only
at the points (uα,1, 0) at the lower bound of dom(C). The statement of the lemma then follows
directly from these properties of h.

We are now ready to present the main result of this section. The next proposition shows
that, for any sequence of Pareto weights, there is always a PBE such that the governmet
conditions allocations on agent characteristics alone, without using sunspots. What is more,
allocations in such PBE are very simple: agents with characteristic ξ below a certain threshold
reveal full information while all other agents reveal no information.

Proposition A.2 For any (non-decreasing) sequence of Pareto weights {α̂(ξ)}ξ, there is a
solution to (A.4) and a threshold ξ̄ ∈ [0, 1] such that all agents with ξ ≤ ξ̄ report truthfully
while agents with ξ > ξ̄ reveal no information.
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Proof. Take any non-decreasing sequence of Pareto weights {α̂(ξ)}ξ and an associated
solution {ψ∗ξ}ξ to (A.4). Consider the case in which utility is unbounded below. From Lemma
A.1, there is at most one Pareto weight ᾱ such that the government is indifferent between
σ = 0 and σ = 1. In addition, in the proof of Lemma A.1, we prove that κ(·, 1) − κ(·, 0)
is non-increasing. Thus, the statement of the proposition is immediately verified if the set
Ξ ≡ {ξ ∈ [0, 1] : α̂(ξ) = ᾱ} has probability zero. Suppose instead that Ξ has a positive
probability. Since Pareto weights are non-decreasing, Ξmust be an interval, i.e. Ξ = [ξ1, ξ2], for
some ξ1 < ξ2. In addition, all agents with ξ ∈ Ξ receive either (uᾱ,1, uᾱ,1, lᾱ,1) or (uᾱ,0, uᾱ,0, 0),
possibly as a function of sunspots. Let Ψ be the total mass of agents with ξ ∈ Ξ receiving the
former allocation.

Let x̄1 ≡ (uᾱ,1, uᾱ,1, lᾱ,1, 1) and x̄2 ≡ (uᾱ,0, uᾱ,0, 0, 0) and consider the alternative collection
of measures {ψ∗∗ξ }ξ such that ψ∗∗ξ = ψ∗ξ , for all ξ /∈ Ξ, ψ∗∗ξ (x̄1) = 1, for all ξ ∈ [ξ1, ξ1 + Ψ], and
ψ∗∗ξ (x2) = 1 for all ξ ∈ (ξ1 + Ψ, ξ2]. By construction, {ψ∗∗ξ }ξ leave total consumption and total
labor unchanged, thus, the resource constraint is satisfied. In addition, the mass of agents
reporting with σ = 1 is also unchanged, thus, the value of deviation for the government is also
unchanged. Finally, since {ψ∗∗ξ }ξ and {ψ∗ξ}ξ differ only for values of ξ such that ξ ∈ Ξ and,
at these values, the planner is indifferent between the bundles x̄1 and x̄2, they must yield the
same value of (A.4).

If utility is bounded below, from Lemma A.1 we need to consider two cases. For case (i),
the arguments above apply without any change. For case (ii), we let Ξ ≡ {ξ ∈ [0, 1] : α̂(ξ) ≤ ᾱ}
(which must be an interval, i.e. Ξ = [0, ξ̂], for some ξ̂ > 0) and follow the same arguments as
above.

Decentralization. It is easy to decentralize the equilibrium described in Proposition A.2.
Optimal allocations can be achieved by a two-tier insurance system, where one tier provides
relatively poor benefits, while the other tier has more generous benefits but access to them is
limited. Finally, employed agents pay lump-sum taxes.

More specifically, all agents qualify for the “unemployment benefit” bUIξ . However, only
agents whose characteristic is above a threshold ξ̄ qualify for the more generous “disability
benefit”bDIξ . Employed agents forgo their benefits and pay a lump-sum tax τ ξ. Note that the
agent’s characteristic determines not only access to the more generous insurance tier, but also
the actual value of benefits and taxes.

Formally, an agent with characteristic ξ who receives a job opportunity solves

max
c,l

U(c, l), (A.9)

subject to the budget constraint

c ≤ I(l = 0)bUIξ + I(l = 0)I(ξ > ξ̄)(bDIξ − bUIξ ) + wl − I(l > 0)τ ξ,

where I(·) is the indicator function. We use cξ and lξ to denote optimal choices. An agent
without a job opportunity receives utility U(bUIξ + I(ξ > ξ̄)(bDIξ − bUIξ ), 0).

The production side of the economy consists of a competitive firm which hires labor to
produce the consumption good according to the technology y = l. We normalize the price of
the final good to 1.
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Finally, taxes and benefits must satisfy the government’s budget constraint. Since only
agents with ξ ≤ ξ̄ have an incentice to work and, thus, pay taxes, we have:∫ 1

0
I(lξ > 0)τ ξdξ =

∫ ξ̄

0
I(lξ = 0)bUIξ dξ +

∫ 1

ξ̄
I(lξ = 0)bDIξ dξ. (A.10)

Definition A.1 (competitive equilibrium) A competitive equilibrium is a collection of agent
decisions, {(cξ, lξ)}ξ, a wage, w, and a welfare system, {(τ ξ, bUIξ , bDIξ )}ξ, such that agent deci-
sions solve (A.9), labor market clears, and the government budget constraint (A.10) holds.

Proposition A.3 (decentralization) Any best PBE described in Proposition A.2 can be de-
centralized through a competitive equilibrium.

Proof. First, observe that constant returns to scale in production imply w = 1. Now,
take any best PBE described in Proposition A.2 and associated (u∗H,α,1, u

∗
L,α,1, u

∗
L,α,0, l

∗
α,1),

where α = α̂(ξ) for all ξ ∈ [0, 1]. Let bDIξ ≡ C(u∗L,ξ,0, 0), bUI ≡ C(u∗L,ξ,1, 0), and τ ≡ l∗ξ,1 −
C(u∗H,ξ,1, l

∗
ξ,1). Note that bDIξ > bUIξ since u∗L,ξ,0 > u∗L,ξ,1 = u∗H,ξ,1. Using the budget constraint

with l > 0, optimal choice of labor satisfies the first-order condition

Uc(lξ − τ ξ, lξ) + Ul(lξ − τ ξ, lξ) = 0,

which, using the definition of C and Lemma 1 in the paper, becomes

C2(uξ, lξ) = 1,

where uξ ≡ U(lξ− τ ξ, lξ). Using the definition of τ ξ, uξ = U(lξ− l∗ξ,1 +C(u∗H,ξ,1, l
∗
ξ,1), lξ). Since

C2(u∗H,ξ,1, l
∗
ξ,1) = 1 from Proposition A.1, the latter implies lξ = l∗ξ,1 and uξ = u∗H,ξ,1, for all

ξ ≤ ξ̄. If, instead, the agent does not work, he receives benefits bUIξ which by construction
deliver utility u∗L,ξ,1. Since u

∗
H,ξ,1 = u∗L,ξ,1, the agent will work if given the opportunity.

Consider now the problem of an agent with ξ > ξ̄ and a job opportunity. If such agent
works, he will again receive u∗H,ξ,1. Instead, if he does not work, he receives the more generous
benefits bDIξ , which by construction deliver utility u∗L,ξ,0. Since u

∗
H,ξ,1 < u∗L,ξ,0, an agent with

ξ > ξ̄ will never work.
Finally, we need to make sure that the government budget constraint (A.10) is satisfied.

This follows immediately by noting that, with the values of τ ξ, bUIξ , and b
DI
ξ we have just

constructed, equation (A.10) becomes identical to the economy’s resource constraint, which
must be satisfied in any PBE.

3 Proofs for Section 2.1.2

We assume that Υ (·) is non-negative, convex and differentiable with Υ (0) = 0. We prove
that the insights of Proposition 1 in the main text continue to hold under this more general
commitment cost. We first extend Lemma 2. For any given PBE ψ∗, there exists a scalar
λ∗ ≥ 0 that defines a function W (x) given by

W (x) ≡ max
(ũH(·),ũL(·),l̃(·))∈L1(X,C,ψ)

[
pσ (x) {ũH (x)−Υ (uH (x)− ũH (x))}

+ (1− pσ (x)) {ũL (x)−Υ (uL (x)− ũL (x))}

]
−λ∗

[
pσ (x)

(
C
(
ũH (x) , l̃ (x)

)
− l̃ (x)

)
+ (1− pσ (x))C (ũL (x) , 0)

]
.
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The arguments in Lemma 2 in the main text prove that W̃ (ψ) ≤
∫
Wdψ, with equality at

ψ = ψ∗. Function W (x) is linear in σ (x) and can thus be rewritten as

W (x) = pσ (x)FH (uH (x)) + (1− pσ (x))FL (uL (x)) ,

where

FH (u) ≡ max
(ũH ,l̃)∈dom(C)

{
ũH −Υ (u− ũH)− λ∗

(
C
(
ũH , l̃

)
− l̃
)}

,

FL (u) ≡ max
(ũL,0)∈dom(C)

{ũL −Υ (u− ũL)− λ∗C (ũL, 0)} .

Standard arguments prove that FH , FL are differentiable. Optimal allocations will then be a
solution to

V (σ) ≡ max
uH ,uL,l

pσ [uH − ζ (C (uH , l)− l)− χFH (uH)]

+ (1− pσ) [uL − ζC (uL, 0)− χFL (uL)] ,

subject to uH ≥ uL, (1− σ) (uH − uL) = 0 and (uH , uL, l) ∈ C. Notice that V (σ) summarizes
both the benefits —captured by κ (σ) in the benchmark case —and the costs —captured by
χW (σ) in the benchmark case —of information revelation.

Proposition A.4 (general commitment costs) Suppose Υ (·) is non-negative, convex and
differentiable with Υ (0) = 0. If the incentive constraint is binding at the optimum, then V is
convex and not linear. Therefore, the optimal σ∗ satisfies σ∗ ∈ {0, 1}. When both σ∗ = 0 and
σ∗ = 1 are optimal, corresponding allocations are unique and satisfy uL,0 > uL,1 = uH,1.

Proof. We focus on the case in which the sustainability constraint binds, i.e. χ > 0,
otherwise the proof is identical to the one of Proposition 1 in the main text.

Convexity of V follows from the same arguments in Proposition 1. We prove that V is
not linear. We first consider the case in which uH,σ = uL,σ ≡ uσ is such that (uσ, 0) is in the
interior of dom (C). Let µσ be the Lagrange multiplier on the incentive constraint, the optimal
allocation (uH,σ, uL,σ, lσ) must satisfy the first-order conditions (Luenberger (1969), Theorem
1, p. 249)

C2 (uH,σ, lσ)− 1 = 0, (A.11)

1− ζC1 (uH,σ, lσ)− χFH,1 (uH,σ) + µσ = 0,

1− ζC1 (uL,σ, 0)− χFL,1 (uL,σ)− µσ = 0.

Since the incentive constraint binds at the optimum, µσ̃ 6= 0 for some σ̃. Suppose V is linear.
Let (uH,1, uL,1, l1) be a maximizer of V (1). Suppose (uH,1, uL,1, l1) is not a maximizer of
V (σ̂) for some σ̂ < 1, then V (σ̂) > V (1) + (σ̂ − 1)V ′ (1), which contradicts linearity. Thus,
(uH,1, uL,1, l1) must be a maximizer of V (σ) for all σ, which is true only if uH,1 = uL,1 ≡ u1.
Thus, (u1, l1) must satisfy the first-order condition

pσ [1− ζC1 (u1, l1)− χFH,1 (u1)] + (1− pσ) [1− ζC1 (u1, 0)− χFL,1 (u1)] = 0.

Since the latter must hold for all σ, it implies

1− ζC1 (u1, l1)− χFH,1 (u1) = 0,

1− ζC1 (u1, 0)− χFL,1 (u1) = 0,
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which contradicts µσ̃ 6= 0. Therefore, V cannot be linear.
We now consider the case in which uH,σ = uL,σ ≡ uσ is such that (uσ, 0) is at the boundary

of dom (C). The only relevant case is the lower bound which, without loss of generality, we
suppose to be equal to 0. If uσ̂ > 0 for at least one optimal σ̂, then the arguments above can
be applied in a neighborhood of σ̂. We now rule out the case with uσ = 0 for all optimal σ.
Suppose that uσ = 0 for all optimal σ. The arguments in the proof of Proposition 1 in the
main text show that the latter can be true only if ζ = 0. Let (ũ∗H , l̃

∗) and ũ∗L be the maximizers
of FH (0) and FL (0), respectively. They satisfy the first-order conditions

1− λ∗C1

(
ũ∗H , l̃

∗
)

+ Υ1 (−ũ∗H) ≤ 0,

1− λ∗C1 (ũ∗L, 0) + Υ1 (−ũ∗L) ≤ 0.

We cannot have ũ∗H = ũ∗L = 0, otherwise λ∗ = 0 and the government could achieve a higher
payoff by choosing u′σ = ũ′∗H = ũ′∗L = ε for all σ and ε > 0. For ε small enough, this alternative
allocation would be feasible and satisfy the sustainability constraint. Therefore, either ũ∗H > 0
or u∗L > 0 or both. Convexity of Υ, C12 > 0 and l̃∗ > 0 imply ũ∗L > ũ∗H ≥ 0 and, hence, the
second first-order condition must hold with equality. Also, since the sustainability constraint
holds with equality, we have p(ũ∗H −Υ (−ũ∗H)) + (1− p) (ũ∗L−Υ (−ũ∗L)) = 0. The properties of
Υ, together with u∗L > 0, imply ũ∗L ≤ Υ (−ũ∗L). Using convexity, differentiability and Υ (0) = 0,
the latter in turn yields 1 ≤ −Υ1 (−ũ∗L), which contradicts the first-order condition for ũ∗L.
Therefore, we cannot have uσ = 0 for all optimal σ.

Finally, suppose that both σ∗ = 0 and σ∗ = 1, are optimal, we prove that uL,0 > uH,1 =
uL,1. Suppose instead that uH,1 = uL,1 ≥ uL,0. Then the alternative allocation ûH,1 = uH,1,
ûL,1 = uL,0, l̂1 = l1, satisfies the incentive constraint and delivers a payoff

p [uH,1 − ζ (C (uH,1, l1)− l1)− χFH (uH,1)] + (1− p) [uL,0 − ζC (uL,0, 0)− χFL (uL,0)]

> p [uH,1 − ζ (C (uH,1, l1)− l1)− χFH (uH,1)] + (1− p) [uL,1 − ζC (uL,1, 0)− χFL (uL,1)] = V (1) ,

where the inequality comes from the fact that uL,0 maximizes V (0) and that µ1 > 0. The
latter contradicts the fact that (uH,1, uL,1, l1) is a maximizer of V (1).

4 Proofs for Section 2.1.3

We now extend the model of Section 2 to allow for moral hazard.

We consider the following three-stage game.

0. The government announces functions {cH (z) , cL (z) , l (z)}, for all z ∈ [0, 1], of consump-
tion if the agent finds a job, consumption if the agent does not find a job, and labor.

