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Abstract

We decompose welfare e�ects of switching from government policy A to policy B into

three components: gains in aggregate e�ciency from changes in total resources; gains in

redistribution from altered consumption shares that ex-ante heterogeneous households can

expect to receive; and gains in insurance from changes in households' consumption risks. Our

decomposition applies to a broad class of multi-person, multi-good, multi-period economies

with diverse speci�cations of preferences, shocks, and sources of heterogeneity. It has several

desirable properties that other decompositions lack. We apply our decomposition to two

�scal policy reforms in quantitative incomplete markets settings.
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1 Introduction

We want to understand sources of di�erences in social welfare associated with alternative

government policies. When households are heterogeneous, welfare depends on how e�ciently

goods and services are produced as well as how they are allocated across households. Welfare

changes from reallocations are in�uenced by Pareto weights, so it is natural to want to isolate

a contribution from redistribution across households.

We impute the welfare change from moving from policy A to policy B to three compo-

nents that we call aggregate e�ciency, redistribution, and insurance. Aggregate e�ciency

captures consequences of changes in aggregate resources. Redistribution captures changes

in ex-ante consumption shares. Insurance captures changes in ex-post consumption risk.

Our decomposition has several desirable properties. It can be applied to static and

dynamic stochastic economies with multiple goods and with preferences over goods that

can vary across households. It isolates three components of welfare changes in intuitive

ways. For instance, holding �xed both ex-ante expected consumption shares and ex-post

risks in consumption for each household, welfare gains that arise from changes in aggregate

resources are assigned entirely to the aggregate e�ciency component. Holding �xed both the

level of aggregate resources and consumption risk for each household, welfare changes that

arise from changes in ex-ante consumption shares are assigned purely to the redistribution

component. Similarly, welfare changes from a policy that reduces ex-post consumption risk

but a�ects neither total resources nor expected consumption share of any household are

assigned purely to the insurance component. Our decomposition is re�exive in the sense

that each component of the welfare change from policy A to policy B is equal in magnitude

and of the opposite sign to its counterpart for moving from policy B to policy A. We show

that all decompositions that satisfy these properties agree with ours up to an appropriate

approximation error.

We compare our decomposition to alternatives developed by Benabou (2002) and Floden

(2001).1 Benabou (2002) was the �rst to develop a decomposition of welfare e�ects of policy

changes into the three components in a context of a speci�c economy, in which households

have logarithmic preferences, and the innovations to consumption are always log-normal.

Benabou's approach involves computing a certainty equivalent consumption for each house-

hold and then averaging it across households to construct a measure of total societal risk.

1Examples of papers that use these, or closely related decompositions, include Abbott et al. (2019), Cho
et al. (2015), Conesa et al. (2009), Dyrda and Pedroni (2021), Guvenen et al. (2019), Heathcote et al. (2017),
Koehne and Kuhn (2015), Nakajima and Takahashi (2020), Seshadri and Yuki (2004).
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Benabou showed that in his economy this approach leads to a natural decomposition of

welfare e�ects from policy changes into e�ciency, insurance and redistribution components.

Floden (2001) extended Benabou's approach to a general class of economies. Our decom-

position agrees with the Benabou-Floden decomposition in Benabou's economy. Outside of

that special case, we found that the approaches based on aggregating certainty-equivalent

consumptions do not generally satisfy the abovementioned properties because they implic-

itly use inconsistent weights to aggregate household's gains from e�ciency, insurance and

redistribution into social welfare. As a result, such approaches may attribute an arbitrarily

large or small share of welfare gain to the insurance component from a policy that reduces

ex-post risk of households without a�ecting aggregate resources or their distributions among

agents.

Subsequent to an earlier draft of our paper, Davila and Schaab (2022) proposed a de-

composition of marginal policy changes. We show that their decomposition is subject to the

same concerns as the decompositions that are based on aggregating certainty equivalents.

Moreover, it di�ers from Benabou, Floden, and our decomposition even in cases when the

latter decompositions agree, for instance, in the Benabou's economy. Similarly, Benabou's,

Floden's, and our decomposition would fully attribute welfare gains from balanced growth �

in which all households' consumptions grow at a common constant rate � to improvements

in the aggregate e�ciency component, while the decomposition of Davila and Schaab would

interpret it as some mixture of all three components.

We apply our decomposition to two �scal policy reforms in incomplete markets settings

that are widely used in the macro literature. The �rst is a change in the income tax function

like that studied by Aiyagari (1995). We use this application to illustrate several insights

that our decomposition brings, study its accuracy, and compare implications to those that

would emerge from alternative decompositions. The second application is an increase in

public debt in a setting with low interest rates in the spirit of Blanchard (2019). In our

example that is calibrated to capture time-variation in debt servicing costs, issuing more

public debt leads to a welfare loss even in presence of potential welfare gains from insurance.2

The rest of this paper is organized as follows. Section 2 describes the environment.

Section 3 develops our decomposition and provides examples of applications of our decom-

position. Section 4 compares our decomposition to those of Benabou, Floden, and Davila and

Schaab. Section 5 applies our decomposition to two �scal reforms in calibrated economies.

2Other applications of our decomposition can be found in Ferriere et al. (2022) and Beraja and Zorzi
(2022).
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Section 6 concludes. Proofs and technical details appear in the Appendix.

2 Environment

A unit measure of ex-ante heterogeneous households are subject to risk ex-post. Households

are distributed on a [0, 1] interval endowed with a Lebesgue measure. Household i derives

utility Ui

(
{ck,i}k

)
from a bundle {ck,i}k of goods. The bundle can be either �nite or in�nite.

Each ck,i > 0 is stochastic and drawn from a distribution that can di�er across households.

Expected utility of household i is EiUi

(
{ck,i}k

)
, where Ei is a mathematical expectation

with respect to household i's probability distribution over {ck,i}k . We assume that Ui is

twice continuously di�erentiable and denote its �rst and second derivatives by Uk,i, Ukm,i

for goods k,m. We assume that the joint distribution of stochastic processes {ck,i}i,k has

�nite second moments and that expected utilities are well-de�ned. We use a shorthand E to

denote an average over households. Thus, Exi denotes
∫
[0,1] Eixidi for any random variable

xi.

An allocation under a government policy is a collection of stochastic processes {ck,i}k,i
that assigns consumptions of all goods to all households. Welfare of an allocation, denoted

by W, is evaluated with Pareto weights {αi}i that satisfy αi ≥ 0 and Eαi = 1, and is given

by

W ≡ EαiUi

(
{ck,i}k

)
. (1)

Equation (1) is commonly used in applied work to measure welfare and to evaluate counter-

factual policies. Switching from government policy A to policy B alters the allocation and

leads to welfare change WB−WA. We use superscripts j ∈ {A,B} to denote variables under
alternative policies. Our goal is to decompose a welfare change WB−WA into economically

interpretable components.

3 A decomposition

Subsection 3.1 analyzes a single good economy. Subsection 3.2 extends our analysis to

settings with multiple goods.

3.1 Single good economy

When there is a single good, subscripts k are redundant so we can use Uc, Ucc to denote

�rst and second derivatives of the utility function. A household's consumption satis�es the
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identity

ci = Eci ×
Eici
Eci

× ci
Eici

≡ C × wi × (1 + εi) . (2)

Aggregate consumption C measures the size of an aggregate �pie.� Fraction wi is the share

of that pie that household i expects to receive. Shocks εi capture the uncertainty that

household i faces. By construction, Eiεi = 0 and Ewi = 1.

Identity (2) motivates us to decompose a welfare change across two consumption allo-

cations into components that measure aggregate e�ciency, redistribution, and insurance.

Before presenting our decomposition, it is useful to prescribe some desirable properties.

Property a. A welfare change from a policy that a�ects aggregate consumption C but not {wi, εi}i
should be imputed solely to aggregate e�ciency ;

Property b. A welfare change from a policy that a�ects expected shares {wi}i but not C or {εi}i
should be imputed solely to redistribution;

Property c. A welfare change from a policy that a�ects the stochastic process for {εi}i but not C
or {wi}i should be imputed solely to insurance.

Our notion of aggregate e�ciency requires that redistribution and insurance are una�ected

if every household's consumption is multiplied by the same positive scalar. It implies that all

welfare gains from comparing allocations at two dates along a balanced growth path, when

consumptions of all households grow at a common constant rate at all dates and states, are

fully attributed to improvements in e�ciency. This seems consistent with common usages of

the term �e�ciency.� More generally, this notion also implies that redistribution and insur-

ance remain unchanged so long as the distribution of expected consumption shares, {wi}i
and the distribution of consumptions relative to their means, {ci/Eici}i are both unchanged.
Once we accept Property (a) of pure aggregate e�ciency, the other two properties follow

naturally. In redistribution, we capture e�ects from reshu�ing resources across households,

that is, from changing expected consumption shares {wi}i, while keeping C and {εi}i �xed.
In insurance, we capture changes in consumption risk that each household faces. Thus,

we attribute to the insurance component the consequences of a policy-induced change in

the distribution of {εi}i that keeps aggregate resources and expected consumption shares

constant (i.e., pure mean-preserving spreads in consumption).

In addition, we want a decomposition not to depend on whether one compares policy B

to policy A, or policy A to policy B. We call this property re�exivity and formally state it

as follows.
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Property d. The absolute value of each component of the welfare change from policy A to policy

B equals its counterpart in moving from policy B to policy A.

Our approach rests on Taylor expansions of welfare di�erence WB − WA. Welfare Wj for

j ∈ {A,B} can be represented as a mapping from an allocation� i.e., from sequences

and stochastic processes
{
Cj , wj

i , ε
j
i

}
i
�to a real number. We expand Wj around a non-

stochastic �midpoint�
{
CZ , wZ

i ,0
}
i
de�ned as

CZ ≡
√
CACB, wZ

i ≡
√
wA
i w

B
i , cZi ≡ CZwZ

i . (3)

De�ne quasi-weights ϕi ≡ αiUc,i

(
cZi
)
cZi , and coe�cients of relative risk aversion γi ≡

−Ucc

(
cZi
)
cZi /Uc

(
cZi
)
, and de�ne components Γ, {∆i,Λi}i as follows:

Γ ≡ lnCB − lnCA, ∆i ≡ lnwB
i − lnwA

i , Λi ≡ −1

2

[
vari

(
ln cBi

)
− vari

(
ln cAi

)]
. (4)

Applying Taylor's theorem, we show (in the appendix) that

WB −WA ≃ EϕiΓ︸ ︷︷ ︸
agg. e�ciency

+ Eϕi∆i︸ ︷︷ ︸
redistribution

+EϕiγiΛi︸ ︷︷ ︸
insurance

, (5)

where "≃ ” denotes equality up to a third-order remainder term in a Taylor series expansion.

Equation (5) shows that up to third-order expansion terms, the welfare e�ect WB −WA

can be represented as a sum of three terms. The �rst term is proportional to the increase

in aggregate resources, Γ. The second term is proportional to a quantity that captures

changes in households' expected consumption shares, {∆i}i . The third term is proportional

to changes in ex-post risk and is captured by {Λi}i . Although we consider a second-order

expansion, there are no interaction terms among Γ, {∆i}i and {εi}i .
Terms in decomposition (5) have natural interpretations. Start with the e�ciency compo-

nent, which is the sum across households of the percentage change in aggregate consumption

scaled by quasi-weights ϕi. To see why it takes this form, expand the term inside the expec-

tation operator: αi × UZ
c,i × cZi︸ ︷︷ ︸
ϕi

×Γ. Here, Γ is the growth rate of aggregate consumption,

cZi Γ is how much household i's consumption increases at the aggregate growth rate, UZ
c,ic

Z
i Γ

converts the change in consumption for household i into a change in utils of household i, and

αiU
Z
c,ic

Z
i Γ converts that into social utils. Re�exivity requires us to measure these changes at

the midpoint Z, which also turns out to be a natural point that minimizes the error terms in

the approximation. The quasi-weights {ϕi}i thus transform percentage changes to welfare
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change WB −WA, measured in utils.

The insurance component depends on the coe�cients of the relative risk aversion {γi}i
and changes in the variance of log consumption. It can be interpreted in terms of certainty

equivalences. Denote the certainty equivalent level of consumption for each household i

under policy j by cce,ji . It satis�es

U
(
cce,ji

)
= EiU

(
cji

)
. (6)

A second-order approximation of this relationship yields ln

(
cce,ji

Eic
j
i

)
≃ −1

2γivari(ln(c
j
i )).

From the de�nition of Λi, an alternative way of representing the insurance component is

insurance ≃ Eϕi

(
ln

(
cce,Bi

EicBi

)
− ln

(
cce,Ai

EicAi

))
. (7)

As with the e�ciency component, the quasi-weights ϕi convert changes in the fraction of

consumption that households are willing to give up to remove all uncertainty into changes

in total welfare.

Finally, the redistribution component depends on changes in expected consumption

shares {wi}i, captured by {∆i}i . To understand this term, it is instructive to write it

as

Eϕi∆i =
√
CACB

∫
[0,1]

αiU
Z
c,i ln

wB
i

wA
i

√
wA
i w

B
i di.

The integral in this expression resembles but di�ers from a Kullback�Leibler (K-L) statistical

divergence, that would take the form
∫
ln

wB
i

wA
i
wA
i di in our context. Like the K-L divergence,

our redistribution component quanti�es di�erences between distributions
{
wA
i

}
i
and

{
wB
i

}
i
.

(Note that
{
wA
i

}
i
and

{
wB
}
i
are both positive and sum to one, so that they are probability

distributions.) There are two important di�erences from the K-L divergence. First, the

K-L divergence is not re�exive and violates our desired Property (d). By using the midpoint

between the two distributions,
√
wA
i w

B
i , rather than wA

i , we overcome this problem. Second,

the K-L divergence �weighs� resources given to each household i equally. That corresponds

to a very speci�c point on the Pareto frontier. At an arbitrary point of the Pareto frontier,

these weights are given by αiUc,i.

We wrote the redistributive component as Eϕi∆i in formula (5) to emphasize a common

structure underlying the three components and to illuminate its relationship to standard
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measures of divergence. An alternative way of representing the redistribution component is

redistribution ≃
√
CACBEαiU

Z
c,i

(
wB
i − wA

i

)
. (8)

From (8) one can immediately see that redistribution measures changes in shares wB
i − wA

i

weighted with αiUc,i. Evidently, the redistributive component is always zero if the planner is

utilitarian and households have linear utility of consumption, consistent with the observation

that in such settings the planner does not value redistribution.

The statement that decomposition (5) satis�es Properties (a), (b), (c), and (d) naturally

raises the question if there are other decompositions that do the same. In the appendix, we

show that any additive decomposition that satis�es Properties (a), (b), (c), and (d) agrees

with decomposition (5) up to a third-order error. To see the intuition for this claim, consider

an alternative decomposition given by adding and subtracting aΓ∆i to (5):

WB −WA ≃ EϕiΓ + aΓ∆i︸ ︷︷ ︸
agg. e�ciency

+Eϕi∆i − aΓ∆i︸ ︷︷ ︸
redistribution

+EϕiγiΛi︸ ︷︷ ︸
insurance

.

This decomposition satis�es properties (a), (b), and (c) but lacks property (d) because going

from policy B to policy A will not switch the sign of the term aΓ∆i. In the appendix, we

show that up the order of error in (5), we need only to be concerned about interaction

terms between {Γ,∆i,Λi} and that requiring the decomposition to be re�exive will impose

a restriction that those terms equal zero.

A natural way to represent contributions of aggregate e�ciency, redistribution, and

insurance to WB − WA is in terms of the proportions EϕiΓ
Eϕi[Γ+∆i+γiΛi]

, Eϕi∆i

Eϕi[Γ+∆i+γiΛi]
, and

EϕiγiΛi

Eϕi[Γ+∆i+γiΛi]
respectively.3 These terms must sum to 1:

1 =
EϕiΓ

Eϕi [Γ + ∆i + γiΛi]
+

Eϕi∆i

Eϕi [Γ + ∆i + γiΛi]
+

EϕiγiΛi

Eϕi [Γ + ∆i + γiΛi]
. (9)

It is easy to verify that decomposition (9) satis�es Properties (a), (b), (c), and (d).

A policy change that a�ects available aggregate resources C but not {wi, εi}i implies that
∆i = Λi = 0 for all i; therefore the aggregate e�ciency component of such a policy is

1. Similar arguments verify that Properties (b) and (c) are satis�ed. Re�exivity Property

(d) can be veri�ed by noticing that moving from policy B to policy A implies that both

3In general, the remainder term in a Taylor series expansion (5) depends on higher-order interactions
of Γ, {Λi}i and {εi}i and cannot be partitioned unambiguously across the three components. De�ning
the proportions as we do implicitly assumes that residuals are split across these components in the same
proportions as the �rst and second-order expansion terms. See the appendix for details.
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the numerator and the denominator of each fraction changes only its sign, leaving ratios

unchanged.

3.1.1 Order of approximation and an alternative decomposition

How large is the omitted third-order residual in equation (5) and how does its size depend

on the di�erence between allocations under policies A and B? We provide a short discussion

of these questions, leaving detailed proofs for the appendix.

De�ne a space of sequences and stochastic processes
{
Γ̃, ∆̃i, ε̃i

}
i
endowed with an ap-

propriate norm || · ||. From (2), any allocation {cji}i can be mapped to a point in that space.

We use ||Γ,∆, εB − εA|| to measure the distance between allocations under two policies,{
cAi
}
i
and

{
cBi
}
i
and denote it ||cB−cA||. While the residual in equation (5) goes to zero as

||cB−cA|| → 0, little can be said theoretically about the relative speeds at which the residual

and ||cB − cA|| converge to zero. This is because when we expand around a non-stochastic

point
{
cZi
}
i
, processes

{
cBi
}
i
and

{
cAi
}
i
need not converge to this point as ||cB − cA|| → 0.