1. Each agent draws a random publicly-observed signal z. Signals z are drawn from a uni-
form distribution on [0, 1] , independently for each agent. An agent exerts effort with
probability σ(z). If the agent finds a job, he reveals this information by reporting H; he
reports L otherwise. A jobless agent can only report L.

2. The government chooses allocations of consumption and labor {c̃H (z) , c̃L (z) , l̃ (z)} for
agents who find a job or not, respectively. Bundles must be feasible, that is, total
consumption cannot exceed total output. The government incurs a utility cost Υ > 0, if
allocations differ from those announced in stage 0, for any positive measure of agents.

9



Notice that it is never optimal for an agent who finds a job to report L. If such agent
reported L, he would obtain the same consumption as an agent who did not exert effort but
would pay the effort cost. It is thus without loss of generality not to let agents randomize over
reports in stage 1.

Let U (Ce (u, l) , l) − e ≡ u and U (Cne (u) , 0) ≡ u. The function Ce satisfies all the
properties of Lemma 1.

Best PBEs. Let uH be the utility of an agent who finds a job and uL the utility of an agent
who exerts effort but does not find a job. An agent who does not exert effort saves on the
disutility cost and, thus, receives uL + e. Let X be the space of x ≡ (uH , uL, l, σ) such that
(i) (uH , l) and (uL, 0) lie in the domain of C, (ii) σ ∈ [0, 1], and (iii) (uH , uL, σ) satisfies the
incentive constraint

puH + (1− p)uL ≥ uL + e,

(1− σ) [puH + (1− p)uL − (uL + e)] = 0.

Notice that X might be empty when the effort cost e is high enough. We thus make the
following assumption.

Assumption A.1 For all σ there is a subset of (uL, l) with a non-empty interior such that
(uH , uL, l, σ) ∈ X for some uH .

Let ψ a distribution over X and let

g (x) ≡ σpuH + σ (1− p)uL + (1− σ) (uL + e)

and
f (x) ≡ σp {Ce (uH , l)− l}+ σ (1− p)Ce (uL, 0) + (1− σ)Cne (uL + e) .

If the government decides to break its promises in stage 2, the best payoff W̃ (ψ) it can
achieve is given by

W̃ (ψ) ≡ max
ũH ,ũL,l̃

∫
[σ (x) pũH + σ (x) (1− p) ũL + (1− σ (x)) (ũL + e)] dψ −Υ,

subject to (ũH , l̃), (ũL, 0) ∈ dom(Ce) and∫ [
σ (x) p

(
Ce
(
ũH , l̃

)
− l̃
)

+ σ (x) (1− p)Ce (ũL, 0) + (1− σ (x))Cne (ũL + e)
]
dψ ≤ 0.

A best PBE is then a solution to

max
ψ:
∫
fdψ≤0,

∫
gdψ≥W̃ (ψ)

∫
gdψ. (A.12)
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Modified problem. As in Section 2 we can replace the sustainability constraint in problem
(A.12) with a simpler constraint. Formally, given some best PBE ψ∗, we use Lagrangian
methods (Luenberger (1969), Theorem 1, p. 224) to show that there exists a scalar λ∗ ≥ 0 and
a function

W (x) ≡ max
ũH ,ũL,l̃

σ (x) pũH + σ (x) (1− p) ũL + (1− σ (x)) (ũL + e)

−λ∗
[
σ (x) p

{
Ce
(
ũH , l̃

)
− l̃
}

+ σ (x) (1− p)Ce (ũL, 0) + (1− σ (x))Cne (ũL + e)
]
−Υ,

subject to (ũH , l̃), (ũL, 0) ∈ dom(Ce), such that

W̃ (ψ) ≤
∫
Wdψ,

for all ψ, with equality at ψ = ψ∗. The proof is identical to that of Lemma 2 in the main
text. Also, it is immediate to verify that W (x) depends only on σ (x) and is independent of
(uH (x) , uL (x) , l (x)).

We can then define the modified problem

max
ψ:
∫
fdψ≤0,

∫
(g−W )dψ≥0

∫
gdψ, (A.13)

such that any PBE ψ∗ is a solution to (A.13). Conversely, any ψ∗∗ that solves (A.13) is a best
PBE.

Characterization. Problem (A.13) is convex, thus, we can set up the Lagrangian

L = max
ψ

∫
[g − ζf − χW ] dψ,

for some multipliers ζ > 0 and χ ≥ 0. By linearity, ψ∗ must assign positive measure only to
those x∗ that maximize the term inside the integral. Such x∗ can be found using a two-step
procedure. First, we can find the optimal optimal allocations (uH,σ, uL,σ, lσ) for any given
reporting strategy σ. These allocations are solutions to

κ (σ) = max
uH ,uL,l

σpuH + σ (1− p)uL + (1− σ) (uL + e)

−ζ [σp {Ce (uH , l)− l}+ σ (1− p)Ce (uL, 0) + (1− σ)Cne (uL + e)] ,

subject to (uH , l), (uL, 0) ∈ dom(Ce),

puH + (1− p)uL ≥ uL + e,

(1− σ) [puH + (1− p)uL − (uL + e)] = 0.

Second, any optimal reporting strategy σ∗ is a solution to

max
σ

κ (σ)− χW (σ) ,

where, with a slight abuse of notation, we wrote W (σ) instead of W (x).
It is immediate to see that all the steps in the proof of Proposition 1 in the main text

extend to the setting with moral hazard. Therefore, also in this setting we have the following
proposition.
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Proposition A.5 (moral hazard) Suppose that Assumption A.1 is satisfied. Then, κ is
strictly increasing, convex and not linear. W is strictly increasing and linear. Therefore, the
optimal σ∗ satisfies σ∗ ∈ {0, 1}. When both σ∗ = 0 and σ∗ = 1 are optimal, corresponding
allocations are unique and satisfy uL,0 > uL,1 = uH,1.

Proof. From their definitions, it follows immediately that Cne (u+ e) = Ce (u, 0) for all
u. We first prove that the incentive constraint holds with equality. Suppose it does not, which
can happen only when σ = 1. Then we can rewrite the problem as

κ (1) = max
uH ,uL,l

puH + (1− p)uL − ζ [p {Ce (uH , l)− l}+ (1− p)Ce (uL, 0)] ,

subject to (uH , l), (uL, 0) ∈ dom(Ce). The first-order conditions give u∗H < u∗L, which violate
the IC constraint. As a result, the incentive constraint binds and

uH = uL +
1

p
e.

The problem is then

κ (σ) = max
uL,l

uL + e− ζ
[
σp

{
Ce
(

1

p
e+ uL, l

)
− l
}

+ (1− σp)Ce (uL, 0)

]
,

(1
pe + uL, l), (uL, 0) ∈ dom(Ce). Therefore, the same arguments in Proposition 1 go through.
In particular, κ (σ) is convex and not linear, hence, since W (σ) is linear, σ∗ ∈ {0, 1}.

5 Proofs for Section 2.1.4

We begin with the definition of the optimization problems of agents and firms. An agent with
characteristic ξ who receives a job opportunity solves

max
c,l

U(c, l), (A.14)

subject to the budget constraint

c ≤ I(l = 0)bUI + I(l = 0)I(ξ > ξ̄)(bDI − bUI) + wl − I(l > 0)τ .

We use cξ and lξ to denote optimal choices. An agent without a job opportunity receives utility
U(bUI + I(ξ > ξ̄)(bDI − bUI), 0).

The production side of the economy consists of a representative firm which takes prices as
given and hires labor to produce the consumption good with technology y = l. We normalize
the price of the final good to 1.

Finally, taxes and benefits must satisfy the government’s budget constraint. Since only
agents with ξ ≤ ξ̄ have an incentice to work and, thus, pay taxes, we have:

τ Pr(lξ > 0) = bUI Pr(lξ = 0|ξ ≤ ξ̄) Pr(ξ ≤ ξ̄) + bDI Pr(lξ = 0|ξ > ξ̄) Pr(ξ > ξ̄). (A.15)

Definition A.2 (competitive equilibrium) A competitive equilibrium is a collection of agent
decisions, (cξ, lξ), a wage, w, and a welfare system, (τ , bUI , bDI), such that agent decisions solve
(A.14), labor market clears, and the government budget constraint (A.15) holds.
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Proposition A.6 (decentralization) The best PBE characterized in Proposition 1 can be
decentralized through a competitive equilibrium.

Proof. First, observe that constant returns to scale in production imply w = 1. Now, let
(u∗H,1, u

∗
L,1, u

∗
L,0, l

∗
1, ς
∗) be the objects defined in Proposition 1, where ς∗ is the fraction of agents

with job opportunities who receive allocation u∗H,1. Let b
DI ≡ C(u∗L,0, 0), bUI ≡ C(u∗L,1, 0),

and τ ≡ l∗1 − C(u∗H,1, l
∗
1). Note that bDI > bUI since u∗L,0 > u∗L,1. Define the threhsold ξ̄ as

the solution to ς∗ = pPr(ξ ≤ ξ̄). Consider first the problem of an agent with ξ ≤ ξ̄ and a
job opportunity. Using the budget constraint with l > 0, optimal choice of labor satisfies the
first-order condition

Uc(lξ − τ , lξ) + Ul(lξ − τ , lξ) = 0,

which, using the definition of C and Lemma 1 in the paper, becomes

C2(uξ, lξ) = 1,

where uξ ≡ U(lξ − τ , lξ). Using the definition of τ , uξ = U(lξ − l∗1 + C(u∗H,1, l
∗
1), lξ). Since

C2(u∗H,1, l
∗
1) = 1 from the proof of Proposition 1, the latter implies lξ = l∗1 and uξ = u∗H,1, for

all ξ ≤ ξ̄. If, instead, the agent does not work, he receives benefits bUI which by construction
deliver utility u∗L,1. Since u

∗
H,1 = u∗L,1, the agent will work if given the opportunity.

Consider now the problem of an agent with ξ > ξ̄ and a job opportunity. If such agent
works, he will again receive u∗H,1. Instead, if he does not work, he receives the more generous
benefits bDI , which by construction deliver utility u∗L,0. Since u

∗
H,1 < u∗L,0, an agent with ξ > ξ̄

will never work.
Finally, we need to make sure that the government budget constraint (A.15) is satisfied.

This follows immediately by noting that, with the values of τ , bUI , and bDI above, equation
(A.15) becomes

pPr(ξ ≤ ξ̄)(l∗1 − C(u∗H,1, l
∗
1)) = (1− p) Pr(ξ ≤ ξ̄)C(u∗L,1, 0) + Pr(ξ > ξ̄)C(u∗L,0, 0)

or, using ς∗ = pPr(ξ ≤ ξ̄),

pς∗(C(u∗H,1, l
∗
1)− l∗1) + (1− p)ς∗C(u∗L,1, 0) + (1− ς∗)C(u∗L,0, 0) = 0.

The latter coincides with the economy’s resource constraint which is satisfied in the equilibrium
of Proposition 1.
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Appendix B: Proofs for Section 3

1 Preliminaries

We lay out the details of the dynamic game of Section 3.
Each period t is divided in two stages. In stage 1, each agent observes the realization of

his sunspot variable zt and his current type θt ∈ {θH , θL}, where we use θt = θH to denote
an agent who received a job offer in period t and θt = θL to denote an agent who did not
receive an offer in period t. He then sends a report mt ∈ {H,L} to the government. Reports
are a function of current and past realizations of the agent’s types θt ≡ (θ0, ..., θt), current
and past realizations of the agent’s sunspot variables zt ≡ (z0, ..., zt), agent’s past reports
mt−1 ≡ (m0, ...,mt−1), and the aggregate history Gt−1, which we describe below.

Let h̆t ≡
(
mt−1, zt

)
and ht ≡

(
mt, zt

)
be the histories of agent’s reports and realizations

of the idiosyncratic sunspot variable, before and after he submits the current period’s report
mt, respectively. Let H̆t and Ht be the spaces of all such histories. A reporting strategy σt
induces a probability distribution over {H,L} denoted by σt(·|h̆t, θt). To simplify notation we
have omitted from σt the explicit dependence on the aggregate history Gt−1. We assume that
the law of the large numbers holds and the aggregate distribution of histories ht, denoted by
µt, is given by

1

µt
(
ht
)

= µt−1

(
ht−1

)
Pr (zt)

∑
θt∈{θH ,θL}t

πt
(
θt
)
σt
(
mt|

(
ht−1, zt

)
, θt
)
.

The triple Ht, its Borel sigma algebra, and µt is a probability space.

In stage 2, the government observes the past aggregate history Gt−1 and the current dis-
tribution µt, and chooses allocations. Allocations are measurable functions ut : Ht → [U, Ū),
where U and Ū are, respectively, the greatest lower bound and the least upper bound of
U , and lt : Ht → R+ that satisfy lt((h̆t, θL)) = 0. Allocations must lie in the domain of
function C. To make notation compact, we let C be the set of sequences {ut, lt}t such that
(ut((h̆

t, θH)),ut((h̆
t, θL)), lt((h̆

t, θH)) ∈ C for all h̆t and t. The feasibility constraint is

Eµ [C (ut, lt)− lt] ≤ 0, {ut, lt}t ∈ C a.s., (B.1)

for all t.2 Again, to simplify notation we have omitted from ut and lt the explicit dependence
on the aggregate history Gt−1.

The aggregate history Gt includes the history of distributions {µs}s≤t and the history of
allocations chosen by the government, {us, ls}s≤t . Finally, at time t, the full history of the
game consists of the aggregate history and of the private history of each agent.

1Strictly speaking, since zt is a continuous variable, µt is defined as follows. Let µ−1 = π−1. Any Borel set
At of Ht can be represented as a product At = At−1 × {0, 1} × Bz, where At−1 is a Borel set of Ht−1 and Bz
is some Borel set of Z. Then µt is defined as

µt
(
At
)
= µt−1

(
At−1

)
Pr (zt ∈ Bz)

∑
θt

πt
(
θt
)
σt
(
mt|At−1, Bz, θt

)
.

2Given a distribution µ t and a measurable function ft, we use the shorthand notation Eµ [ft] =
∫
ftdµt.

Similarly, given a reporting strategy σ and a sequence of measurable functions {ft}t, we let Eσ
[∑∞

t=0 β
tft
]
de-

note the discounted expected sum computed using the distributions {µt}t induced by σ. The “a.s.”requirement
is with respect to such measure.
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The definition of aggregate history formalizes our assumption that agents are atomistic.
Since only the distribution of agent histories is observable, any event to which µt assigns
zero probability will not affect the aggregate history and, therefore, will not be observed. In
particular, the reporting strategy of any individual agent does not affect the aggregate history
in the game.

Perfect Bayesian equilibrium. A PBE consists of strategies of agents and the govern-
ment and posterior beliefs such that, at each history of the game, each player chooses his best
response given his posterior beliefs formulated using Bayes’rule. A best PBE is a PBE such
that there is no other PBE that gives higher utility to a set of agents of measure 1, and strictly
higher utility to a positive measure of agents.

2 Best Equilibrium

A convenient property of PBEs is the one-stage deviation principle (see Theorem 4.2, p. 110
in Fudenberg and Tirole (1991)). The next lemma shows that this principle applies to our
environment.