We can modify our decomposition to ensure that the approximation error shrinks to zero

at a rate faster than ||cB−cA||2. Write the stochastic process ci as an explicit mapping from

a vector of primitive shocks ξ into consumption ci (ξ), with the distribution of ξ given by

Pri (dξ) . Equation (2) can be rewritten as ci (ξ) = C×wi× ϵi (ξ) where ϵi (ξ) ≡ ci (ξ) /Eici.

Let the expansion point be c̃Zi (ξ) ≡
√
CACB ×

√
wA
i w

B
i ×

√
ϵAi (ξ) ϵBi (ξ) and let δi (ξ) ≡

ln ϵBi (ξ)− ln ϵAi (ξ) , and ϕ̃i (ξ) ≡ αiUc,i

(
c̃Zi (ξ)

)
c̃Zi (ξ) . Then the welfare decomposition can

be written

WB −WA = Eϕ̃iΓ︸ ︷︷ ︸
agg. e�ciency

+ Eϕ̃i∆i︸ ︷︷ ︸
redistribution

+ Eϕ̃iδi︸ ︷︷ ︸
insurance

+o
(
∥Γ,∆, δ∥2

)
. (10)

This decomposition retains the four properties of decomposition (5) discussed in Section 3.1

and guarantees that the reminder term converges to zero at a faster rate than
∥∥cB − cA

∥∥2 .
Decomposition (10) lends itself to an exact decomposition when the size of the reform

is small. For instance, let τ be a parameter so that household i's allocation is given by

ci (ξ, τ) = Eci (ξ, τ)×
Eici (ξ, τ)

Eci (ξ, τ)
× ci (ξ, τ)

Eici (ξ, τ)
≡ C (τ)× wi (τ)× (1 + εi (ξ, τ)) . (11)

De�ne ϕ̂i (τ, ξ) ≡ αiUc,i (ci (ξ, τ)) ci (ξ, τ), and ∂τW (τ) ≡ lim∥h∥→0
Wτ+h−Wτ

∥h∥ be the welfare
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gain from a small change in τ . A marginal version of (10) is given by

∂τW (τ) = Eϕ̂i (τ) ∂τ lnEci (τ)︸ ︷︷ ︸
agg. e�ciency

+Eϕ̂i (τ) ∂τ ln

(
Eici (τ)

Eci (τ)

)
︸ ︷︷ ︸

redistribution

+ Ecov
[
ϕ̂i (τ) , ∂τ ln (ci (τ) /Eici (τ))

]
︸ ︷︷ ︸

insurance

, (12)

where cov is a cross-sectional covariance. Its easy to verify that decomposition (12) satis�es

properties (a)�(d).

While decomposition (10) has nicer theoretical properties as the di�erence between al-

locations induced by policies A and B becomes small, we did not �nd any meaningful

di�erences between decompositions (10) and (5) for all the examples that we considered.

For this reason, for the rest of this paper, we focus on decomposition (5), both because it is

easier to compute and because {Λi}i maps directly into statistics that are routinely reported
in implementations of quantitative models.

3.2 Decomposition for a multi-good economy

It is straightforward to extend our decomposition to multi-good settings. To decompose

welfare gains into components, �rst compute points of approximation
{
cZk,i

}
k
for each good

as in equation (3). Then extend de�nitions of Γk and ∆k,i from equation (4) to every good

k and de�ne Λkm,i for each pair of goods k,m as

Λkm,i ≡ −1

2

[
covi

(
ln cBk,i, ln c

B
m,i

)
− covi

(
ln cAk,i, ln c

A
m,i

)]
.

Let Uk,i, Ukm,i be �rst and second derivatives of Ui evaluated at
{
cZk,i

}
k
and let weights

{ϕk,i}k and cross-elasticities {γkm,i}k,m be de�ned as

ϕk,i ≡ αiUk,ic
Z
i , γkm,i ≡ −

Ukm,ic
Z
m,i

Uk,i
.

Using the same steps as in the one good economy from Section 3.1, we can show that

WB −WA ≃ agg. e�ciency+ redistribution+ insurance, (13)
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where

agg. e�ciency = E
∑
k

ϕk,iΓk,

redistribution = E
∑
k

ϕk,i∆k,i,

insurance = E
∑
k

∑
m

ϕk,iγkm,iΛkm,i.

When utility is separable across all goods, this decomposition just computes decomposition

(5) for each good and then sums each component across all goods. When utility is not

separable, proper accounting for the insurance component requires adding changes in the

covariances in dispersions of di�erent goods weighted with cross-elasticities γkm,i.

This approach applies directly to decomposing welfare gains from switching from policy

A to policy B in in�nite horizon economies. A typical application in quantitative macro is

to �nd an invariant distribution under some policy τA, use that as an initial condition for

an economy in which a di�erent policy τB is introduced. One then compares welfare in the

invariant distribution under policy τA to welfare along the transition path under policy τB

(see Guerrieri and Lorenzoni (2017), Rohrs and Winter (2017) or Section 5 of this paper for

examples). The utility function is typically assumed to be of the form

EiUi

(
{ck,i}k

)
= Ei

∞∑
k=1

βk−1u (ck,i) ,

where β is the discount factor, u is the within-period utility function, k is time and Ei is

the period 0 conditional expectation.

These applications map directly into the framework developed in this section. Each good

k in our multi-good setup corresponds to consumption in period k, tuple
(
Cj
k, w

j
k,i, ε

j
k,i

)
consists of aggregate consumption, consumption shares of household i, and consumption

risk for household i in period k under policies j ∈ {A,B} . If the initial distribution is the

invariant distribution under policy A, then sequence
{
CA
k

}
k
takes the same values for all k,

but sequences
{
wA
k,i, ε

A
k,i

}
k
can change over time due, for example, to idiosyncratic shocks

experiences by households.

3.3 Comparing invariant distributions

In some applications, it can be di�cult to compute a full transition path induced by changing

government policies, so researchers often rely on comparing welfare across steady states.
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That is, they compare welfare under the invariant distribution arising from policy B to

welfare under the invariant distribution arising from policy A. We provide a way to extend

our framework to such settings.

Suppose that an invariant distribution under policy j is characterized by the probability

measure, µj , on some compact space of household characteristics S ⊂ Rn. In many appli-

cations (e.g., Aiyagari (1995), Floden (2001), Conesa et al. (2009)) welfare is de�ned as an

integral over households' expected utilities,

Wj=

∫
S
EsU

({
cjk,s

}
k

)
dµj(s),

where Es is the expected utility of household s ∈ S. In order to apply our approach to

decompose the welfare change from A to B, we need households to be living in the same

probability space; they might not if µA ̸= µB. Our solution is to work in the space of

percentiles: we map the ith percentile under policy A to the ith percentile under policy B.

It is easiest to consider �rst a case in which the space of characteristics is unidimensional

so that n = 1, and µj is described by a probability density, f j : S 7→ R, with f j(s) > 0

for all s ∈ S. Let F j be the cdf of f j . For any cjs that is function of s ∈ S, de�ne c̄ji by

c̄jF (s) = cjs. By construction, c̄ji is uniquely de�ned for i ∈ [0, 1]. Standard �integration by

substitution� arguments (see, e.g. Corollary 3.7.2 in Bogachev (2007)) imply that

Wj=

∫
S
EsU

({
cjk,s

}
k

)
dµj(s) =

∫
S
EsU

({
cjk,s

}
k

)
f j (s) ds =

∫
[0,1]

EiU
({

c̄jk,i

}
k

)
di.

The last term is a special case of our de�nition of welfare (1), so all the steps from Section

3.2 apply directly.

This approach generalizes to any n via induction. We verify this for n = 2. Suppose

that S = A×Θ ⊂ R2 and assume probability density f j (a, θ) under policy j. Let f j (θ) ≡∫
A f j (a, θ) da. We can write welfare as

Wj=

∫
Θ

[∫
A
E(a,θ)U

({
cjk,(a,θ)

}
k

) f j (a, θ)

f j (θ)
da

]
f j (θ) dθ.

Applying the same procedure that we described for n = 1 case twice, �rst to the inner

integral, and then to the outer one, we can represent welfare

Wj=

∫
[0,1]2

E(i,ι)U
({

c̄jk,(i,ι)

}
k

)
didι. (14)
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Application of the Section 3.2 decomposition is now straightforward, except that now house-

holds are distributed over [0, 1]2 rather than [0, 1] . An application of the n = 2 procedure is

studied in Section 5.1.

4 Alternative decompositions

Motivated by the same questions that concern us, Benabou (2002), Floden (2001), and

more recently, Davila and Schaab (2022) decomposed policy-induced welfare changes into

counterparts of our e�ciency, insurance, and redistribution components. In this section,

we use a stylized economy to compare our decomposition with these alternatives. We start

with the decompositions of Benabou (2002) and Floden (2001) that are based on certainty

equivalents and widely used in quantitative work.

4.1 Benabou (2002) and Floden (2001) decompositions

Benabou (2002) was the �rst paper to develop a systematic decomposition of the welfare

e�ects of policy changes. Benabou did it in the context of a speci�c economy that is described

in Section 4.2. Floden (2001) proposed an extension of Benabou's approach to a wider class

of economies.

It is easiest to describe their ideas in the single good environment. Both decompositions

require that all households have identical preferences U and start by computing a certainty

equivalent level of consumption for each household i under policy j , cce,ji , as in equation

(6). Then they de�ne the aggregate certainty equivalent Cce,j ≡ Ecce,ji . As in Section 3, we

use Cj = Ecji to denote aggregate consumption under policy j.

In Benabou's economy, preferences over consumption are logarithmic, U (c) = ln c, and

he considered the following decomposition of the e�ect of welfare changes from policy A to

another policy B:

WB−WA =

lnCB − lnCA︸ ︷︷ ︸
agg. e�ciency

+

{WB−WA
}
−
{
lnCce,B − lnCce,A

}︸ ︷︷ ︸
redistribution


+

{lnCce,B − lnCce,A
}
−
{
lnCB − lnCA

}︸ ︷︷ ︸
insurance

 . (15)

Benabou shows that in his economy the three terms in square brackets have natural inter-

12



pretations of aggregate e�ciency, redistribution, and insurance, respectively.4

Floden (2001) proposed to extend Benabou's approach to general settings. As a �rst

step, he computes numbers pjinsur and pjredis using

U
((

1− pjinsur

)
Cj
)
= U

(
Cce,j

)
, U

((
1− pjredis

)
Cce,j

)
= EαiU

(
cce,ji

)
. (16)

Then he constructs contributions of aggregate e�ciency, redistribution, and insurance as

1 + ωeff ≡ CB

CA
, 1 + ωredis ≡

1− pBredis
1− pAredis

, 1 + ωinsur ≡
1− pBinsur
1− pAinsur

.

Similarly, the total welfare change from policy A to policy B is computed in consumption

units as

EαiU
(
cBi
)
= EαiU

(
(1 + ω) cAi

)
. (17)

Floden shows that when U has the CRRA form U (c) = c1−γ

1−γ , with γ > 0, γ ̸= 1 and

U (c) = ln c for γ = 1, then the following relationship holds

ln (1 + ω) = ln (1 + ωeff ) + ln (1 + ωredis) + ln (1 + ωinsur) , (18)

with the three terms corresponding to our notions of aggregate e�ciency, redistribution, and

insurance, respectively. Note that it coincides with Benabou's decomposition when γ = 1.

4.2 An illustration of decompositions in the stylized Benabou's economy

In this section, we use a stylized version of the economy considered by Benabou to illustrate

the workings of these decompositions. Benabou's economy allows rich heterogeneity, yet it

is tractable and yields intuitive closed-form expressions for key equilibrium objects. This

economy and its extensions have been widely used in the literature (see, e.g., Heathcote

et al. (2017), Heathcote et al. (2020)).

Consider a static economy. Households have preferences over stochastic consumption

good ci and labor li represented by

Ei

[
ln ci −

1

1 + η
l1+η
i

]
.

4Benabou and Floden use slightly di�erent terminologies in naming their decomposition terms, both from
each other and from our paper. To avoid confusion, we use our terminology throughout.
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Pre-tax earnings of household i are yi = θili, where θi is labor productivity that satis�es

θi = exp (ei + ξi). The �rst component of productivity ei ∼ N
(
−υ2

e
2 , υ2e

)
captures het-

erogeneity in initial, ex-ante skill endowments across households. The second component

ξi ∼ N
(
−υ2

ξ

2 , υ2ξ

)
represents idiosyncratic productivity shocks that are realized ex-post.

After-tax labor income is τ̄ y1−τ
i , where τ is the degree of tax progressivity and τ̄ is a func-

tion of τ such that the net tax revenues are zero. Households hold no assets and consume

their after-tax labor income each period. Welfare W = Eαi

[
ln ci − 1

1+η l
1+η
i

]
, where Pareto

weights αi may depend on ex-ante heterogeneity ei but not ex-post shocks ξi.
5

Benabou focuses on understanding the e�ect of changes in the tax progressivity param-

eter τ . Logarithmic utility in consumption and the absence of non-labor income imply that

all households choose the same labor supply in all periods, li (ei, ξi, τ) = (1− τ)
1

1+η . This

implies that aggregate labor L (τ) and aggregate consumption C (τ) satisfy

C (τ) = L (τ) = (1− τ)
1

1+η .

It is easy to derive closed-form expressions for individual consumption and welfare:

ci (ei, ξi, τ) = C (τ)× exp

(
(1− τ) ei + τ (1− τ)

υ2e
2

)
× exp

(
(1− τ) ξi + τ (1− τ)

υ2ξ
2

)
,

(19)

and

W (τ) =

[
lnC (τ)− 1

1 + η
L (τ)1+η

]
−
[
(1− τ)2

υ2e
2

− (1− τ)cov (αi, ei)

]
−

[
(1− τ)2

υ2ξ
2

]
.

(20)

These expressions show that individual consumption and welfare can all be conveniently

separated into three components with natural economic interpretations: the aggregate e�-

ciency component, which depends on aggregate variables C and L; the redistribution com-

ponent, which depends on the ex-ante heterogeneity ei; and the insurance component, which

depends on the ex-post risk ξi. An increase in tax progressivity a�ects all three components:

it distorts labor supply and lowers aggregate consumption reducing e�ciency; it decreases

ex-ante di�erences in expected earnings providing redistribution; and it reduces the variance

5The stylized static economy is chosen to preserve all key features of Benabou's model in the simplest
setting. Benabou (2002) considers a dynamic economy and assumes that each period households are subject
to multiplicative random walk shocks drawn from a �xed log-normal distribution. It can be shown that each
period t of his economy is equivalent to our static economy where the variance of ex-post shocks is given by
υ2
ξ,t.
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of ex-post earnings providing insurance.

We now apply Benabou and Floden decompositions (which coincide in this setting) to

this economy and compare them to our decomposition. Individual and aggregate certainty

equivalent consumption can be found in closed form and satisfy

ccei (ei, τ) = C(τ)× exp

{
−
(
(1− τ)ei + τ(1− τ)

ν2e
2

)}
× exp

{
−(1− τ)2

ν2ξ
2

}
,

Cce (τ) = C(τ)× exp

{
−(1− τ)2

ν2ξ
2

}
.

Using de�nitions of Benabou's components from equation (15) and ours from equation

(5) we get

ln (1 + ωeff ) =
1

1 + η
ln

(
1− τB

1− τA

)1− τB − τA

ln
(
1−τB

1−τA

)


=

(
1

1 + η

)(
ln

1− τB

1− τA

)(
1−

√
(1− τA) (1− τB)

)
+O

(∣∣∣∣ln 1− τB

1− τA

∣∣∣∣3
)

= EϕiΓ +O

(∣∣∣∣ln 1− τB

1− τA

∣∣∣∣3
)
, (21)

ln (1 + ωredis) =
υ2e
2

[(
1− τA

)2 − (1− τB
)2]

+ cov (αi, ei)
[
τA − τB

]
= Eϕi∆i, (22)

and

ln (1 + ωinsur) =
υ2ξ
2

[(
1− τA

)2 − (1− τB
)2]

= EϕiγiΛi. (23)

Thus, all three decompositions agree up to the third-order errors, with redistribution and

insurance components coinciding exactly.6 If we consider the e�ect of a marginal policy

6This third-order residual in the aggregate e�ciency term emerges because we approximate the non-linear

function 1
1+η

[
L
(
τB

)1+η − L
(
τA

)1+η
]
with a linear function

[
lnL

(
τB

)
− lnL

(
τA

)]
. The residual goes to

zero at the rate O

(∣∣∣ln 1−τB

1−τA

∣∣∣3) as τB → τA. To put this into perspective, Feenberg et al. (2017) estimate

parameter τ for the U.S. for various years and �nd that between 1980 and 2010 it varied between 0.07 and
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change, τB = τA + dτ in the limit as dτ → 0, previous expressions imply that all three

decompositions agree exactly. We provide details in the appendix.