Lemma B.1 The strategy profile (σ,u, l) is part of a PBE if and only if there is no history
Γt at which a player i (i.e. either the government or any individual agent) has an alternative
strategy, which differs from the equilibrium strategy only at Γt and which delivers a higher
payoff to player i, conditional on Γt being reached.

Proof. The “only if”part of the lemma follows directly from the definition of PBEs. We
prove the “if”part. Also, we focus on the case in which an agent deviates; the case in which
the government deviates is analogous. Suppose that (i) σ satisfies the “one-stage deviation”
property, that is, there is no other strategy that differs from σ only at one history and delivers a
higher payoff to the agent; (ii) there is a reporting strategy σ̃ and a history (h̆t, θt) at which σ̃t
is preferred to σt. Formally, if we let V

(
σ̃|h̆t, θt

)
≡ Eσ̃

[∑∞
s=t β

s−tus
∣∣ h̆t, θt], then condition

(ii) states that
V (σ̃|h̆t, θt) > V (σ|h̆t, θt).

Notice that this condition implies that σ cannot be part of a PBE. Suppose first that there is
a time T < ∞ such that στ = σ̃τ , for any (h̆τ , θτ ) with τ ≥ T + 1. The one-stage deviation
property implies that

V (σ|h̆T , θT ) ≥ V (σ̃|h̆T , θT ).

Consider an alternative strategy σ̂ which coincides with σ̃ for all histories (h̆τ , θτ ) with t ≤
τ ≤ T − 1 and coincides with σ elsewhere. The previous inequalities imply

V (σ̂|h̆t, θt) > V (σ|h̆t, θt).

However, σ̂ differs from σ only for τ ≤ T − 1. Repeating this process, we eventually find a
reporting strategy that differs from σ only at time t and yields a higher payoff to the agent,
thus, contradicting condition (i).

Suppose now T =∞. Let

ε ≡ V (σ̃|h̆t, θt)− V (σ|h̆t, θt) > 0.

15



Let σ̂ be the strategy that coincides with σ̃ for all histories (h̆s, θs), s ≤ τ , and coincides with
σ for all other histories. Since utility is bounded, we can choose τ high enough that

V (σ̃|h̆t, θt)− V (σ̂|h̆t, θt) ≤ ε

2
.

Thus, σ̂ delivers a higher payoff to the agent at history (h̆t, θt) and differs from σ only for
finitely many periods. We can then follow the same steps as in the case with T <∞ to reach
a contradiction.

Following standard arguments, equilibrium strategies are supported by a threat to revert
to a PBE that gives the government the lowest utility, which we call a worst PBE. Next lemma
constructs such an equilibrium.

Lemma B.2 In a worst PBE, the strategy profile (σw,uw, lw) is such that σwt (L|h̆t, θt) = 1
and (uwt , l

w
t ) ∈ arg max{ut,lt}t s.t. (B.1) Eµ [ut], for all histories and distributions µt.

Proof. By Lemma B.1, it is enough to prove that single deviations are not profitable.
Given σw, after observing a distribution of histories µt, the highest payoff the government can
achieve is given by the allocation described in the statement of the lemma. The problem is
convex, therefore, there exists a Lagrange multiplier λ > 0 such that the optimal allocation
(uwt , l

w
t ) satisfies the first-order conditions

1− λC1

(
uwt (h̆t, H), lwt (h̆t, H)

)
≤ 0,

1− λC1

(
uwt (h̆t, L), 0

)
≤ 0,

and
C2

(
uwt (h̆t, H), lwt (h̆t, H)

)
− 1 = 0,

where the last condition holds with equality by Lemma 1 in the main text. First, observe
that we cannot have uwt (h̆t,mt) = 0, for all h̆t and mt. Otherwise, since the last condition
implies lwt (h̆t, H) > 0, the resource constraint would be slack, which contradicts optimality.
Second, by Lemma 1 in the main text, C1 (u, l) > C1 (u, 0), for all u and l > 0. Therefore,
uwt (h̆t, H) < uwt (h̆t, L), for all h̆t. Given (uw, lw), an agent of type θH is strictly better off by
reporting L, thus, σwt (L|h̆t, θt) = 1, for all h̆t and θt. Therefore, (σw,uw, lw) is a PBE.

Note that, since all agents report L with probability 1, feasibility implies lwt (ht) = 0 and
uwt (ht) = 0, for all ht on the equilibrium path. Therefore, the government’s payoff is 0.
Since the allocation (uw, lw) is feasible for any other reporting strategy of the agents, the
government’s payoff must be at least 0 in any PBE. Therefore, the constructed equilibrium is
a worst PBE.

We now turn to best PBEs. Let (σ,u, l) a strategy profile and let {µt}t be the induced
distributions over histories of reports. At any time t, the full history of the game is given by
the public history and by the private history of each agent. In particular, let {Gt}t be the
sequence of public histories on the equilibrium path. Note that, since there is no aggregate
uncertainty, {Gt}t is deterministic.
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We first specify the strategies in the continuation game following a detectable deviation,
that is, a deviation that affects the aggregate history and is thus observed by everybody.
We consider non-detectable deviations below. Given our assumptions, any deviation by the
government or by a positive mass of agents will affect the public history and, hence, will be
detectable. Standard arguments imply that, to sustain the best equilibrium, it is necessary to
punish deviations in the harshest possible way. We thus assume that, in the continuation game
starting from any G′t 6= Gt, (σ,u, l) coincides with (σw,uw, lw), which is defined in Lemma
B.2. Note that, by Lemma B.2, neither the government nor the agents have an incentive to
deviate in the history where (σw,uw, lw) is played.

We now study the behavior on the equilibrium path. By Lemma B.1, it is enough to ensure
that single deviations are not profitable. Consider the government first. Deviations by the
government are detectable, hence, they trigger a reversion to a worst PBE where, by Lemma
B.2, the government achieves a payoff of 0. The highest payoff that the government can achieve
by deviating in period t is thus

W̃t (µt) = max
{ut,lt}t s.t. (B.1)

Eµ [ut] . (B.2)

As a consequence, the government will not deviate if the following best-response constraint–
which we refer to as the “sustainability constraint”– is satisfied:

Eσ
∞∑
s=t

βs−tus ≥ W̃t (µt) for all t. (B.3)

Consider now the agents. A single agent’s report does not affect the aggregate history, hence,
by Lemma B.1, we can write the incentive constraint of each agent as

σt

(
·|h̆t, θt

)
∈ arg max

σ

∑
mt

σ (mt)

(
ut
(
ht
)

+ βEσ

[ ∞∑
s=0

βsus+t+1

∣∣∣∣∣ht, θt
])

, (B.4)

for all h̆t, θt, with θt = θH .

We are left to define strategies following a non-detectable deviation, that is, a deviation
that is observed only by the agent who deviates. The aggregate history is not affected by such
deviations, hence, there cannot be a reversion to the worst equilibrium. We thus assume that,
following this type of deviation, the reporting strategy σt will still satisfy (B.4).

So far, we have characterized equilibrium allocations and reporting strategies, however, we
are interested in best PBEs. Since the government is utilitarian, it is immediate to see that, in
a best PBE, the government’s payoff must be maximized. Formally, a best PBE is a solution
to the following problem:

max
σ,u,l

Eσ
∞∑
t=0

βtut, (B.5)

subject to (B.1), (B.3) and (B.4).
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3 Recursive Problem

We start the analysis by simplifying strategies and allocations. The following lemma is a
key intermediate step for our recursive characterization of best PBEs. It shows that all the
information required to characterize the agents’behavior after any period t can be summarized
in a variable w that captures the agent’s expected continuation payoff in period t along the
equilibrium path.

Lemma B.3 Any best PBE is payoff equivalent to a PBE in which σt is independent of θt−1

and for which the following property holds: if there is some w ∈ R and histories h′t, h′′t such
that

w = Eσ

[ ∞∑
s=t

βs−tus+1

∣∣∣∣∣h′t
]

= Eσ

[ ∞∑
s=t

βs−tus+1

∣∣∣∣∣h′′t
]
,

then σT (m|h̆′T , θT ) = σT (m|h̆′′T , θT ), uT (h̆′T ,mT ) = uT (h̆′′T ,mT ), lT (h̆′T ,mT ) = lT (h̆′′T ,mT ),
for all T > t where h̆′T = (h′t, zt+1,mt+1, ..., zT ), h̆′′T = (h′′t, zt+1,mt+1, ..., zT ), for some
(zt+1,mt+1, ..., zT ) and mT .

Proof. For any h̆t ∈ H̆t, define strategy σ′ by

σ′t(·|h̆t, (θ̂
t−1

, θt)) =
∑
θt−1

σt(·|h̆t,
(
θt−1, θt

)
) Pr(θt−1),

for all θ̂
t−1
. By construction, σ′t(·|h̆t, (θ̂

t−1
, θt)) = σ′t(·|h̆t, (θ̃

t−1
, θt)) for all θ̃

t−1
, θ̂
t−1

. Since

any agent with a history (h̆t, (θ̃
t−1

, θt)) can replicate the strategy of the agent with a history

(h̆t, (θ̂
t−1

, θt)) and achieve the same payoff as that agent, and σt(·|h̆t, (θ̂
t−1

, θt)) is the optimal

choice of the agent with history (h̆t, (θ̂
t−1

, θt)), the new strategy σ′ satisfies the agents’best
response constraint (B.4). The strategy σ′ induces distributions {µ′t}t which satisfy µ′t = µt
for all aggregate histories, hence, the feasibility constraint (B.1) is still satisfied if agents play

σ′. Finally, σ′t(θ̂L|h̆t, (θ̂
t−1

, θL)) = 1, for all histories.
For simplicity, we assume that µt(h

′t), µt(h
′′t) > 0. Let α = µt(h

′t)/(µt(h
′t) + µt(h

′′t)) and
define φ′ : [0, α] → [0, 1] by φ′ (z) = z/α and φ′′ : [α, 1] → [0, 1] by φ′′ (z) = (z − α) / (1− α) .
Define a new reporting strategy and allocations (σ′,u′, l′), for all T ≥ 1, ht ∈

{
h′t, h′′t

}
,and

θt+T , as

u′t+T ((ht, zt+1,mt+1, ...,mt+T )) = u∗t+T ((h′t, φ′ (zt+1) ,mt+1, ...,mt+T )),

l′t+T ((ht, zt+1,mt+1, ...,mt+T )) = l∗t+T ((h′t, φ′ (zt+1) ,mt+1, ...,mt+T )),

σ′t+T (·|(ht, zt+1,mt+1, ..., zt+T ), θt+T ) = σ∗t+T (·|(h′t, φ′ (zt+1) ,mt+1, ..., zt+T ), θt+T ),

if zt+1 ≤ α, and

u′t+T ((ht, zt+1,mt+1, ...,mt+T )) = u∗t+T ((h′′t, φ′′ (zt+1) ,mt+1, ...,mt+T )),

l′t+T ((ht, zt+1,mt+1, ...,mt+T )) = l∗t+T ((h′′t, φ′′ (zt+1) ,mt+1, ...,mt+T )),

σ′t+T (·|(ht, zt+1,mt+1, ..., zt+T ), θt+T ) = σ∗t+T (·|(h′′t, φ′′ (zt+1) ,mt+1, ..., zt+T ), θt+T ),

if zt+1 > α, and u′s = us, l
′
s = ls, σ

′
s = σs for all other histories and periods s. Agents

with histories h′t, h′′t could have replicated each other strategies after period t, so they must
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be indifferent between them. The strategy σ′ gives them the same utility for all histories
following

{
h′t, h′′t

}
leaving all other histories unchanged, thus, it is incentive compatible, i.e.

satisfies (B.4). The strategy profile σ′ induces {µ′t}t, which assigns the same probability to
any realization of u and l as {µt}t, thus, the feasibility constraint (B.1) is satisfied. Therefore,
(σ′,u′, l′) is a PBE which is payoff equivalent to (σ,u, l).

Lemma B.3 allows us to greatly simplify the dependence of allocations and reporting strate-
gies on the past. More specifically, without loss of generality, we can focus on strategy profiles
(σ,u, l) such that (i) the reporting strategy σt is independent of θt−1 and, in addition, (ii)
the expected payoff to an agent at any history ht, wt ≡ Eσ

[∑∞
s=t β

s−tus+1

∣∣ht], is a suffi cient
statistic for the information contained in ht.

We can use these results to rewrite problem (B.5) as follows. First, instead of maximiz-
ing over allocations and reporting strategies that depend on the random variable zt, we can
equivalently choose probability distributions over bundles of utility and reporting probability.
Second, we can use Lemma B.3 and replace each agent’s history with a single number, namely,
the agent’s expected payoff at that particular history.

Formally, the government chooses sequences of probability measures {ψt,w}t,w over the
space X defined in the main text, which satisfy the promise-keeping constraint (11) in the
main text. Any such sequence will in turn generate a sequence of probability measures {πt−1}t
over continuation values defined by the recursion (12). We can then rewrite the resource
constraint (B.1) as equation (13). Similarly, with a slight abuse of notation, the value at time

t of the government’s best deviation (B.2) is given by the function W̃
({
ψt,w

}
w
, πt−1

)
defined

in the main text. As a result, the sustainability constraint (B.3) becomes constraint (14).
Putting everything together, best PBEs can be found as a solution to problem (15).

The next lemma, which is the analogue of Lemma 2 in the main text, shows how to construct
a bound on the function W̃ , which will be key to obtain a recursive representation of problem
(15).

Lemma B.4 Let {ψ∗t,w} be a best PBE. Then, there exists a sequence of non-negative numbers
{λ∗t } that defines functions {Wt (·)} given by

Wt (x) ≡ max
(ũH ,ũL,l̃)∈C

[pσ (x) ũH+(1− pσ (x)) ũL]+λ∗t [pσ (x)
{
C
(
ũH , l̃

)
− l̃
}

+(1− pσ (x))C (ũL, 0)],

such that ∫ ∫
Wt (x) dψt,wdπt−1 ≥ W̃

(
{ψt,w}, πt−1

)
for any feasible {ψt,w}, and∫ ∫

Wt (x) dψ∗tdπt−1 = W̃
(
{ψ∗t,w}, πt−1

)
.

Furthermore, Wt (x) is linear in σ (x).

Proof. Problem (B.2) is convex, thus, its solution is characterized by the saddle point of
the Langrangian (Luenberger (1969), Theorem 1, p. 224)

W̃
(
{ψ∗t,w}, πt−1

)
= min

λt
max

(ũH ,ũL,l̃)∈C

∫ ∫ { pσ (x) ũH + (1− pσ (x)) ũL

−λt[pσ (x)
(
C
(
ũH , l̃

)
− l̃
)

+ (1− pσ (x))C (ũL, 0)]

}
dψ∗t,wdπt−1.
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The proof then follows exactly the same steps as the proof of Lemma 2 and Corollary 1 in the
main text.

Following the same arguments in Section 2 in the main text, by Lemma B.4, we can
define a “modified problem”by replacing the sustainability constraint (14) with the alternative
constraint (16) in problem (15). Then, any solution

{
ψt,w

}
t,w

to this modified problem is a
best PBE. We apply the techniques developed in Farhi and Werning (2007) on this modified
problem. We first let βtζ∗t and β

tχ∗t be the Langrange multipliers on constraints (13) and (16).
Straightforward arguments prove that the Lagrangian of the modified problem is given by L
in the main text. The linear structure of L implies that we can solve the modified problem by
focusing on the value functions {Kt}t defined by equation (17). These value functions satisfy
a useful recursion.

Lemma B.5 The functions {Kt}t satisfy the recursion

Kt (w̃) = max
ψ0,w̃ s.t. (11)

∫ [
g − ζtf − χtWt + β̂t+1Kt+1

]
dψt,w̃,

for all t and w̃ ∈ [0, Ū
1−β ), where β̂t+1 ≡ β̄t+1/β̄t and where Kt+1 (x) is a shorthand notation

for pσKt+1 (wH) + (1− pσ)Kt+1 (wL).

Proof. We prove the statement for t = 0, the arguments are exactly the same for all other
time periods. By definition,

K0 (w̃) =
1

β̄0

max
{ψs,w,πs−1}s,w

∞∑
s=0

β̄s

∫ ∫
[g − ζsf − χsWs] dψs,wdπs−1,

subject to (11) and (12) in the main text, with π−1 (w) = 1− Iw≤w̃. We rewrite the objective
in K0 (w̃) as

β̄0

∫
[g − ζ0f − χ0W0] dψ0,w̃ +

∞∑
s=1

β̄s

∫ ∫
[g − ζsf − χsWs] dψs,wdπs−1

= β̄0

∫
[g − ζ0f − χ0W0] dψ0,w̃ + β̄1

∞∑
s=1

β̄s
β̄1

∫ ∫
[g − ζsf − χsWs] dψs,wdπs−1.

Using (12),

K0 (w̃) = max
{ψs,w,πs−1}s,w s.t. (11), (12)

∫
[g − ζ0f − χ0W0] dψ0,w̃

+
β̄1

β̄0

∞∑
s=1

β̄s
β̄1

∫
[g − ζsf − χsWs] dψs,wdπs−1

= max
ψ0,w̃ s.t. (11)

∫
[g − ζ0f − χ0W0] dψ0,w̃

+ max
{ψs,w,πs−1}s≥1,w s.t. (11), (12)

β̄1

β̄0

∞∑
s=1

β̄s
β̄1

∫ ∫
[g − ζsf − χsWs] dψs,wdπs−1

= max
ψ0,w̃ s.t. (11)

∫ ∫ {
g − ζ0f − χ0W0 + β̂1 [pσKt+1 (wH) + (1− pσ)Kt+1 (wL)]

}
dψ0,w̃,
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where β̂1 ≡ β̄1/β̄0.

4 Proofs for Section 3.2

Proof of Lemma 3 (extra details). We show in detail how to apply the results in Topkis
(2011). First, note that the set dom(C) consists of all pairs (u, l) such that {u ≥ 0, u ≤ U(∞, l),
l ≥ 0}. Similarly, the set dom(Kt+1) consists of utility levels w such that 0 ≤ w < Ū/(1− β).
Now, let x = (u,−l), y = (v,−∆) and let X = R2, Y = R2. Thus, X and Y with the usual
ordering are lattices. Let S ⊂ R4 be the subset of X × Y defined as

S =

{
(x, y) :

x1 ≥ 0, x1 ≤ U(∞,−x2), − x2 ≥ 0, y1 ≥ 0, y1 < Ū/(1− β),

(y1 − x1)/β ≥ 0, (y1 − x1)/β < Ū/(1− β), − x2 ≤ −y2, − y2 ≥ 0

}
.

Finally, let
gt (y) = max

x∈Sy
ft (x, y) ,

where

ft (x, y) = x1 − ζt (C (x1,−x2) + x2) + β̂t+1Kt+1

(
y1 − x1

β

)
.

We first prove that S is a sublattice. We can represent S with the following real-valued
functions: g1 (x1) = x1, g2 (x2) = −x2, g3 (y1) = I

(
0 ≤ y1 < Ū/(1− β)

)
− 1, g4 (y2) = −y2,

and h1 (x2, x1) = U(∞,−x2)− x1, h2 (y1, x1) = (y1 − x1)/β, h3 (x1, y1) = I(Ū/(1− β)− (y1 −
x1)/β > 0) − 1, h4 (x2, y2) = x2 − y2. Each function hi is bimonotone, i.e. it is bivariate,
increasing in the first variable, and decreasing in the second one (Topkis (2011), pag. 23). By
Example 2.2.7(a) in Topkis (2011), S is a sublattice of R4.

We now prove that ft is supermodular on S. First, S is a subset of R4 and each R, with
the usual ordering, is a chain. Also,

∂2

∂x1∂x2
ft (x, y) = ζtC12 (x1,−x2) > 0

and, for x′1 > x1,

∂

∂y1
ft
((
x′1, x2

)
, y
)
− ∂

∂y1
ft ((x1, x2) , y) =

1

β
β̂t+1

[
K ′t+1

(
y1 − x′1
β

)
−K ′t+1

(
y1 − x1

β

)]
≥ 0,

by concavity of Kt+1. The other cross-partial derivatives are trivially 0. Therefore, ft has
increasing differences on S and, by Theorem 2.6.3, is supermodular on S.

It is then immediate to apply Theorem 2.7.6. The only assumption we need to verify
is that gt (y) is finite on the projection of S on Y . This is immediate. Therefore, gt (y) is
supermodular, hence, it has increasing differences in (y1, y2).

With a slight abuse of notation, we use gt (v,∆) to denote gt ((v,−∆)). Let Gt (v,∆) ≡
gt (v,∆)− gt (v, 0). Gt is positive, Gt (·,∆) is non-increasing, for each ∆ because of the results
above. Finally, Gt (v, ·) is non-decreasing, for each v, because the constraint set becomes larger
as ∆ increases. Consider a sequence ∆n →∞ as n→∞. For each v, Gt (v,∆n) is monotone,
thus, it has a limit Ḡt (v) ≡ limn→∞Gt (v,∆n). Take now v1 < v2. Then, for each ∆n,
Gt (v1,∆n) ≥ Gt (v2,∆n). Taking the limit as n → ∞, we have Ḡt (v1) ≥ Ḡt (v2). Therefore,
Ḡt is also non-increasing.
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Appendix C: Proofs for Section 4

1 Preliminaries

In this appendix we present the details of the dynamic economy in Section 4.

We use a superscript “n” to denote agents born at time n and a superscript “o” for the
initial old. We let J = {o}∪{0, 1, 2, ...}. At time 0, there is a measure 1−δ of “initial old”who
are indexed by (v, ι), where v is entitlement to lifetime utility and ι ∈ {0, 1} denotes whether
the agent is unemployed or employed at time 0, respectively. Let πo−1 denote the distribution
of (v, ι).

Each period t is divided in two stages. We use ιt = 1 if the agent is employed at time
t and ιt = 0 otherwise. In stage 1, an agent born at time n ≤ t observes his employment
status ιt ∈ {0, 1}, the realization of his sunspot variable zt, and his current type θt ∈ {θH , θL}.
He then sends a report mt ∈ {H,L} to the government. Since the employment status is
observable, an employed agent can only report mt = H. Reports are a function of current
and past realizations of the agent’s types θn,t ≡ (θn, ..., θt) , the agent’s current and past
employment statuses ιn,t−1 ≡ (ιn, ..., ιt), current and past realizations of the agent’s sunspot
variables zn,t ≡ (zn, ..., zt) , the agent’s past reports mn,t−1 ≡ (mn, ...,mt−1), and the aggregate
history Gt−1, which we describe below. We similarly define θo,t, zo,t, and mo,t, t ≥ 0, for the
initial old.

For an agent born at time n, let h̆n,t ≡ (ιn, zn,mn, ..., ιt−1, zt−1,mt−1, ιt, zt) and hn,t ≡
(ιn, zn,mn, ..., ιt, zt,mt), t ≥ n, be the histories of the agent’s reports and realizations of the
idiosyncratic sunspot variable, before and after he submits the current period’s report mt, re-
spectively. Similarly, let h̆o,t ≡ (v, ι, z0,m0, ..., ιt−1, zt−1,mt−1, ιt, zt) and ho,t ≡ (v, ι, z0,m0, ..., ιt, zt,mt),
t ≥ 0, be the time-t histories of the initial old. Let H̆j,t and Hj,t, j ∈ J , be the spaces of all such
histories. A reporting strategy σjt induces a probability distribution over {H,L} denoted by
σjt (·|h̆j,t, θj,t). To simplify notation we have omitted explicit dependence on the aggregate his-
tory Gt−1. We assume that the law of the large numbers holds and the aggregate distribution
of histories hj,t, j ∈ J , denoted by µjt , is given by µo−1 = πo−1, µ

n
n−1 = 1, and

µjt
(
hj,t
)

= (1− δ)µjt−1(hj,t−1) Pr (zt)
∑

θj,t∈{θH ,θL}t
Pr
(
θj,t
)
σjt (mt|h̆j,t, θj,t)×

{
1, if mt−1 = L,
q, if mt−1 = H,

for ιt = 0,

µjt (h
j,t) = (1− δ)µjt−1(hj,t−1) Pr (zt)×

{
0, if mt−1 = L,

1− q, if mt−1 = H,

for ιt = 1 and mt = H, and µjt (h
j,t) = 0, for ιt = 1 and mt = L.3 The triple Hj,t, its Borel

sigma algebra, and µjt is a probability space, for all j ∈ J . Similarly for the initial old. To ease
notation, we let µt ≡

(
µot , µ

1
t , ..., µ

n
t

)
.

In stage 2, the government observes the past aggregate history Gt−1 and the current dis-
tributions µt, and chooses allocations. Allocations are measurable functions (ujt , l

j
t ) : Hj,t →

3Formally, since zt is a continuous variable, the distribution µt should be defined over any Borel set A
t of

Ht, which can be represented as a product At = At−1 × {0, 1} ×Bz × {0, 1}, where At−1 is a Borel set of Ht−1

and Bz is some Borel set of Z.
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[U, Ū)×R+, j ∈ J , that satisfy ljt ((h̆j,t, θL)) = 0. As in the model of Section 3, allocations must
lie in the domain of function C. We define set C as in Appendix B. The feasibility constraint
is ∑

j∈J
ωt,jEjµC

(
ujt , l

j
t

)
≤
∑
j∈J

ωt,jEjµl
j
t , {ujt , l

j
t}t ∈ C, for all j ∈ J , a.s., (C.1)

for all t.4 Note that, to make notation more compact, we have defined ωt,o ≡ 1− δ, ωt,n ≡ δ,
for n ≤ t, and ωt,n ≡ 0, for n > t, and we have, once again, omitted the explicit dependence
on the aggregate history Gt−1. Also, given a sequence {xjt}t,j , we use the shorthand notation:
xt ≡ {xjt}j , xj ≡ {x

j
t}t, and x ≡ {x

j
t}t,j .

The aggregate history Gt includes the history of distributions {µs}s≤t and the history of
allocations chosen by the government, {(us, ls)}s≤t . Finally, at time t, the full history of the
game consists of the aggregate history and of the private history of each agent.

The definition of aggregate history formalizes our assumption that agents are atomistic.
Since only the distribution of agent histories is observable, any event to which µt assigns
zero probability will not affect the aggregate history and, therefore, will not be observed. In
particular, the reporting strategy of any individual agent does not affect the aggregate history
in the game.

Perfect Bayesian equilibrium. A PBE consists of strategies of agents and the govern-
ment and posterior beliefs such that, at each history of the game, each player chooses his best
response given his posterior beliefs formulated using Bayes’rule. A best PBE is a PBE such
that there is (i) no other PBE that gives higher utility to a set of agents of measure 1, and
strictly higher utility to a positive measure of agents; (ii) each initial old individual receives
lifetime expected utility at least equal to his entitlement v.

Without loss of generality, we assume that an initial old with entitlement v receives a
lifetime expected utility exactly equal to v.

2 Best Equilibrium

A convenient property of PBEs is the one-stage deviation principle (see Theorem 4.2, p. 110
in Fudenberg and Tirole (1991)). The next lemma shows that this principle applies to our
environment.

Lemma C.1 The strategy profile (σ,u, l) is part of a PBE if and only if there is no history
Γt at which a player i (i.e. either the government or any individual agent) has an alternative
strategy, which differs from the equilibrium strategy only at Γt and which delivers a higher
payoff to player i, conditional on Γt being reached.

Proof. The “only if” part of the lemma follows directly from the definition of PBEs.
We prove the “if” part. Also, we focus on the case in which an agent deviates; the case
in which the government deviates is analogous. Consider an agent who is an “initial old”,

4Given a distribution µjt , j ∈ J , it is immediate to define the expectation Ejµ [ft] for any measurable function
ft : H

j,t → R. Also, given reporting strategies {σjt}t and a sequence of measurable functions {ft}t, we
let Ejσ

[∑∞
t=0 β

tft
]
denote the discounted expected sum computed using the sequence of distributions {µjt}t

induced by {σjt}t. The “a.s.”requirement is with respect to such measure.

23



the proof is identical if the agent is born at any t ≥ 0. Suppose that (i) σo satisfies the
“one-stage deviation” property, that is, there is no other strategy that differs from σo only
at one history and delivers a higher payoff to the agent; (ii) there is a reporting strategy σ̃o

and a history (h̆o,t, θo,t) at which σ̃ot is preferred to σ
o
t . Formally, if we let V

(
σo|h̆o,t, θt

)
≡

Eoσ
[∑∞

s=t β
s−tus

∣∣ h̆o,t, θo,t], then condition (ii) states that
V
(
σ̃o|h̆o,t, θo,t

)
> V

(
σo|h̆o,t, θo,t

)
.

Notice that this condition implies that σo cannot be part of a PBE. Suppose first that there is
a time T <∞ such that σoτ = σ̃oτ , for any (h̆o,τ , θo,τ ) with τ ≥ T + 1. The one-stage deviation
property implies that

V
(
σo|h̆o,T , θT

)
≥ V

(
σ̃o|h̆o,T , θT

)
.

Consider an alternative strategy σ̂o which coincides with σ̃ for all histories (h̆o,τ , θo,τ ) with
t ≤ τ ≤ T − 1 and coincides with σo elsewhere. The previous inequalities imply

V
(
σ̂o|h̆o,t, θo,t

)
> V

(
σo|h̆o,t, θo,t

)
.

However, σ̂o differs from σo only for τ ≤ T − 1. Repeating this process, we eventually find a
reporting strategy that differs from σo only at time t and yields a higher payoff to the agent,
thus, contradicting condition (i).

Suppose now T =∞. Let

ε ≡ V
(
σ̃o|h̆o,t, θo,t

)
− V

(
σo|h̆o,t, θo,t

)
> 0.

Let σ̂o be the strategy that coincides with σ̃o for all histories (h̆o,s, θo,s), s ≤ τ , and coincides
with σo for all other histories. Since utility is bounded, we can choose τ high enough that

V
(
σ̃o|h̆o,t, θo,t

)
− V

(
σ̂o|h̆o,t, θo,t

)
≤ ε

2
.