4.3 Decompositions in general economies

The result that ours and the Benabou-Floden decompositions agree in the Section 4.2 econ-

omy is driven by several special features. To see this, it is helpful to �rst apply our second-

order approximation to the ln (1 + ωinsur), the insurance component of Floden's decompo-

sition. In the appendix, we show that

ln (1 + ωinsur) ≃ EϕBF
i

(
ln

(
cce,Bi

EicBi

)
− ln

(
cce,Ai

EicAi

))
, (24)

where ϕBF
i =

cZi
CZ , which is the ex-ante consumption share of household i, or wZ

i as in

equation (3). Comparison to (7) reveals that one of the key di�erences between the two

decompositions is the quasi-weights that are used to aggregate changes in individual certainty

equivalents. Our quasi-weights {ϕi}i, with ϕi = αiU
Z
c,ic

Z
i , incorporate both the households'

marginal utilities of consumption and Pareto weights. This ensures that the e�ects of changes

in households' risks are properly re�ected in both household welfare and the social welfare,

respectively. In contrast, Benabou-Floden quasi-weights
{
ϕBF
i

}
i
depend only on the ex-ante

consumption shares, and there is no a-priori reason to expect such weights to be consistent

with the way a social welfare function aggregates utilities of households. Since the sum of

the three components must equal the change in total welfare, a discrepancy in the insurance

component necessarily has repercussions for the other two components.

Thus, these two decompositions will generically disagree. They agree in Benabou's econ-

omy because it has a property that changes in the progressivity of the tax code induces the

same change in the variance of log consumption, Λi, for all households. Under log utility, or

γi = 1, this property renders changes in certainty equivalents equal across households,

ln

(
cce,Bi

EicBi

)
− ln

(
cce,Ai

EicAi

)
=

υ2ξ
2

[(
1− τA

)2 − (1− τB
)2]

.

Additionally, in Benabou's economy our quasi-weights simplify to ϕi = αi so both sets

of quasi-weights aggregate to one, which implies, from equations (7) and (24), that both

decompositions yield an identical contribution of the insurance component.

0.1. For tax policies in this range,
∣∣∣ln 1−τB

1−τA

∣∣∣3 ≤
(
ln 0.93

0.9

)3 ≈ 0.000035.
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More generally, while there is a good economic rationale for using individual consumption

equivalent ccei to capture the e�ect of individual risk, there is no reason to expect that

Cce would be a good measure for societal risk.7 The feature in Benabou's economy that

changes in tax progressivity a�ects risk of all households (measured as volatility of the

log consumption) equally makes it irrelevant how individual risks are aggregated. We next

formalize the role of this property in �BF decompositions�8 and explain problems that emerge

when this property does not hold.

Lemma 1. If there exists some Λ such that

1

2

(
vari

(
ln cAi

)
− vari

(
ln cBi

))
= Λ for all i, (25)

and the utility function U is CRRA then the BF decomposition satis�es Properties (a),

(b), and (c) and coincides with our decomposition, equation (9), up to a residual term that

approaches zero as
∥∥Γj ,∆j , εj

∥∥→ 0 for j ∈ {A,B} .

When condition (25) is not true, the BF decomposition would typically violate Properties

(a), (b), and (c). Moreover, the consequences of the violation of those properties, and the

resulting departure from an economically-meaningful decomposition of welfare changes, can

be arbitrarily large. To illustrate this point, we go back to Benabou's economy presented

in Section 4.2 but make three modi�cations to it: we (i) assume that the labor supply is

inelastic, η = ∞; (ii) allow households to di�er in the ex-post risk υ2i,ξ; and (iii) abstract from

taxes (set τ = 0, policyA) but instead study the e�ect of introducing Arrow securities that

are conditioned on the realization of the ex-post shocks ξi (policy B). The purpose of these

modi�cations is simple. Assumptions (i) and (iii) shut down all channels of policy response

other than insurance. Under these assumptions, all households face pure endowment risk.

7A related observation is that certainty-equivalence approach is not well-de�ned if consumers' consump-
tion bundles di�er in more than one good, and preferences over those goods are not separable. In Floden
(2001) economy, consumers are heterogeneous in both consumption and labor, and to compute individual
certainty equivalent of consumption Floden experiments with setting individual labor as various �xed values.

8We refer to the decomposition

1 =
ln (1 + ωeff )

ln (1 + ωeff ) + ln (1 + ωredis) + ln (1 + ωinsur)
+

ln (1 + ωredis)

ln (1 + ωeff ) + ln (1 + ωredis) + ln (1 + ωinsur)

+
ln (1 + ωinsur)

ln (1 + ωeff ) + ln (1 + ωredis) + ln (1 + ωinsur)

as the �BF decomposition�. Benabou's decomposition is a special case of it, but Benabou developed it only
to study the e�ects of speci�c policy reforms in the economy he considered, and our decomposition aligns
with his in that economy. The problems that we point out next apply not only to Floden's extension but also
to any approach that may use the aggregate certainty equivalent consumption Cce as a measure of societal
risk in a general class of economies.
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Policy B provides means to insure that risk. In an equilibrium under policy B, households

i buy Arrow securities to fully insure household-i speci�c ex-post risk. Thus, neither total

resources nor their allocation across ex-ante heterogeneous households are e�ected, and all

welfare gains from policy B come from insurance. Assumption (ii) allows us to consider

both the case when condition (25) is satis�ed (υ2i,ξ is the same for all i) and when it is not.

It is easy to verify that our decomposition (9) always attributes 100% of welfare gain

to the insurance component. Closed-form expressions are not available for the BF decom-

position, but for small risks, the corresponding insurance share is
Eυ2

ξ,i+cov(wZ
i ,υ2

ξ,i)

Eυ2
ξ,i+cov(αi,υ2

ξ,i)
. The

expression reveals that the BF decomposition would attribute 100% of welfare gain to the

insurance component only if risk υ2ξ,i is uncorrelated with ex-ante heterogeneity ei (in par-

ticular, if υ2ξ,i is the same for all i). More generally, the BF decomposition can attribute

anything from 0% to ∞% of the welfare gain to the insurance component (and anything

from 100% to −∞% to the redistribution component), depending on correlations between

αi, ei and υ2ξ,i.
9

This failure of the BF decompositions to attribute 100% of the welfare gain to insurance

arises because they aggregate individual insurance gains with quasi-weights that do not

depend on the social weights of those households. While Pareto weights {αi}i appearing only
in the redistribution component might seem like a desirable property, a momentary re�ection

reveals that such decompositions cannot lead to consistent aggregation of individual gains

from insurance and redistribution. The BF decomposition (as would any decompositions

that uses Cce as a societal measure of risk) takes a stance on the implicit weights with which

it aggregates individual insurance gains, which in general, is inconsistent with the weights

that are used to aggregate gains from redistribution.

To illustrate the consequence of this, consider a special case of the previous example, with

only two groups of households but with only one group facing ex-post risk, 0 = υ21,ξ < υ22,ξ.

Suppose that the social welfare function assigns the Pareto weight of 0 to the second group.

Policy B strictly improves the welfare of group 2 by providing it with better insurance but it

9While this example is not particularly realistic as it was speci�cally constructed to illustrate our main
point in the simplest way, the features it highlights are present in many economies widely used in quantitative
macro applications. Consider, for example, a standard Aiyagari (1994) economy (along the lines we show
in Section 5.1) or even Benabou's economy with non-labor income, such as assets (see the appendix for a
worked out example). A proportional increase in taxes, under calibrated low values of the Frisch elasticity
of labor supply, would produce roughly equal decrease in the variance in earnings for all households. But
asset heterogeneity will imply that variance of consumption would be di�erent for low-wealth household as
compared to high-wealth households. In the models with a realistic distribution of wealth, that can lead to
a large misattribution of the sources of welfare changes from tax policies. See Bhandari et al. (2021) for an
illustration of this point in a calibrated HANK economy.
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has no e�ect on social welfare. Any welfare decomposition that does not use Pareto weights

will �nd improvements in the insurance component of the welfare decomposition and, as a

result, would need to adjust redistribution or e�ciency components to ensure that their sum

equals zero. In contrast, this problem does not arise in our decomposition since insurance

gains of each household are weighted with their social weights.10

4.4 Comparison to Davila and Schaab decomposition

Subsequent to our work, Davila and Schaab (2022) propose a decomposition of welfare gains

into similar labels. They develop their decomposition for marginal changes in policy, that

is, welfare gains for changes when a policy τ is changed to τ +dτ , and take limits as dτ → 0.

In our notation from Section 3.1.1, a version of Davila and Schaab's decomposition can be

written as

∂τW
DS =

∫
Pr (dξ)

[(∫
dci (ξ, τ)

dτ
di

)
×

(∫
u′
i (ci (ξ, τ))∫

Pr (dξ)u′
i (ci (ξ, τ))

di

)]
︸ ︷︷ ︸

DS-agg. e�ciency

+

∫
Pr (dξ) cov

{
u′
i (ci (ξ, τ))∫

Pr (dξ)u′
i (ci (ξ, τ))

,
dci (ξ, τ)

dτ

}
︸ ︷︷ ︸

DS-insurance

+cov

{ ∫
αiu

′
i (ci (ξ, τ)) Pr (dξ)∫ ∫

αiu′
i (ci (ξ, τ)) diPr (dξ)

,

∫
Pr (dξ)

(
u′
i (ci (ξ, τ))∫

Pr (dξ)u′
i (ci (ξ, τ))

× dci (ξ, τ)

dτ

)}
.︸ ︷︷ ︸

DS-redistribution

(26)

Most of our criticism of the BF decomposition also applies to Davila and Schaab's de-

composition. Both decompositions do not satisfy Properties (a), (b), and (c) and, in the

attempt to have Pareto weights appear only in the redistribution component, do not aggre-

gate gains from aggregate e�ciency, insurance, and redistribution consistently.11 However,

the Davila and Schaab decomposition di�ers from ours and BF decompositions even in

settings in which the latter two coincide. Thus, it would interpret the sources of welfare

10The problem highlighted above is not limited to aggregating of gains from insurance. In the appendix,
we construct a related example to show that the e�ciency component of a welfare decomposition must
depend on social weights as well.

11Davila and Schaab refer to the �insurance� component as the �risk-sharing� and their applications pri-
marily focus on risk-sharing of aggregate shock across heterogeneous households. The modi�cation of our
example from Section 4.3 shows that such gains must also be generically Pareto-weighted in welfare de-
compositions. Suppose there are three groups of households. Group 1 faces no ex-post risk, while ex-post
risk to groups 2 and 3 being perfectly negatively correlated. Introducing Arrow securities in such settings
unambiguously improves risk-sharing between groups 2 and 3, but its contribution to welfare change will
depend on social weights. In particular, if groups 2 and 3 have Pareto weights of zero, welfare is una�ected
by introducing Arrow securities, and Davila and Schaab's decomposition would need to assign some e�ect
to redistribution or e�ciency to o�set the positive contribution of their �risk sharing� component.
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gains from a marginal change in tax progressivity in Benabou's economy di�erently than the

other two decompositions. A related implication is that comparing allocations at two dates

along an exogenous balanced growth path with CRRA preferences � a standard macroe-

conomic benchmark � ours and BF decomposition would assign 100% of welfare gains to

improvements in aggregate e�ciency. In contrast, Davila and Schaab's decomposition will

assign these gains to a mixture of the three components.12 This makes Davila and Schaab's

decomposition harder to interpret.13

5 Applications

In this section, we study �scal reforms in two calibrated incomplete markets economies. The

�rst application is an income tax reform in the spirit of Aiyagari (1995). In this application,

we investigate sources of welfare gains, approximation errors in our decomposition, and

how our results compare to ones those emerge from the BF decomposition. Our second

application considers a reform in the spirit of Blanchard (2019) that increases public debt

in times of low interest rates.

5.1 Income tax reform

Environment Time is discrete and unending. There is a unit measure of households

who are heterogeneous ex-ante and subject to idiosyncratic productivity shocks ex-post.

Household i has some initial assets ai,0 and a vector that summarizes idiosyncratic shocks

ϵi,0 =
(
ϵPi,0, ϵ

T
i,0

)
. Random variables ϵPi,t and ϵTi,t correspond to permanent and transitory

components of earnings and obey

log ϵPi,t = ρP log ϵPi,t−1 + σP ηPi,t,

12This discrepancy is ultimately driven by the stance on what to consider to be the �pure aggregate
e�ciency� change in allocations. Ours, Benabou's and Floden's notions of pure aggregate e�ciency is
multiplicative: scaling of consumption of all households by the same amount is interpreted as a 100% change
in the aggregate e�ciency. In contrast, Davila and Schaab' notion is additive: adding the same amount of
consumption to each household is interpreted as a 100% change in the aggregate e�ciency. While a priori it
unclear whether multiplicative or additive property is more desirable, one should note that many standard
macroeconomic models have the multiplicative property. In addition to the balanced growth path benchmark
mentioned in the text, all relevant economic elasticities are de�ned with respect to the multiplicative changes
and thus �t naturally into ours, Benabou's and Floden's convention.

13Davila and Schaab also emphasize that e�ciency and insurance properties of their decomposition are
invariant to positive a�ne transformations of the utility functions. It is unclear why such invariance (and
not, for instance, any increasing transformation) is a desirable property. More generally, all decompositions
of changes in a social welfare function such as the one speci�ed in equation (1) necessarily require a researcher
to take stands on the cardinality of the utility function as well as interpersonal comparisons of utilities.
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log ϵTi,t = σT ηTi,t,

where
{
ηPi,t, η

T
i,t

}
are standard Gaussian shocks independent of each other and ρP , σP , σT

are parameters that capture persistence and volatility. Household i solves

max
ci,t,ni,t,at+1

E0

∑
t

βt

[
c1−σ
i,t

1− σ
− χ

n1+γ
i,t

1 + γ

]

subject to

ci,t + ai,t+1 = (1− τ)
[
rtai,t + wtϵ

P
i,tϵ

T
i,tni,t

]
+ ai,t + Tt,

ai,t+1 ≥ a,

given initial conditions ai,0, ϵi.0. Here, τ is a proportional tax on the sum of capital and labor

earnings and Tt is a uniform lump sum transfer.

Let At =
∫
ai,tdi, Lt =

∫
ϵPi,tϵ

T
i,tni,tdi, Ct =

∫
ci,tdi be aggregate savings, consumption, and

labor. Aggregate savings are allocated between capital and government debt D

Kt+1 +D = At+1.

A Cobb-Douglas technology Yt = AKθ
t L

1−θ
t is owned by a representative �rm which hires

labor and capital at factor prices {rt, wt}. A feasible allocation at time t satis�es

Yt = Ct +G+Kt+1 − (1− δ)Kt,

where G is government expenditures and δ is a depreciation rate. Given initial distribution

µ0 and �scal policy {τ,D,G} , a competitive equilibrium is an allocation {ci,t, ni,t, ai,t+1}i,t,
sequence of prices {rt, wt}t, and transfers {Tt}t such that individuals and �rms optimize and
markets clear.

We study a permanent change in the tax rate τ . For a given {D,G}, we pick τA and

compute the invariant distribution µA,inv. Our baseline economy A corresponds to µ0 =

µA,inv and
{
τA, D,G

}
. We study the welfare e�ects of switching to some policy τB ̸= τA

that results in an equilibrium associated with µ0 = µA,inv and
{
τB, D,G

}
. This experiment

is a simple way to capture a popular approach for analyzing tax forms. Under such an

approach, policy A corresponds to a current U.S. system and the invariant distribution

µA,inv is meant to represent the current U.S. economy. Policy B is either some speci�c
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alternative or an �optimal� policy under some postulated welfare criterion.14 We capture

this approach by varying a unidimensional variable τB.

We use formula (13) to study the source of the welfare change from this policy reform. In

the present setting, consumption and labor at di�erent dates correspond to di�erent goods.

Expressions for each component become

agg. e�ciency =
∑
t

∫
[ϕc,t (a0, ϵ0) Γc,t + ϕn,t (a0, ϵ0) Γn,t] dµ0,

redistribution =
∑
t

∫
[ϕc,t (a0, ϵ0)∆c,t (a0, ϵ0) + ϕn,t (a0, ϵ0)∆n,t (a0, ϵ0)] dµ0,

insurance =
∑
t

∫
[ϕc,t (a0, ϵ0)σΛc,t (a0, ϵ0)− ϕn,t (a0, ϵ0) γΛn,t (a0, ϵ0)] dµ0.

All terms can be quickly and e�ciency obtained using objects that are computed when

constructing standard incomplete market equilibria. We provide details in the appendix

B.1.15

Calibration We follow a standard approach to parameterize our economy. We set σ = 1

and γ = 2, and choose the labor disutility parameter χ to obtain average hours equal to 1/3.

The subjective discount factor β is set to 0.96 to generate an after-tax return on capital (net

of growth) of about 3%. We set capital share and depreciation rate (θ, δ) to (0.36, 0.1) in

order to deliver a capital to output ratio of about 2.5 and an investment rate of 10%. We

set baseline �scal policy parameters
(
τA, B,G

)
to target a marginal income tax rate of 30%,

public debt to output of 100%, and government spending (excluding transfer payments)

to output equal to 15%. We adopt Krueger et al. (2016)'s choices for
(
ρP , σP , σT

)
. This

calibration generates a standard deviation of log wage earnings of 55% and a standard

deviation of assets that is 1.6 times the average per capita asset holdings. All calibrated

parameters are listed in Table 1. The �rst column of Table 2 reports various moments of

the invariant distribution.

14See for instance Huang et al. (1997), Aiyagari and McGrattan (1998), Conesa and Krueger (1999), Floden
(2001), Domeij and Heathcote (2004), Meh (2005), Erosa and Koreshkova (2007), Conesa et al. (2009),
Krueger and Ludwig (2013), Gottardi et al. (2015), Krueger and Ludwig (2016), Heathcote et al. (2017),
Rohrs and Winter (2017), McGrattan and Prescott (2017), Acikgöz et al. (2018), Hosseini and Shourideh
(2019), Boar and Midrigan (2019), Boar and Midrigan (2020), Chien and Wen (2021), Bruggemann (2021),
Dyrda and Pedroni (2021).