Thus, σ̂o delivers a higher payoff to the agent at history (h̆o,t, θo,t) and differs from σo only for
finitely many periods. We can then follow the same steps as in the case with T <∞ to reach
a contradiction.

Following standard arguments, equilibrium strategies are supported by a threat to revert
to a PBE that gives the lowest utility to the government, which we call a worst PBE.

When agents were not dying and the economy was populated only by “initial old” (as
in Section 3 in the main text), a worst equilibrium was simply given by the repetition of the
static Nash equilibrium where every agent reported to be jobless. Things are substantially more
complicated when agents are born and die. The reason is as follows. When the government
maximizes the utility of the people who are alive, his objective is not time consistent: some of
the people whose utility will be maximized in the next period are not around in the current
period. As a result, there might be an equilibrium which delivers a lower payoff than the simple
repetition of the static Nash equilibrium.

As an example, suppose we want to find an equilibrium that delivers the lowest utility to
the agents alive at t. One way to achieve this is to let the government at t + 1 punish the
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individuals who were also alive at t, by redistributing towards those who are born at t + 1
and, thus, were not yet alive at t. Clearly, this redistribution is costly for the perspective of
the government at t + 1 who is utilitarian. However, we can reward the government at t + 1
by having agents at t + 2 play a better equilibrium than the static Nash equilibrium. As a
result, we can make the punishment of people alive at t to be incentive compatible for the
government.

It turns out that, although finding a worst equilibrium may be diffi cult, the value of any
such equilibrium must satisfy a crucial property, which is all we need in our analysis.

Lemma C.2 The value of a worst equilibrium at any history depends only on the fraction of
people employed at that history.

Proof. Take any time t and two full histories of the game Γt and Γ̂t. Suppose that the
fraction of people who are employed in the two histories is the same and equals Nt. Finally,
suppose that (σ,u, l) and (σ̂, û, l̂) are the worst equilibria in the continuation games starting
from Γt and Γ̂t, respectively. For j ∈ J , let vjt

(
hj,t, θj,t

)
≡ Ejσ

[∑∞
s=t β

s−tus
∣∣hj,t, θj,t] (resp.

v̂jt
(
hj,t, θj,t

)
) be the lifetime utility of an agent at history hj,t if (σ,u, l) (resp. (σ̂, û, l̂))

is played. Finally, let µt and µ̂t be the distributions over agents’ histories at Γt and Γ̂t,
respectively. Suppose the government achieves a higher payoff at Γ̂t than at Γt:∑

j∈J
ωt,jEjµv

j
t >

∑
j∈J

ωt,jEjµ̂v̂
j
t .

We want to prove that (i) (σ̂, û, l̂) is also an equilibrium in the continuation game starting
from Γt and that (ii) it achieves a lower payoff than (σ,u, l).

At both histories, we can divide the agents into two groups, those with a job and those
without one. We then match each agent in each group starting from Γt with an agent in the
corresponding group starting from Γ̂t. This is possible as the groups following the two histories
have the same size by assumption. Notice that the matching does not take into account when
agents are born. However, since preferences are independent of the time when agents are born,
if (σ̂, û, l̂) is played an agent receives utility v̂js

(
hj,s, θj,s

)
at history

(
hj,s, θj,s

)
, s ≥ t, j ∈ J ,

independently of whether he was born at time j or at any other time. It is then immediate to
verify that (σ̂, û, l̂) is an equilibrium also in the subgame starting from Γt and that (σ̂, û, l̂)
delivers a strictly lower payoff to the government at history Γt, contradicting the fact that
(σ,u, l) is a worst equilibrium.

We now turn to best PBEs. Let (σ,u, l) be a strategy profile and let {µt}t be the induced
distributions over histories of reports. At any time t, the full history of the game is given by
the public history and by the private history of each agent. In particular, let {Gt}t be the
sequence of public histories on the equilibrium path. Note that, since there is no aggregate
uncertainty, {Gt}t is deterministic.

We first specify the strategies in the continuation game following a detectable deviation,
that is, a deviation that affects the aggregate history and is thus observed by everybody.
We consider non-detectable deviations below. Given our assumptions, any deviation by the
government or by a positive mass of agents will affect the public history and, hence, will be
detectable. Standard arguments imply that, to sustain the best equilibrium, it is necessary
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to punish deviations in the harshest possible way. We thus assume that, in the continuation
game starting from any G′t 6= Gt, (σ,u, l) coincides with a worst PBE. Notice that, since
detectable deviations are punished with reversion to a worst equilibrium, once such reversion
occurs, neither the government nor the agents have an incentive to deviate.

We now study the behavior on the equilibrium path. By Lemma B.1, it is enough to
ensure that single deviations are not profitable. Consider the government first. Deviations
by the government are detectable by construction, hence, they will trigger a reversion to a
worst PBE. By Lemma C.2, the value of any such PBE will depend only on the fraction of
people employed. Let Nσ

t denote such fraction. The notation emphasizes that the fraction of
people employed depends on the agents’reporting strategies. As a result, a deviation by the
government will, in general, affect the fraction of people employed. Finally, let V (Nσ

t ) be the
value of any worst PBE. The highest payoff that the government can achieve by deviating in
period t is then

W̃t = max
{ut,lt}t s.t. (C.1)

∑
j∈J

ωt,jEjµu
j
t + βV (Nσ

t+1). (C.2)

As a consequence, the government will not deviate if the following best-response constraint–
which we refer to as the “sustainability constraint”– is satisfied:∑

j∈J
ωt,jEjσ

∞∑
s=t

βs−tujs ≥ W̃t, for all t. (C.3)

Consider now the agents. A single agent’s report does not affect the aggregate history, hence,
by Lemma C.1, we can write the incentive constraint of each agent as

σjt

(
·|h̆j,t, θj,t

)
∈ arg max

σ

∑
mt∈{0,1}

σ (mt)

(
ujt
(
hj,t
)

+ βEjσ

[ ∞∑
s=0

βsujt+1+s

∣∣∣∣∣hj,t, θj,t
])

, (C.4)

for all h̆j,t, j ∈ J , θj,t, with θt = θH and hj,t = (h̆j,t,mt).

Finally, in a best PBE, an initial old with entitlement v must receive a lifetime expected
utility of exactly v:

Eoσ

[ ∞∑
t=0

βtuot

∣∣∣∣∣ v
]

= v. (C.5)

We are left to define strategies following a non-detectable deviation, that is, a deviation
that is observed only by the agent who deviates. The aggregate history is not affected by such
deviations, hence, there cannot be a reversion to the worst equilibrium. We thus assume that,
following this type of deviation, the reporting strategies σjt will still satisfy (C.4).

So far, we have characterized equilibrium allocations and reporting strategies, however, we
are interested in best PBEs. We trace out the Pareto frontiers of the game by giving different
weights to different generations. Formally, let {ϕj}, with ϕo = 1 and ϕn ≥ 0, n ≥ 0, be a
sequence of Pareto weights, a best PBE is a solution to the following problem:

max
σ,u,l

∑
j∈J

ϕjEjσ
∞∑
t=0

ωt,jβ
t−nIj=nujt , (C.6)

subject to (C.1), (C.3), (C.4) and (C.5).
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3 Recursive Problem

We start the analysis by simplifying strategies and allocations. The following lemma is a
key intermediate step for our recursive characterization of best PBEs. It shows that all the
information required to characterize the agents’behavior after any period t can be summarized
with a variable w that captures the agent’s expected continuation payoff in period t along the
equilibrium path and with the indicator ι of the agent’s employment status.

Lemma C.3 Any best PBE is payoff equivalent to a PBE in which σjt , j ∈ J , is independent
of θj,t−1 and for which the following property holds: if for some j ∈ J there is w ∈ R and
histories

(
h′j,t−1, ι′t

)
,
(
h′′j,t−1, ι′′t

)
such that ι′t = ι′′t and

w = Ejσ

[ ∞∑
s=t

βs−tujs

∣∣∣∣∣h′j,t−1

]
= Ejσ

[ ∞∑
s=t

βs−tujs

∣∣∣∣∣h′′j,t−1

]
,

then σjT (m|h̆′j,T , θT ) = σjT (m|h̆′′j,T , θT ), ujT (h̆′j,T ,mT ) = ujT (h̆′′j,T ,mT ), ljT (h̆′j,T ,mT ) = ljT (h̆′′j,T ,mT ),

for all T ≥ t, where h̆′j,T =
(
h′j,t−1, ι′t, zt,mt, ..., ιT , zT

)
,

h̆′′j,T =
(
h′′j,t−1, ι′′t , zt,mt, ..., ιT , zT

)
, for some (zt,mt, ..., ιT , zT ) and mT .

Proof. For any h̆j,t ∈ H̆j,t, j ∈ J , t ≥ 0, define strategy σ′ by

σ′t(·|h̆j,t, (θ̂
j,t−1

, θt)) =
∑
θj,t−1

σjt (·|h̆j,t, (θj,t−1, θt)) Pr(θj,t−1),

for all θ̂
j,t−1

. By construction, σ′t(·|h̆j,t, (θ̂
j,t−1

, θt)) = σ′t(·|h̆j,t, (θ̃
j,t−1

, θt)) for all θ̃
j,t−1

, θ̂
j,t−1

.

Since any agent with a history (h̆j,t, (θ̃
j,t−1

, θt)) can replicate the strategy of the agent with a

history (h̆j,t, (θ̂
j,t−1

, θt)) and achieve the same payoff as that agent, and σ
j
t (·|h̆j,t, (θ̂

j,t−1
, θt))

is the optimal choice of the agent with history (h̆j,t, (θ̂
j,t−1

, θt)), the new strategy σ′ satisfies
the agents’best response constraint (C.4). The strategy σ′ induces distributions {µ′t}t which
satisfy µ′t = µjt for all aggregate histories, hence, the feasibility constraint (C.1) is still satisfied

if agents play σ′. Finally, σ′t(0|h̆j,t, (θ̂
j,t−1

, 0)) = 1, for all histories, and σ′t(1|h̆j,t, θ̂
j,t

)) = 1 for
all h̆j,t with ιt = 1.

For simplicity, we assume that µjt
(
h′j,t−1

)
, µjt

(
h′′j,t−1

)
> 0. Let α = µjt

(
h′j,t−1

)
/(µjt

(
h′j,t−1

)
+

µjt
(
h′′j,t−1

)
) and define φ′ : [0, α] → [0, 1] by φ′ (z) = z/α and φ′′ : [α, 1] → [0, 1] by

φ′′ (z) = (z − α) / (1− α) . Define a new reporting strategy and allocations (σ′,u′, l′) , for
all T ≥ 0, hj,t−1 ∈

{
h′j,t−1, h′′j,t−1

}
, ιt = ι′t = ι′′t , and θ

j,t+T , as

u′jt+T ((hj,t−1, ιt, zt,mt, ...,mt+T )) = ujt+T ((h′j,t−1, ιt, φ
′ (zt) ,mt, ...,mt+T )),

l′jt+T ((hj,t−1, ιt, zt,mt, ...,mt+T )) = ljt+T ((h′j,t−1, ιt, φ
′ (zt) ,mt, ...,mt+T )),

σ′jt+T (·|(hj,t−1, ιt, zt,mt, ..., zt+T ), θj,t+T ) = σjt+T (·|(h′j,t−1, ιt, φ
′ (zt) ,mt, ..., zt+T ), θj,t+T ),

if zt ≤ α and

u′jt+T ((hj,t−1, ιt, zt,mt, ...,mt+T )) = ujt+T ((h′′j,t−1, ιt, φ
′′ (zt) ,mt, ...,mt+T )),

l′jt+T ((hj,t−1, ιt, zt,mt, ...,mt+T )) = ljt+T ((h′′j,t−1, ιt, φ
′′ (zt) ,mt, ...,mt+T )),

σ′jt+T (·|(hj,t−1, ιt, zt,mt, ..., zt+T ), θj,t+T ) = σjt+T (·|(h′′j,t−1, ιt, φ
′′ (zt) ,mt, ..., zt+T ), θj,t+T ),
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if zt > α and u′ks = uks , l
′k
s = lks , σ

′k
s = σks for all other histories, periods s, and k ∈ J . Agents

with histories h′j,t−1, h′′j,t−1 and ι′t = ι′′t could have replicated each other strategies after period
t, so they must be indifferent between them. The strategy σ′j gives them the same utility for
all histories following {h′j,t−1, h′′j,t−1} and ι′t = ι′′t leaving all other histories unchanged, thus,
it is incentive compatible, i.e. satisfies (C.4). The strategy σ′j induces {µ′jt }t, which assigns
the same probability to any realization of ujt and l

j
t as {µ

j
t}t, thus, the feasibility constraint

(C.1) is satisfied. Therefore, (σ′,u′, l′) is a PBE which is payoff equivalent to (σ,u, l).

Using Lemma C.3, we can greatly simplify the dependence of allocations and reporting
strategies on the past. More specifically, without loss of generality, we can focus on strategy
profiles (σ,u, l) such that (i) the reporting strategy is independent of θj,t−1 and, in addition,

(ii) the expected payoff to an agent at any history hj,t−1, wt−1 ≡ Ejσ
[∑∞

s=t β
s−tujs

∣∣∣hj,t−1
]
,

together with his employment status following that history, ιt, are a suffi cient statistic for the
information contained in

(
hj,t−1, ιt

)
.

We can use these results to rewrite problem (C.6) as follows. First, instead of maximiz-
ing over allocations and reporting strategies that depend on the random variable zt, we can
equivalently choose probability distributions over bundles of utility and reporting probability.
Second, we can use Lemma C.3 and replace each agent’s history with a single number, namely,
the agent’s continuation utility —his expected payoff —at that particular history.

The continuation utility of unemployed agents is bounded below by 0 since any such agent
can always claim to be jobless and receive a period utility of at least 0. When jobs are
persistent, since the agent’s job status is observable, the continuation utility of an employed
agent is bounded below by U/(1− β̃ (1− q)), where β̃ ≡ (1− δ)β. For any n, let ψn,0t,w, t ≥ n,
w ∈ [0, Ū

1−β̃ ), be a probability distribution over the set

X0 =

{(
uH , uL, l, σ, w

0
H , w

1
H , wL

)
:

uH + β̃
[
(1− q)w1

H + qw0
H

]
≥ uL + β (1− δ)wL,

(1− σ)
[
uH + β̃

[
(1− q)w1

H + qw0
H

]
− uL − β (1− δ)wL

]
= 0

}

and let ψn,1t,w, with t ≥ n, w ∈ [ U

1−β̃(1−q) ,
Ū

1−β̃ ), be a probability distribution over the set

X1 = {
(
uH , l, w

0
H , w

1
H

)
}. We define ψo,0t,w and ψ

o,1
t,w, t ≥ 0, analogously. Also, starting from

some w̃ ∈ [0, Ū
1−β̃ ), let πnt , t ≥ n, be the distribution defined by the following recursion:

πnn (w, 0) = (1− δ)
∫ [

(1− pσ) IwL≤w + qpσIw0H≤w
]
dψn,0t,w̃, (C.7)

πnn (w, 1) = (1− δ) (1− q)
∫
pσIw1H≤wdψ

n,0
t,w̃,

πnt (w, 0) = (1− δ)
∫ ∫ [

(1− pσ) IwL≤w + qpσIw0H≤w
]
dψn,0t,w̃π

n
t−1 (dw̃, 0) +

(1− δ) q
∫ ∫

Iw0H≤wdψ
n,1
t,w̃π

n
t−1 (dw̃, 1) ,

πnt (w, 1) = (1− δ) (1− q)
∫ ∫

pσIw1H≤wdψ
n,0
t,w̃π

n
t−1 (dw̃, 0) +

(1− δ) (1− q)
∫ ∫

Iw1H≤wdψ
n,1
t,w̃π

n
t−1 (dw̃, 1) .
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We define πot , t ≥ 0, analogously, starting from the initial distribution πo−1. Finally, to make
notation more compact, let g0

(
x0
)

f0
(
x0
)

b0
(
x0
)
 ≡

 pσuH + (1− pσ)uL
pσ (C (uH , l)− l) + (1− pσ)C (uL, 0)

pσ


and  g1

(
x1
)

f1
(
x1
)

b1
(
x1
)
 ≡

 uH
C (uH , l)− l

1


for x0 ∈ X0 and x1 ∈ X1.

We can then rewrite constraint (C.1) as∑
j∈J

ωt,j

∫ ∫
f ι (xι) dψj,ιt,wπ

j
t−1 ≤ 0 for all t. (C.8)

Similarly, with a slight abuse of notation, we can rewrite the value of the government’s best
deviation (C.2) as

W̃ ({ψj,ιt,w}w,j,ι, {π
j
t−1}j) = max

ũH ,ũL,l̃,ûH ,l̂

∑
j∈J

ωt,j

∫ ∫ [
pσ
(
x0
)
ũH +

(
1− pσ

(
x0
))
ũL
]
dψj,0t,wπ

j
t−1 (dw, 0) +

∑
j∈J

ωt,j

∫ ∫
ûHdψ

j,1
t,wπ

j
t−1 (dw, 1) + βV

(
Nσ
t+1

)
, (C.9)

subject to (ũH , ũL, l̃) ∈ C, (ûH , l̂) ∈ dom(C) and∑
j∈J

ωt,j

∫ ∫ [
pσ
(
x0
) (
C
(
ũH , l̃

)
− l̃
)

+
(
1− pσ

(
x0
))
C (ũL, 0)

]
dψj,0t,wπ

j
t−1 (dw, 0) +

∑
j∈J

ωt,j

∫ ∫ (
C
(
ûH , l̂

)
− l̂
)
dψj,1t,wπ

j
t−1 (dw, 1) ≤ 0.

Therefore, problem (C.6) is equivalent to

max
{ψj,ιt,w,π

j
t−1}j,ι,t,w

∑
j∈J

ϕj

∞∑
t=0

ωt,jβ
t−nIj=n

∫ ∫
gι (xι) dψj,ιt,wdπ

j
t−1, (C.10)

subject to (C.7), (C.8),

∑
j∈J

ωt,j

∞∑
s=t

βs−t
∫ ∫

gι (xι) dψj,ιs,wdπ
j
s−1 ≥ W̃ ({ψj,ιt,w}w,j,ι, {π

j
t−1}j) for all t (C.11)

and the “promise-keeping”constraints

w =

∫ {
pσ
(
uH + β̃

[
(1− q)w1

H + qw0
H

])
+ (1− pσ)

(
uL + β̃wL

)}
dψj,0t,w, (C.12)

w =

∫ (
uH + β̃

[
(1− q)w1

H + qw0
H

])
dψj,1t,w,
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for all t, w, j.

We now construct an uppoer bound on W̃ which will be key to obtain a recursive repre-
sentation of problem (C.10).

Lemma C.4 Let {ψj,ι∗t,w } be a best PBE. The value of the best deviation W̃ at any history
depends only on the fraction of people employed at that history.

Proof. By Lemma C.2, the value of a worst equilibrium is a function only of the fraction
of people employed at any given history. Following the same steps in the proof of that lemma,
it is immediate to show that the value of the best deviation, given by (C.9), has the same
property.

Lemma C.4 allows us to replace the sustainability constraint (C.11) with the following
constraints: ∑

j∈J
ωt,j

∞∑
s=t

βs−t
∫ ∫

gι (xι) dψj,ιs,wdπ
j
s−1 ≥ W̃ (Nt) , (C.13)

∑
j∈J

ωt,j

∫ ∫
bι (xι) dψj,ιt,wdπ

j
t−1 ≤ Nt,

for all t, where, by Lemma C.4 and with a slight abuse of notation, we used W̃ (Nt) to denote
the value of the best deviation. Then, any solution to problem (C.10) where (C.11) is replaced
with (C.13)– which we refer to as “the modified problem”– is a best PBE.

The modified problem can be written recursively using the techniques developed in Farhi
and Werning (2007). More specifically, Since the modified problem is convex, we can define
the Lagrangian (we omit the arguments of the functions to make notation more compact)

L = max
{ψj,ιt,w,π

j
t−1}j,ι,t,w

∞∑
t=0

∑
j∈J

β̄t,j

∫ ∫ [
gι − ζt,jf ι − χt,jbι

]
dψj,ιt,wπ

j
t−1,

subject to (C.7) and (C.12), where β̄t,j = ωt,jβ
t
(
ϕj +

∑t
s=nIj=n µ

∗
s

)
, ζt,j = βtζ∗t /β̄t,j , and

χt,j = βtχ∗t /β̄t,j , j ∈ J , for some multipliers {βtζ∗t }t and {βtµ∗t , βtχ∗t }t associated to the
constraints (C.8) and (C.13), respectively. We must have χt ≥ 0, ζt > 0, and β̄t,j/β̄t−1,j ≥ β,
with equality if and only if µ∗t = 0.

By standard arguments (see Theorem 1, p. 217 in Luenberger (1969)), any solution to
the modified problem, and therefore any best PBE, must be a solution to this Lagrangian
problem. The converse does not need to be true, as there might be some solutions to the
Lagrangian problem that do not satisfy constraints (C.8) and (C.13). However, any solution
to the Lagrangian problem that also satisfies (C.8) and (C.13) is a PBE.

The problem above takes as given the initial distribution πo−1 of entitlements and employ-
ment statuses of the initial old. Also, for any t > 0, the distributions {πjt−1}j are a suffi cient
statistic for the remaining problem. We now focus on steady states of the economy, which are
defined as collections of distributions and Lagrange multipliers {ψj,ιt,w, π

j
t−1, β̄t,j , ζt,j , χt,j}, which

(i) solve the Lagrangian above, (ii) satisfy (C.8) and (C.13), and are such that (iii) ψj,ιt,w is

30



independent of t and j, the distributions
∑

j ωt,jπ
j
t−1 are independent of t, and β̄t,j/β̄t−1,j = β̄,

ζt,j = β̄
t
ζ, χt,j = β̄

t
χ, for some ζ > 0, χ ≥ 0, β̄ ≥ β.

Suppose the economy is in a steady state and define the value function of an agent who is
currently unemployed (ι = 0) or employed (ι = 1) as

K (w̃, ι) ≡ max
{ψιw,πt−1}ι,w,t

∫
[gι − ζf ι − χbι] dψιw̃ +

∞∑
t=1

β̄
t
∫ ∫ [

gι̂ − ζf ι̂ − χbι̂
]
dψι̂wdπt−1

(C.14)
subject to (C.7) and (C.12). Clearly, L = maxw

∫
β̄0,oK (w̃, 0) dπo−1 + β̄0,0K (w, 1).

Lemma C.5 The functions K (·, ι), ι ∈ {0, 1}, satisfy the recursion

K (w̃, ι) = max
ψιw̃ s.t. (C.12)

∫ [
gι − ζf ι − χbι + β̂K̄ι

]
dψιw̃,

for all w̃ ∈ [0, Ū
1−β̃ ), when ι = 0, and w̃ ∈ [ U

1−β̃(1−q) ,
Ū

1−β̃ ), when ι = 1, where β̂ ≡ β̄ (1− δ)
and where K̄0

(
x0
)
≡ pσ

[
(1− q)K

(
w1
H , 1

)
+ qK

(
w0
H , 0

)]
+ (1− pσ)K (wL, 0) and K̄1

(
x1
)
≡

qK
(
w0
H , 0

)
+ (1− q)K

(
w1
H , 1

)
, respectively.

Proof. We prove the statement for K (w̃, 0), the same arguments apply to K (w̃, 1). We
can rewrite (C.14), with ι = 0, as follows:

max{ψιw,πt−1}ι,w,t s.t. (C.7), (C.12)

∫ ∫ [
g0 − ζf0 − χb0

]
dψ0

w̃ +∫ ∞∑
t=1

β̄
t
∫ ∫ [

gι̂ − ζf ι̂ − χbι̂
]
dψι̂wdπt−1

= max
ψ0w̃ s.t. (C.12)

∫ [
g0 − ζf0 − χb0

]
dψ0

w̃ +

max
{ψιw,πt−1}ι,w,t≥1 s.t. (C.7), (C.12)

∫ ∞∑
t=1

β̄
t
∫ ∫ [

gι̂ − ζf ι̂ − χbι̂
]
dψι̃wdπt−1

= max
ψ0w̃ s.t. (C.12)

∫ [
g0 − ζf0 − χb0

]
dψ0

w̃ +

β̄ max
{ψιw,πt−1}ι,w,t≥0 s.t. (C.7), (C.12)

∫ ∞∑
t=0

β̄
t
∫ ∫ [

gι̂ − ζf ι̂ − χbι̂
]
dψι̃wdπt.

Finally, using (C.7) and the definition of K (w, ι), the latter can be rewritten as

max
ψ0w̃ s.t. (C.12)

∫ [
g0 − ζf0 − χb0 + β̂K̄0

]
dψ0

w̃.

31



4 Proofs for Section 4.1

In this section we prove Proposition 3 in the main text, which we report here for convenience.

Proposition C.1 The best equilibrium payoff in the steady state can be achieved with reporting
strategies σ∗w such that σ

∗
w (z) ∈ {0, 1} for all z, and information revelation is decreasing in w,

i.e. Pr (σ∗w = 1) is decreasing in w.

We prove this proposition in three steps: (1) we define a value function κ (v, σ, 0) for the
unemployed agent; (2) we guess thatK is submodular and show that the steady state payoffcan
be achieved with σ∗w ∈ {0, 1} with probability 1 and that information revelation is decreasing
in w; (3) we verify that K is submodular.

In the i.i.d. case, step (2) followed directly from C12 > 0. When jobs are persistent,
however, we also need to prove that the value function (C.14) is submodular, that is,K1 (w, 1) ≤
K1 (w, 0) for all w > 0.

Step (1)

Consider the problem of the unemployed agent. As in Section 3 in the main text, we break
this problem in two parts. First, for given σ, we choose allocations

(
uH , uL, w

1
H , w

0
H , wL

)
so as

to maximize

κ (v, σ, 0) = max
uH ,uL,l,w

1
H ,w

0
H ,wL

pσ
[
uH − ζ (C (uH , l)− l) + β̂

(
(1− q)K

(
w1
H , 1

)
+ qK

(
w0
H , 0

))]
+

(1− pσ)
[
uL − ζC (uL, 0) + β̂K (wL, 0)

]
, (C.15)

subject to (uH , uL, l) ∈ C, w0
H , wL ∈ dom(K(·, 0)), w1

H ∈ dom(K(·, 1)) and

{uH + β̃
[
(1− q)w1

H + qw0
H

]
} − {uL + β̃wL} ≥ 0,

(1− σ)
[
{uH + β̃

[
(1− q)w1

H + qw0
H

]
− {uL + β̃wL}

]
= 0,

pσ{uH + β̃
[
(1− q)w1

H + qw0
H

]
}+ (1− pσ) {uL + β̃wL} = v.

Then, we find the optimal reporting strategy:

k(v, 0) = max
σ

κ (v, σ, 0)− χpσ.

Finally, the value function K (·, 0) is given by the convex envelope of k: K (·, 0) = co(k(·, 0)).
For the employed agent, we only need to choose allocations, thus,

κ (v, 1) = max
uH ,l,w

1
H ,w

0
H

uH − ζ (C (uH , l)− l) + β̂
(
(1− q)K

(
w1
H , 1

)
+ qK

(
w0
H , 0

))
, (C.16)

subject to (uH , l) ∈ dom(C), w0
H ∈ dom(K(·, 0)), w1

H ∈ dom(K(·, 1)) and

uH + β̃
[
(1− q)w1

H + qw0
H

]
= v,

therefore,

K (v, 1) = κ (v, 1)− χ.
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Step (2)

We prove the result with a series of intermediate lemmas. In what follows, at w = 0, K1 (w, 0)
denotes the left derivative of K (w, 0).

Lemma C.6 The functions {K (·, ι)}ι are concave and continuously differentiable, with
limv→Ū/(1−β̃)K1 (v, ι) = −∞, ι ∈ {0, 1}.

Proof. Concavity of K (·, ι), ι ∈ {0, 1}, follows from standard arguments on the sequence
problems (C.14). Also, the proof that K (v, ι), ι ∈ {0, 1}, is continuously differentiable is
analogous to the proof of Lemma 5 in the main text.

We focus onK (v, 0), the case withK (v, 1) is analogous. Letm ≡ max(u,l)∈dom(C) {u− ζ (C (u, l)− l)}
and define the value function

K̄(v, β̂) ≡ max
{ut,lt}t

E
∞∑
t=0

β̂
t
[ut − ζ (C (ut, lt)− lt)−m] ,

subject to (ut, lt) ∈ dom(C), for t ≥ 0, and

E
∞∑
t=0

β̃
t
ut = v,

where ut : {θH , θL}t × {0, 1}t → [0, Ū), for all t, and where the expectation is over histories of
job opportunities θt and job statuses ιt, starting from ι0 = 0. Function K̄(v, β̂) is differentiable
with K̄(v, β̂)+const ≥ K (v, 0). Also, since the argument of the sum is non-positive, K̄(v, β̃) ≥
K̄(v, β̂). Problem K̄(v, β̃) is the value of a standard allocation problem whose solution {u∗t , l∗t }t
depends only on whether the agent is employed or not. In particular, an employed agent
receives (u∗H , l

∗
H) while an unemployed agent receives (u∗L). These values satisfy the first order

conditions

C2 (u∗H , l
∗
H)− 1 = 0,

1− ζC1

(
u∗j , l

∗
j

)
= γv, j ∈ {H,L},

with l∗L = 0, for some Lagrange multiplier γv. As v → Ū
1−β̃ , we have that u

∗
H , u

∗
L → Ū and,

thus, γv → −∞. By the envelope theorem, K̄1(v, β̃) = γv → −∞. Also, K̄(v, β̃) → −∞,
which implies K (v, 0)→ −∞. Finally, the latter two results imply K1 (v, 0)→ −∞.

Lemma C.7 Suppose K1 (w, 1) ≤ K1 (w, 0) for all w ≥ 0, then the incentive compatibility
constraint holds with equality.