15A key object that appears in many terms is the future expectation of individual policy variables con-
ditioned on states in date t = 0, E

[
xj
t |a0, ϵ0

]
. In the appendix, we provide an fast procedure to compute

such expectations using only pre-solved policy functions and thereby avoiding errors due to Monte Carlo
simulations.
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TABLE 1: CALIBRATION

Parameters Values

Preferences
risk aversion σ 1
subjective discount factor β 0.96
labor supply (γ, χ) (2, 17.89)

Production
capital share θ 0.36
depreciation rate δ 0.1

Shocks
persistent component

(
ρP , σP

)
(0.9695, 0.1959)

transitory component σT 0.23

Policy
tax rate τ 0.30
debt/GDP D/Y 1
govt. spending/ GDP G/Y 0.15

Notes: Parameters for the baseline economy.

For our baseline reform consider a modest increase in income tax from τA = 0.3 to

τB = 0.33. Figure 1 plots transition paths for key aggregates under this tax reform. Higher

taxes increase tax revenues and transfers, and lead to a reduction in labor supply and capital.

Labor adjusts much faster than capital. As the capital stock slowly decreases, wages increase.

This leads leads to a slight increase in labor supply after a sharp initial drop. Eventually, the

economy under tax τB converges to a new stationary distribution µB,inv that we summarize

in the second column of Table 2.

Decomposition The welfare e�ect of this policy change depends on Pareto weights. Fig-

ure 2 plots the welfare, WB − WA and its components for two one-parameter families

of Pareto weights, α (a0, ϵ0) ∝ exp (αϵϵ0) and α (a0, ϵ0) ∝ exp (αaa0) normalized so that∫
α (a0, ϵ0) dµ0 = 1. Here αϵ and αa are parameters that expresses relative weights on

households with higher earnings and asset income. A Utilitarian planner would set αϵ = 0

and αa = 0.16

16By loosely appealing to a �behind of veil of ignorance� argument, it is sometime argued that the Utili-
tarian criterion is a natural benchmark. That justi�cation is problematic in Aiyagari-style economies. The
initial distribution at the time of the reform, µA,inv, re�ects past shocks that households experienced, so
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TABLE 2: STEADY STATES

Moments Economy A Economy B

Aggregates
pvt. consumption/GDP 59.58% 59.71%
investment/GDP 25.42% 24.90%

Factors
hours 33.00% 32.58%
capital/GDP 2.54 2.49

Govt.
tax revenues/GDP 23.62% 26.29%
interest payments/GDP 4.16% 4.57%
transfers/GDP 4.46% 6.34%
govt. spending/GDP 15.00% 15.38%

Households
std./mean of consumption 74.78% 73.08%
std./mean of assets 160.22% 161.07%
std./mean of wage earnings 76.64% 74.06%
corr of wage earnings and assets 43% 42%

Notes: Steady states for economy A and economy B. The parameters for Economy A are described

in 1. The parameters in Economy B are same as Economy A except τB is set to 0.33
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Figure 1: TRANSITIONS AFTER TAX REFORM
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Notes: Transition paths after a change in the income-tax rate from τA = 0.3 to τB = 0.33. All

variables are normalized by their steady-state values in Economy A.
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The black solid line on Figure 2 shows the welfare e�ectWB−WA. The sign of this e�ect

depends critically on Pareto weights used to evaluate welfare. Tax τB increases welfare if

higher weight is placed on earnings- and asset-poor households (low values of αϵ and αa)

and decreases welfare otherwise. The intuition for that can be seen clearly from the three

components of the welfare decomposition. The redistributive component of welfare (red

lines) is highly sensitive to the choice of the welfare criterion and can take large positive or

negative values depending on the values of αϵ and αa. The other two components are much

less sensitive to Pareto weights. The insurance component (gray lines) is always positive

with higher taxes, but its magnitude decreases in αϵ and αa. This is because assets provide

additional means of insurance to households against idiosyncratic earnings shocks. Since

earnings and assets are positively correlated in our model, a household with high earnings

or high assets values insurance from higher taxes less than a household with low earnings and

asset income. Finally, the e�ciency component is quantitatively small. One might expect

that higher taxes reduce aggregate e�ciency because they introduce higher distortions. But

this need not be so since such taxes also undo ine�ciencies associated with households'

incentives to oversave, an e�ect emphasized by Aiyagari (1995).

The dotted black line on Figure 2 is the sum of the three components in our decomposi-

tion from equation (13). It is virtually indistinguishable from the solid black line, which is

the left hand side of (13). Thus, the approximation error in our decomposition is small for

all welfare weights that we have considered.

Dependence on size of tax change We now study how our results depends on the size

of the tax change. We use the Utilitarian criterion and in Figure 3 plot our decomposition

as a function of τB.

The insurance and redistribution components are both monotonic in τB in the range

we consider. The relative magnitude of these two components is is roughly independent

of τB. The aggregate e�ciency component is inversely U-shaped and very sensitive to τB.

This outcome is driven by two o�setting forces of higher taxes on e�ciency: they increase

ine�ciency by distorting the consumption-leisure decision, and they reduce over-saving.

households' asset holdings are proportional to forgone past consumptions. Applying a Utilitarian criterion
to evaluate the e�ect of policy changes at endogenous invariant distributions formed under di�erent policies
ignores those past shocks and is inconsistent with a �behind the veil of ignorance� spirit. If a policy reform
produces both winners and losers, without discussing how heterogeneities among households arise in the
�rst place, it is generally impossible to justify a unique �correct� welfare criterion. We use a Utilitarian
benchmark below merely as an example. We do not assert that it has a better theoretical justi�cation over
other values of αϵ or αa.
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Figure 2: COMPONENTS OF WELFARE CHANGE ACROSS PARETO WEIGHTS
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Notes: Welfare gain and its components for di�erent Pareto weights. In the left panel, Pareto weights

α (a0, ϵ0) ∝ exp {αϵe (ϵ0)} with αϵ ∈ [−1, 1] and in the right panel, Pareto weights α (a0, ϵ0) ∝
exp {αaa0} with αa ∈ [−1, 1].
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Figure 3: COMPONENTS OF WELFARE CHANGE ACROSS SIZE OF TAX CHANGE
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Notes: Welfare decomposition and approximation errors for τB ∈ [0.2, 0.5]. In the left panel, we

plot the levels of the three components as well as the true welfare gain. In the right panel, the three

lines are the shares of each of the three components of welfare.

The two e�ects cancel in our calibration at a value of τB close to the chosen value of τA.

Aggregate e�ciency is negative for low values of τB because of the over-saving e�ect and

for high values of τB because of the consumption-leisure distortion. Approximation errors

in the decomposition remain low even for very large policy changes. At τB = 0.5, it is only

7.5% of the overall welfare e�ect WB −WA.

Component Planners The additive structure of our decomposition leads naturally to

the notion of component planners who focus on gains from subsets of sources. Given an

allocation A, a component planner, indexed with ι ≡
(
ιAE , ιR, ιINS

)
∈ [0, 1]3 such that

ιE + ιR + ιINS = 1, orders allocation B with

WA,B (ι) ≡ ιAEEϕiΓ + ιREϕi∆i + ιINSEϕiγiΛi.

We calculate optimal tax rates for component planners for our income tax reform. As

discussed above, gains from e�ciency are non-monotonic. Thus, a component planner who

cares only about aggregate e�ciency, ι = (1, 0, 0) must trade o� the oversavings externality
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Figure 4: COMPONENT PLANNERS
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Notes: Optimal component planners. The vertical blue (dashed) line is the optimal tax for the

aggregate e�ciency component, the vertical gray (dotted) line is the optimal tax for sum of aggregate

e�ciency and insurance components, and the vertical black (solid) line is the optimal tax for total

welfare.

against labor supply distortions. On the other hand, gains from insurance and redistribution

are monotonically increasing in the size of the tax rate. Consequently, a component planner

who cares only about insurance or redistribution will want a corner solution with τ = 100%,

which allows that component planner to fully redistribute and insure all variation in labor

income.

In Figure 4, we study three planners who care about: (i) only aggregate e�ciency, so

that ι = (1, 0, 0), (ii) aggregate e�ciency and insurance, so that ι = (1, 1, 0), and (iii) total

welfare, so that ι = (1, 1, 1). Vertical lines plot the maximum tax rates for each component

planner. The optimal tax rate that maximizes the aggregate e�ciency criteria (i) is 31% ,

while tax rates that maximize criteria (ii) and (iii) are higher as they internalize positive

gains from insurance and redistribution. The optimal tax rate for the aggregate e�ciency

and insurance planner (ii) is 42.5% while the tax rate that maximizes planner (iii), who

cares about all three sources, is 46.8%.