Proof. Let’s consider a constrained problem where we add an additional constraint

uH + β̃
[
(1− q)w1

H + qw0
H

]
≤ uL + β̃wL.
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We want to show that this constraint is always slack. Suppose it is not slack, which can be
only for σ = 1. By Lemma C.6, the problem is convex, thus, we can set up the Lagrangian

L = max
uH ,uL,l,
w1H ,w

0
H ,wL

p
[
uH − ζ (C (uH , l)− l) + β̂

(
(1− q)K

(
w1
H , 1

)
+ qK

(
w0
H , 0

))]
+

(1− p)
[
uL − ζC (uL, 0) + β̂K (wL, 0)

]
+

µv({uH + β̃
[
(1− q)w1

H + qw0
H

]
} − {uL + β̃wL})−

γv(p{uH + β̃
[
(1− q)w1

H + qw0
H

]
}+ (1− p) {uL + β̃wL} − v),

subject to (uH , uL, l) ∈ C, w0
H , wL ∈ dom(K(·, 0)), w1

H ∈ dom(K(·, 1)), for some multipliers
µv < 0 and γv. The first-order conditions w.r.t. uH , uL, w

1
H , w

0
H , and wL are, respectively,

p [1− ζC1 (uH,v, lv)] + µv ≤ γvp,

(1− p) [1− ζC1 (uL,v, 0)]− µv ≤ γv (1− p) ,
pβ̂K1

(
w1
H,v, 1

)
+ β̃µv ≤ γvβ̃p,

pβ̂K1

(
w0
H,v, 0

)
+ β̃µv ≤ γvβ̃p,

(1− p) β̂K1 (wL,v, 0)− β̃µv ≤ γvβ̃ (1− p) ,

with equality if the solution is interior. They can be re-arranged as

1− ζC1 (uH,v, lv) +
µv
p
≤ γv,

1− ζC1 (uL,v, 0)− µv
1− p ≤ γv,

β̂

β̃
K1

(
w1
H,v, 1

)
+
µv
p
≤ γv,

β̂

β̃
K1

(
w0
H,v, 0

)
+
µv
p
≤ γv,

β̂

β̃
K1 (wL,v, 0)− µv

1− p ≤ γv.

We assume that w1
H,v, uH,v are interior, the other cases are immediate. If µv < 0, then,

K1

(
w1
H,v, 1

)
> K1 (wL,v, 0) ≥ K1 (wL,v, 1) ,

C1 (uH,v, lv) < C1 (uL,v, 0) .

Thus, w1
H,v < wL,v and uH,v < uL,v. The incentive constraint then implies w0

H,v > wL,v. Thus,
w0
H,v is interior and its first order condition holds with equality. Also, by concavity,

K1 (wL,v, 0) ≥ K1

(
w0
H,v, 0

)
or

β̂

β̃
K1 (wL,v, 0)− µv

1− p >
β̂

β̃
K1

(
w0
H,v, 0

)
+
µv
p
,
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which violates the first order conditions. Therefore, we must have µv = 0.

Using Lemma C.7, we can rewrite κ (v, σ, 0) as

κ (v, σ, 0) = pσFH (v) + (1− pσ)FL (v) ,

where

FH (v) ≡ max
uH ,l,w

1
H ,w

0
H

uH − ζ (C (uH , l)− l) + β̂
(
(1− q)K

(
w1
H , 1

)
+ qK

(
w0
H , 0

))
,

subject to v = uH + β̃[(1− q)w1
H + qw0

H ], (uH , l) ∈ dom(C), w0
H ∈ dom(K (·, 0)) and w1

H ∈
dom(K (·, 1)), and

FL (v) ≡ max
uL,wL

uL − ζC (uL, 0) + β̂K (wL, 0) ,

subject to v = uL + β̃wL, (uL, 0) ∈ dom(C) and wL ∈ dom(K (·, 0)).

Lemma C.8 Suppose K1 (w, 1) ≤ K1 (w, 0) for all w ≥ 0, then κ (v, ·, 0) is linear for all v ≥ 0.

Proof. The statement follows immediately from the equation above.

Lemma C.9 Suppose K1 (w, 1) ≤ K1 (w, 0), for all w ≥ 0, then FH1 (v) ≤ FL1 (v) for all
v ≥ 0.

Proof. Since the maximization problem defining F j (v), j ∈ {H,L}, is convex, there
exist Lagrange multipliers γjv, j ∈ {H,L}, such that the solutions (uH,v, lv, w

0
H,v, w

1
H,v) and

(uL,v, wL,v) satisfy the first-order conditions

1− ζC1 (uH,v, lv) ≤ γHv ,

1− ζC1 (uL,v, 0) ≤ γHv ,

β̂

β̃
K1 (wL,v, 0) ≤ γLv ,

β̂

β̃
K1

(
w0
H,v, 0

)
≤ γHv ,

β̂

β̃
K1

(
w1
H,v, 1

)
≤ γHv .

In addition, standard Benveniste-Scheinkman arguments prove that F j (v), j ∈ {H,L}, is
differentiable and F j1 (v) = γjv, j ∈ {H,L}.

Suppose γHv > γLv for some v. We assume that w
1
H,v, uH,v are interior, the other cases are

immediate. Then, (i) K1(w1
H,v, 1) > K1 (wL,v, 0) ≥ K1 (wL,v, 1), which implies w1

H,v < wL,v
by concavity of K (·, 1); (ii) C1 (uH,v, lv) ≤ C1 (uL,v, 0) < C1 (uL,v, lv) by C12 > 0 and lv > 0,
which implies uH,v < uL,v by convexity of C (·, l). The constraints then imply w0

H,v > wL,v.
Thus, w0

H,v is interior and its first order condition holds with equality. As a result

β̂

β̃
K1

(
w0
H,v, 0

)
= γHv > γLv ≥

β̂

β̃
K1 (wL,v, 0)
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and, by concavity of K (·, 0), w0
H,v < wL,v, which is a contradiction. Therefore, γHv ≤ γLv , for

all v ≥ 0.

Lemma C.10 Suppose K1 (w, 1) ≤ K1 (w, 0) for all w ≥ 0, then (a) κ1 (v, 1) ≤ κ1 (v, σ, 0)
and (b) κ12 (v, σ, 0) ≤ 0 for all v ≥ 0 and σ.

Proof. (a) Since FH1 (v) ≤ FL1 (v) for v ≥ 0, by Lemma C.9, we have κ1 (v, 1) = FH1 (v) ≤
pσFH1 (v) + (1− pσ)FL1 (v) = κ1 (v, σ, 0) .

(b) By Lemma C.8, κ (v, ·, 0) is linear and, thus, differentiable with κ2 (v, σ, 0) = p
[
FH (v)− FL (v)

]
.

Therefore, by Lemma C.9, κ12 (v, σ, 0) = p
[
FH1 (v)− FL1 (v)

]
≤ 0.

By part (b) of Lemma C.10, κ1 (v, 0, 0) ≥ κ1 (v, 1, 0), thus, we can follow the same steps in
Proposition 2 in the main text to prove the statement of Proposition C.1.

Step (3)

We are left to verify that K1 (w, 1) ≤ K1 (w, 0) for all w ≥ 0. We will use the contraction
mapping theorem. More specifically, we let T 0 and T 1 be two operators that map next period’s
value functions K (·, 0) and K (·, 1) into current period’s functions K̃ (·, 0) and K̃ (·, 1). These
operators are defined by the problems (C.15) and (C.16). The next lemma shows that T 0 and
T 1 map submodular functions —i.e. functionsK that satisfyK1 (w, 1) ≤ K1 (w, 0) for all w ≥ 0
—into functions that satisfy the same property. Since the set of submodular functions is closed,
the contraction mapping theorem then implies that the value functions are submodular.

Lemma C.11 Suppose K1 (w, 1) ≤ K1 (w, 0) for all w ≥ 0 and let K̃ (·, ι) = T i (K (·, ι)),
ι ∈ {0, 1}, then K̃1 (w, 1) ≤ K̃1 (w, 0) for all w ≥ 0.

Proof. Arguments in step (2) imply that K̃ (·, 0) is the concave envelope of

max {κ (v, 1, 0)− χp, κ (v, 0, 0)} .

In particular, by part (b) of Lemma C.10, there are thresholds v′ and v′′ such that (i) K̃ (w, 0) =
κ (w, 1, 0)−χp, for w < v′; (ii) K̃ (w, 0) = κ (w, 0, 0), for w > v′′; and (iii) K̃ (w, 0) is obtained
by randomization between κ (v′, 1, 0)− χp and κ (v′′, 0, 0), for v′ ≤ w ≤ v′′. In the latter case,
we also have K̃1 (w, 0) = κ1 (v′, 1, 0) = κ1 (v′′, 0, 0).

Suppose w is in the first region. Then, by part (a) of Lemma C.10,

K̃1 (w, 1) = κ1 (w, 1) ≤ κ1 (w, 1, 0) = K̃1 (w, 0) .

The same argument applies for the second region. Finally, suppose w is in the intermediate
region. Then, by concavity of κ (·, 1) and part (a) of Lemma C.10,

K̃1 (w, 1) = κ1 (w, 1) ≤ κ1

(
v′, 1

)
≤ κ1

(
v′, 1, 0

)
= K̃1 (w, 0) .
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5 Proofs for Section 4.2

In this section, we consider the special case with q = 0. When the sustainability constraint
is slack, i.e. χ = 0, this economy corresponds to a stationary version of Hopenhayn and
Nicolini (1997). It is immediate to adapt the value functions (C.15) and (C.16). First, for the
unemployed,

κ (v, σ, 0) = max
uH ,uL,l,wH ,wL

pσ
[
uH − ζ (C (uH , l)− l) + β̂K (wH , 1)

]
+ (C.17)

(1− pσ)
[
uL − ζC (uL, 0) + β̂K (wL, 0)

]
,

subject to (uH , uL, l) ∈ C, wH ∈ dom(K (·, 1)), wL ∈ dom(K (·, 0)) and

(uH + β̃wH)− (uL + β̃wL) ≥ 0,

(1− σ)
[
(uH + β̃wH)− (uL + β̃wL)

]
= 0,

pσ(uH + β̃wH) + (1− pσ) (uL + β̃wL) = v.

Also, the optimal choice of σ satisfies

k(v, 0) = max
σ

κ (v, σ, 0)− χpσ.

Finally, the value function K (·, 0) is given by K (·, 0) = co(k(·, 0)).

For the employed agent, we have

κ (v, 1) = max
uH ,l,wH

uH − ζ (C (uH , l)− l) + β̂K (wH , 1) , (C.18)

subject to (uH , l) ∈ dom(C), wH ∈ dom(K (·, 1)) and

uH + β̃wH = v,

thus,

K (v, 1) = κ (v, 1)− χ.
Under the assumption that q = 0 we can strengthen many of the results of Section 4.

In particular, in Lemma C.9 the inequality is strict: FH1 (v) < FL1 (v), for all v > 0. In
turn, the latter immediately implies that the inequalities in Lemma C.10 are also strict:
κ1 (v, 1) < κ1 (v, σ, 0) and κ12 (v, σ, 0) < 0, for all v > 0 and σ. Finally, Lemma C.11 im-
plies that K̃1 (w, 1) < K̃1 (w, 0), for all w > 0.

We begin with the benchmark in which the government can commit.

5.1 Case with commitment (Hopenhayn and Nicolini (1997))

We start with case in which the sustainability constraint is slack, that is, the case with χ = 0.
As a result, β̂ = β̃. In addition, the optimal reporting strategy is σ = 1. Therefore, if we let
K̃ ≡ (K − v) /ζ, we can rewrite the value functions above as

K̃ (v, 0) = max
uH ,uL,l,wH ,wL

p
[
− (C (uH , l)− l) + β̃K̃ (wH , 1)

]
+(1− p)

[
−C (uL, 0) + β̃K̃ (wL, 0)

]
,

(C.19)
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subject to (uH , uL, l) ∈ C, wH ∈ dom(K̃ (·, 1)), wL ∈ dom(K̃ (·, 0)) and

(uH + β̃wH)− (uL + β̃wL) ≥ 0,

p(uH + β̃wH) + (1− p) (uL + β̃wL) = v.

Similarly,
K̃ (v, 1) = max

uH ,l,wH
− (C (uH , l)− l) + β̃K̃ (wH , 1) , (C.20)

subject to (uH , l) ∈ dom(C), wH ∈ dom(K̃ (·, 1)) and

uH + β̃wH = v.

Let (uH,v, uL,v, lv, wH,v, wL,v) denote the optimal allocations in (C.19).

Lemma C.12 Suppose χ = 0. The incentive constraint binds for all v. In addition, wL,v <
v = wH,v and uH,v = (1− β̃)v < uL,v for all v > 0.

Proof. Notice that Lemma C.6 does not depend on χ, thus, it still holds when χ = 0.
Standard arguments prove that K̃ (·, ι), ι ∈ {0, 1}, is strictly concave. We show that the
incentive constraint binds. Since the problem is convex, there exist two Lagrange multipliers,
γv and µv ≥ 0, such that the solution to (C.19) satisfies the first order conditions (we assume
that wH,v and uH,v are interior, the other cases are immediate)

−ζC1 (uH,v, lv) +
µv
p

= γv,

−ζC1 (uL,v, 0)− µv
1− p ≤ γv,

K1 (wH,v, 1) +
µv
p

= γv,

K1 (wL,v, 0)− µv
1− p ≤ γv.

Suppose µv = 0 for some v ≥ 0. Then, using K1 (w, 1) ≤ K1 (w, 0), lv > 0, C12 > 0 and
Lemma C.6, the conditions above imply wH,v ≤ wL,v and uH,v < uL,v, which violate the
incentive constraint. Therefore, µv > 0 for all v ≥ 0.

Since the incentive constraint holds with equality, we can replace the two constraints in
problem (C.19) with

uH + β̃wH = v,

uL + β̃wL = v.

As a result, we can use problem (C.20) to rewrite problem (C.19) as follows:

K̃ (v, 0) = max
uL,wL

pK̃ (v, 1) + (1− p)
[
−C (uL, 0) + β̃K̃ (wL, 0)

]
,

subject uL + β̃wL = v, (uL, 0) ∈ dom(C) and wL ∈ dom(K̃ (·, 0)).

For v > 0, standard Benveniste-Scheinkman arguments and the first order condition for uL
imply

K̃1 (v, 0) ≥ pK̃1 (v, 1) + (1− p) K̃1 (wL,v, 0) ,
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with equality if wL,v is interior. Also, wH,v satisfies

K̃1 (v, 1) = K̃1 (wH,v, 1) .

If wL,v > 0, these conditions, together with K̃1 (w, 1) < K̃1 (w, 0) and the strict concavity of
K̃ (·, 1), yield wL,v < v = wH,v. The incentive constraints then imply uH,v = (1− β̃)v < uL,v.
If wL,v = 0 then the result is immediate since v > 0.

5.2 Case without commitment

Consider now the case in which the sustainability constraint binds. Let (uH,v, uL,v, lv, wH,v, wL,v)
be the solution to problem (C.17). Also, by Proposition C.1 we can focus on σ ∈ {0, 1} and
simplify the notation by letting

κUI (v) ≡ κ (v, 1, 0) , κDI (v) ≡ κ (v, 0, 0) .

We characterize optimal allocations.

Lemma C.13 Suppose χ > 0. In steady state,

(i) if an agent is in the region with full information revelation, he remains in that region as
long as he is unemployed;

(ii) the continuation utility of an unemployed agent falls monotonically;

(iii) the continuation utility of an employed agent converges to a value that is independent of
the agent’s past history.

Proof. Part (i). By Lemma C.7, we can replace the two constraints in problem (C.17)
with

uH + β̃wH = v,

uL + β̃wL = v.

Let v and v̄, with v ≤ v̄, be the thresholds of Proposition C.1. We assume that v > 0, otherwise
wL,v = v = 0 and the statement is trivial. By construction κUI1 (v) = K1 (v, 0) = K1 (v̄, 0) =
κDI1 (v̄).

We first prove that a newly-born agent must receive a continuation utility that is either in
the region with no information revelation or in the region where randomization occurs.

Uing (C.18) we can rewrite problem (C.17) as

κ (v, σ, 0) = pσ (K (v, 1) + χ) + (1− pσ) max
uL,wL

[
uL − ζC (uL, 0) + β̂K (wL, 0)

]
, (C.21)

subject to uL + β̃wL = v, (uL, 0) ∈ dom(C) and wL ∈ dom(K (·, 0)). If wL,v > 0, standard
Benveniste-Scheinkman arguments imply

κUI1 (v) = pK1 (v, 1) + (1− p) β̂
β̃
K1 (wL,v, 0) , (C.22)

κDI1 (v) =
β̂

β̃
K1 (wL,v, 0) .
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We prove that K1 (v, 0) = K1 (v̄, 0) ≥ 0, which implies our initial statement. Suppose that
K1 (v, 0) = K1 (v̄, 0) < 0. Let v0 > 0 be the value such that K1 (v0, 0) = κUI1 (v0) = 0 (If
such value does not exist then newly-born agents receive v0 = wL,v0 = 0 and the arguments
below follow immediately). By concavity, v0 < v and, by Proposition C.1, σ∗v0 = 1. Suppose
wL,v0 > 0, the case with wL,v0 = 0 is immediate. From (C.22),

K1 (v0, 0) = κUI1 (v0)

= pK1 (v0, 1) + (1− p) β̂
β̃
K1 (wL,v0 , 0) .

Since v0 > 0, K1 (v0, 1) < K1 (v0, 0) = 0, thus, K1 (wL,v0 , 0) > 0 and wL,v0 < v0. Therefore,
the unemployed agent will remain in the region with σ∗v0 = 1. However, since χ > 0, the
sustainability constraint would eventually be violated. Therefore, agents must be born either
in the region with no information revelation or in the region where randomization occurs.

The same arguments prove that an agent who is born in the region with full information
revelation will remain in that region as long as he is unemployed.

Part (ii). Suppose v > 0, otherwise, v = wL,v = 0 and the statement is trivial. Take
v1 and v2, with 0 < v1 < v2 ≤ v, we first prove that wL,v1 ≤ wL,v2 . Suppose instead that
wL,v1 > wL,v2 . Then the constraint in (C.21) implies 0 ≤ uL,v1 < uL,v2 and the first order
condition for uL,v1 is

1− ζC1 (uL,v1 , 0) ≤ β̂

β̃
K1 (wL,v1 , 0) .

Also, since uL,v2 is interior, its first order condition is

1− ζC1 (uL,v2 , 0) ≥ β̂

β̃
K1 (wL,v2 , 0) .

By concavity, K1 (wL,v1 , 0) ≤ K1 (wL,v2 , 0) and C1 (uL,v1 , 0) < C1 (uL,v2 , 0), which lead to a
contradiction. Therefore, wL,v1 ≤ wL,v2 . The same arguments prove that the inequality is
strict if wL,v1 is interior. Now, let {vt}t be the sequence of continuation utilities of an agent,
conditional on him remaining unemployed. Also, let v0 = v, that is, the agent starts at
the lower threshold of Proposition C.1. We prove by induction that this sequence decreases
monotonically. From part (i), v1 = wL,v < v0. Suppose that the statement is true at some
time t ≥ 1, i.e. vt ≤ vt−1. Then, monotonicity of wL,v implies vt+1 ≡ wL,vt ≤ wL,vt−1 = vt,
with strict inequality if vt+1 is interior.

Part (iii). Consider the problem of an employed agent (C.18). Standard Benveniste-
Scheinkman arguments imply

K1 (v, 1) =
β̂

β̃
K1 (wH,v, 1) .

By concavity, wH,v > v, if K1 (v, 1) > 0, and wH,v < v, if K1 (v, 1) < 0. Therefore, when an
agent is employed, his continuation utility reverts to the value vSS such that K1 (vSS , 1) = 0.
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Lemma C.14 For any steady state, there is a payoff-equivalent steady state such that newly-
born agents are randomly assigned into two different groups:

(1) the group with no information revelation, where agents remain until they die;

(2) the group with full information revelation, where agents remain until they either find a job
or die;

Finally, the lifetime utility of agents in group (1) is higher than the lifetime utility of agents
in group (2).

Proof. Let v and v̄, with v ≤ v̄, be the thresholds of Proposition C.1 (if these thresholds do
not exist then the statement of the lemma is trivial). Newly-born agents receive utility v0 > 0
such that K1 (v0, 0) = 0 (if such value does not exist then v0 = wL,v0 = 0 and the arguments in
the proof of Lemma C.13 show that the sustainability constraint would eventually be violated).
Similarly for v = v̄ = 0. Thus, we consider the case with v̄ > 0.

In the proof of part (i) of Lemma C.13 we showed that K1 (v, 0) = K1 (v̄, 0) ≥ 0. Suppose
first that K1 (v, 0) = K1 (v̄, 0) > 0. Then by concavity newly-born agents receive lifetime
utility v0 > v̄ satisfying K1 (v0, 0) = κDI1 (v0) = 0. If uL,v0 = 0, then wL,v0 > 0 and standard
Benveniste-Scheinkman arguments imply

0 = K1 (v0, 0) = κDI1 (v0) =
β̂

β̃
K1 (wL,v0 , 0) . (C.23)

Instead, if uL,v0 > 0, then the first order condition for uL is

1− ζC1 (uL,v0 , 0) ≥ β̂

β̃
K1 (wL,v0 , 0) ,

with strict inequality only if wL,v0 = 0. Benveniste-Scheinkman arguments then imply

0 = K1 (v0, 0) = κDI1 (v0) = 1− ζC1 (uL,v0 , 0) ≥ β̂

β̃
K1 (wL,v0 , 0) .

The latter, however, implies that the inequality cannot be strict, otherwise, by concavity,
wL,v0 > v0, contradicting wL,v0 = 0. Therefore, K1 (wL,v0 , 0) = 0, thus, agents will remain
in the region of no information revelation forever and the statement of the lemma is trivially
satisfied.

We next consider the case with K1 (v, 0) = K1 (v̄, 0) = 0. We first prove a few properties
that steady states must satisfy.

(1) The mass of agents with v such that K1 (v, 0) < 0 is zero.

First, notice that agents cannot receive any such v at birth. Then, take an agent with
continuation utility v ≤ v. By part (iii) of Lemma C.13, the continuation utility w of this
agent will fall monotonically as long as he remains unemployed. By concavity of K (·, 0), we
will thus have K1 (w, 0) ≥ 0 as long as the agent remains unemployed. Now consider an agent
with v > v and K1 (v, 0) = 0. If this agent is in the region where randomization occurs, then
his continuation utility will either be v (so that we are back to the previous case) or v̄. In the
latter case, equation (C.23) and the arguments below it yield K1 (wL,v̄, 0) = 0. Similarly, for
any v > v̄ such that K1 (v, 0) = 0. Therefore, if an agent is born with v such that K1 (v, 0) ≥ 0,
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he can never enter the region with K1 (v, 0) < 0. Finally, we show that any interval (v1, v2)
with K1 (v, 0) < 0, v ∈ (v1, v2), must have a zero mass of agents. Suppose that there is any
such interval with a positive mass of agents. By part (i), agents with v ∈ (v1, v2) will reveal
no information, thus, by equation (C.23) and the arguments below it,

0 > K1 (v, 0) = κDI1 (v) =
β̂

β̃
K1 (wL,v, 0) .

In turn, the latter implies wL,v < v, thus, that the mass of agents on (v1, v2) will shrink
over time. Therefore, in steady state, there cannot exist intervals (v1, v2) with K1 (v, 0) < 0,
v ∈ (v1, v2), with a positive mass of agents. �

(2) Agents with v such that κDI1 (v) = 0 receive the same uL,v.

Consider problem κDI . First observe that, by equation (C.23) and the arguments below it,
we must have wL,v > 0 and K1 (wL,v, 0) = 0. Thus, the first order condition for uL,v is

1− ζC1 (uL,v, 0) ≤ β̂

β̃
K1 (wL,v, 0) = 0

for all v such that κDI1 (v) = 0. Strict concavity of −C (·, 0) implies that either uL,v = 0 or
uL,v = û, where û is the unique solution to 1 − ζC1 (û, 0) = 0. We show that we must have
uL,v = û. If not, then uL,v = 0 and the constraint would require wL,v = v/β̃ > v ≥ v̄ > 0.
Therefore, the agent would remain in the region with continuation values v > 0 such that
κDI1 (v) = 0 and receive period utility of 0, which is a contradiction. �

(3) The value function κUI has a unique maximizer.

By definition, κUI coincides with (C.21) when σ = 1. The latter is a weighted sum of
two functions: K (·, 1) + χ and κDI , which are, respectively, strictly concave and concave by
standard arguments. Therefore, κUI is strictly concave and, hence, it has a unique maximizer.
�

(4) There is a point v̂ such that κDI1 (v̂) = 0 and wL,v̂ = v̂.

Let v̂ ≡ û/(1 − β̃) be the lifetime utility of an agent whose continuation utility coincides
with v̂ forever. We want to show that v̂ is such that κDI1 (v̂) = 0. Take any ṽ ≥ v̄ such that
κDI1 (ṽ) = K1 (ṽ, 0) = 0. By property 2, uL,ṽ = û and, by the arguments in the proof of that
property, wL,v > 0. Suppose that wL,ṽ < ṽ, the other case is analogous. Consider the sequence
{
(
û, wi

)
}i where wi = û + β̃wi−1 and w0 = ṽ. Notice that wi > wi−1 for all i and wi → v̂.

Since wi > ṽ ≥ v̄, by Proposition C.1, σ∗
wi

= 0 for all i. Consider the problem κDI1

(
w1
)
. By

the arguments in the proof of that property, wL,w1 > 0 and the first order condition for uL,w1
is

1− ζC1

(
uL,w1 , 0

)
≤ β̂

β̃
K1

(
wL,w1 , 0

)
.

By construction, wL,w1 = w0 = ṽ and uL,w1 = û satisfy this condition, which proves that(
û, w0

)
is the optimal allocation delivering w1. Also,

κDI1

(
w1
)

= K1

(
w1, 0

)
=
β̂

β̃
K1

(
w0, 0

)
= 0.
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Proceeding recursively, we prove that

κDI1

(
wi+1

)
= K1

(
wi+1, 0

)
=
β̂

β̃
K1

(
wi, 0

)
= 0

for all i. By continuity, v̂ must also satisfy the same condition. �
We now construct a payoff-equivalent steady state satisfying the property stated in the

lemma. We focus on the case with v > 0, the case with v = 0 is analogous. Notice that,
by part (ii) of Lemma C.13, if an unemployed agent is in the region with full information
revelation, he will remain in this region as long as he remains unemployed. Let v0 be the
lifetime utility of a newly-born agent. If v0 > v̄, then κDI1 (v0) = 0 and, by property (2),
the agent receives uL,v0 = û. If, instead, v0 ∈ [v, v̄], then, by Proposition C.1, v0 is delivered
through randomization between v (with probability pw) and v̄ (with probability 1− pw). Let
p ≡

∫
Iw≥vpwπ (dw, 0) be the mass of agents who receive v. Notice that, by property (3),

v is the unique point such that κUI1 (v). In addition, conditional on remaining alive, agents
receiving v will either find a job or, by part (ii) of Lemma C.13, receive a continuation utility
wL,v < v. In both cases, they will leave v. Similarly, let p̄ ≡

∫
Iw≥vπ (dw, 0) − p be the mass

of agents who receive v ≥ v̄. In the proof of part (i) of Lemma C.13 we showed that, in steady
state, there cannot be agents with v such that K1 (v, 0) < 0. Thus, by property (2), all agents
with v ≥ v̄ must receive uL,v = û. Finally, in steady state, the mass of agents entering the
region with v ≥ v —which coincides with the mass of newly-born agents —must be exactly
equal to the mass of agents leaving it —which equals the sum of those who are at v and those
who die. Therefore,

δ = p+ (1− δ) p̄. (C.24)

Consider now a candidate steady state with the following properties. First, the allocations
delivering each continuation utility v coincide with their counterparts in the original steady
state. Second, newly-born agents are randomly split into two groups: with probability p̂ an
agent is assigned to the first group where he receives v, and with probability 1− p̂ he is assigned
to the second group where he receives v̂. Also, we let p̂ ≡ 1− p̄(1−δ)/δ, which is a well-defined
probability by (C.24).

By property (4), the continuation utility of agents in the second group remains v̂ forever,
while those in the first group will either find a job or, by part (ii) of Lemma C.13, receive a
continuation utility wL,v < v. As a result, in the candidate steady state, agents in the second
group are the only ones who receive utility v ≥ v̄. Let pv̂ denote the mass of agents in the
second group. In steady state, it must satisfy

δ (1− p̂) = (1− δ) pv̂,

which implies pv̂ = p̄. Therefore, the mass of agents at v̂ in the candidate steady state coincides
with the mass of agents receiving v > v̄ in the original steady state. Similarly, the mass of
agents at v, denoted with pv, must equal δp̂, i.e. the mass of newly-born agents who are
assigned to the first group. We have

δp̂ = δ − p̄(1− δ)
= p,

therefore, the mass of agents at v in the candidate steady state coincides with the mass of
agents receiving v in the original steady state.
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To sum up, the candidate steady state differs from the original steady state only because
agents with v ≥ v̄ are now bunched at v̂. As a result, both aggregate resources and information
revealed to the planner are the same as in the original steady state. Therefore, the candidate
steady state is also a steady state.

Finally, since v̂ ≥ v, agents in the second group receive lifetime utility that is higher than
those in the first group.

We conclude with the proof of Lemma 4 in the main text. There, we used vUI0 to denote
the initial lifetime utility of an agent who is assigned to the group which reveals information.
Arguments above show that vUI0 coincides with v, that is, the threshold in Proposition C.1,
which, by property (3) in the proof of Lemma C.14, is the unique maximizer of κUI .

Proof of Lemma 4. The proof follows from two steps. First, in the proof of part (i) of
Lemma C.13, we showed that wL,vUI0 < vUI0 if vUI0 > 0. Second, from part (ii) of Lemma C.13,

we showed that wL,v is decreasing, thus, v < vUI0 implies wL,v ≤ wL,vUI0 < vUI0 .
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