Comparison of welfare using invariant distributions We now use our Section 3.3

welfare decomposition using invariant distributions associated with policies τA and τB.
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TABLE 3: WELFARE DECOMPOSITION

Sources of Welfare Gains BEGS BEGS FLODEN

(invariant distributions) Method 1 Method 2
(a) (b) (c) (d)

E�ciency -0.94% -109% -122.94% -122.94%

Redistribution 37.25% 79.10% 116.8% 148.33%

Insurance 63.68% 130.45% 106.05% 72.60%

Notes: In this table we compare our welfare decomposition with two implementations of the Floden

decomposition. The column titled �Method 1� computes the consumption certainty equivalent setting

labor supply of each individual to using individual policy functions, while the column �Method 2�

sets labor supply of each individual to the average labor supply.

Column (a) in Table 3 reproduces our decomposition from Figure 2 under the Utilitarian

criterion. Column (b) provides the decomposition of welfare changes between welfare in

the steady states corresponding to policies
{
τB, G,D

}
and

{
τA, G,D

}
. A comparison of

columns (a) and (b) reveals several insights. First, losses in aggregate e�ciency are much

higher when one ignores the transition path and considers only steady state welfare. Figure

1 shows why: the steady-state capital stock is much lower under policy τB, but reaching it

takes a long time. Most aggregate e�ciency losses that occur far in the future are assigned a

low weight in column (a) due to discounting. Second, relative importances of insurance and

redistribution components are roughly the same under both decompositions, with insurance

gains being twice those from redistribution.

It is instructive to compare our decomposition to the BF decomposition. Since that

decomposition does not have a natural extension to economies with heterogeneities in both

consumption and work hours, Floden proposed two alternative methods that might be used

in such settings. Findings from these two methods are reported in columns (c) and (d).

They assign similar importances to aggregate e�ciency as does our decomposition, but they

misrepresent relative importances of insurance and redistribution. Our Section 4.3 discussion

explains why. Wealth-rich households value the reduction in labor income risk less than

wealth-poor households. Benabou-Floden decomposition views this as redistribution and

understates (overstates) the insurance component of a welfare change if households' asset

holdings are positively (negatively) correlated with their earnings. As we saw in Table 3,
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there is a strong positive correlation between the two in our calibration (as in the data), which

indicate that Floden's decomposition typically understates the importance of insurance.

5.2 Public debt reform

Blanchard (2019) investigated the policy of running bigger de�cits and issuing more public

debt when interest rates are low enough. In this section, we use a version of the Blanchard

(2019) economic environment with aggregate shocks and incomplete markets calibrated to

the distribution of debt returns in the U.S and study a policy reform in which debt is

increased by a constant amount and rolled over forever.17

Environment Time is discrete and indexed by t = 1, 2 . . .∞. A technology transforms

Kt−1 units of capital and Lt units of labor into ZtF (Kt−1, Lt) units of output using a

constant returns to scale function F . The economy is populated by overlapping generations

of two-period lived households and a government. In each period N households are born

with e units of good endowment, and L units of market time. The government issues ∆t

debt �nanced by lump sum taxes on (or transfers to) the young. We use xlt to denote time

t choice of x by an household born at date l.

Given a sequence of wages {wt}, returns
{
Rs

t , R
k
t

}
on the safe asset and the risky asset,

respectively, and taxes {Tt}, for all dates t ≥ 0, households solve

max
ctt,k

t
t ,b

t
t,c

t
t+1

u
(
ctt
)
+ βEtv

(
ctt+1

)
subject to

ctt + ktt + btt = e+ wtL− Tt,

ctt+1 = Rs
t b

t
t +Rk

t+1k
t
t.

An old individual at date 0 with bond holdings b−1
−1 and capital k

−1
−1 consumes c

−1
0 = Rs

0b
−1
−1+

Rk
1k

−1
−1. For all dates t ≥ 0, goods producing �rms solve

max
Kt−1,Lt

ZtFk (Kt−1, Lt)−Rk
tKt−1 − wtLt.

17A large literature about public debt in low interest rate economies includes Samuelson (1958) and
Diamond (1965) in the context of overlapping generation models, Woodford (1990) and Aiyagari (1994) in
the context of liquidity properties of public debt, and several papers after Blanchard's AEA presidential
address, for instance, Reis (2021), Brumm et al. (2021), Hellwig (2021), Aguiar et al. (2021), Brunnermeier
et al. (2022), Barro (2022), and Amol and Luttmer (2022). Most related to our example are Brumm et al.
(2021), Hellwig (2021), and Barro (2022), who like us focus on aggregate shocks.
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Given
(
k−1
−1, b

−1
−1, A0

)
and a process for public debt {∆t}, a competitive equilibrium comprises

stochastic processes for
{
Rs

t , R
k
t

}
t
, taxes {Tt}, allocations

{
ct−1
t , ctt, k

t−1
t−1, b

t−1
t−1

}
t≥0

such that

households and �rms optimize, with the following market clearing conditions holding for

dates t ≥ 0

Kt−1 = kt−1
t−1, ∆t = bt−1

t−1, Lt = L,

ct−1
t + ctt +Kt = e+ ZtF (Kt−1, Lt) .

Reform Our main exercise applies our Section 3 decomposition to a simple version of a

proposal studied by Blanchard (2019). For that reason, our economy A will be a calibrated

version of our model without a government and in which debt (∆t) is set to zero. We then

study a reform in which the government issues ∆t = ∆ > 0 and rolls it forever �nancing

net interest payments by levying a lump sum tax. For initial states (Z0,K−1) and Pareto

weights α (t), welfare is

W (K,Z; ∆) = lim
T→∞

T−1∑
t=0

α (t)

T
E
[
u
(
ct−1
t−1

)
+ βv

(
ct−1
t

)]
|K−1 = K,Z0 = Z,∆t = ∆

with an convention that u
(
c−1
−1

)
= 0 to specify that the planner ignores consumption before

date t = 0. This speci�cation maps to Section 3.2 notation when we index goods by age

(old and young) and index households by generations.

Calibration We use constant absolute risk aversion preferences− exp {−λcy}−β exp {−λco}
and assume that the aggregate productivity shocks are Gaussian with mean and standard

deviation (µZ , σZ). We set the non-labor endowment e = 0 and normalize the mean of pro-

ductivity µZ = 1. This leaves three parameters, (λ, β, σZ). We set λ to target a coe�cient

of relative risk aversion of 2. We set the parameters (β, σZ) to match the standard deviation

of return on government debt as well as the fraction of time the cost of borrowing exceeded

a steady state rate of growth of output. In the appendix, we report results for alternative

values of λ after calibrating to the same set of moments.

To implement this calibration, we use returns on the U.S. debt as the counterpart of

{Rs
t}. The U.S. government issues debt of di�erent maturities, so we target a weighted

average measure of returns on the government portfolio. We use bond return and quantity

data from CRSP. For the period 1952-2021, we obtain (quarterly) nominal return data on

various government bonds of maturities. These data are available for maturities 1 year,
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2 year, 5 year, 7 year, 10 year, 20 years, 30 years. We use the data on bond issuance

from CRSP to measure the market value of outstanding bonds by maturity. We then �t a

histogram with bins de�ned by midpoints located at maturities for which the return data are

available to represent shares, ω, of the outstanding debt across maturities. Our measure of

returns on debt is
∑

bin ωbinR
bin
t→t+1 and to construct a measure of returns in excess of growth

rate, we deduct the average growth of nominal GDP over the same sample. In Figure 5 we

plot the distribution for the weighted-average returns in excess of growth. Average bond

returns minus the growth rate over the same sample is close to zero, with an annualized

standard deviation of 1.8% quarterly. Furthermore, for about 41% of the quarters, bond

returns exceed the mean growth rate.18

To map these moments to our model, we treat each period as 20 years, and set (β, σZ) =

(0.95, 0.17) to match those moments. We obtain a standard deviation (for 80 quarters

length) of Rs
t equal to 16% and the fraction of simulated periods Rs

t > 1 equals 40%, all of

which are in line with our estimates.19

We parameterize α (t) ∝ exp {−α0 × t/T}. We initialize the economy (K−1, A) at the

ergodic mean of the baseline (economy A), and then study a small one-time reform that

increases ∆ = 1/2%× Y for all future periods.

Results We start with α0 = 0, which implements a utilitarian welfare criterion. In column

�Utilitarian� of Table 4 we see that the reform reduces welfare with negative contributions

coming from the e�ciency and redistribution components and a positive contribution coming

from the insurance component. We calculate component shares by taking ratios of welfare

gains attributable to each component divided by the absolute value of the sum.20 For the

baseline calibration, we �nd a small contribution from redistribution (-0.1%) and o�setting

contributions from e�ciency (-249.4%) and insurance (+149.5%).

To understand the sources of these �ndings, we study economies that di�er in their

average returns on government debt, which we generate by varying the impatience parameter

β ∈ [0.8, 1.20]. In the left panel of Figure 6, we plot welfare gains (left axis) and average

returns on capital Rk (right axis) against the ergodic average returns Rs (in the pre-reform

18Our estimates are in line with Mehrotra and Sergeyev (2021) who also compute returns in excess of
growth rates for several advanced economies. They exploit the government budget constraint to impute an
annual return on overall public debt. For the U.S., their estimates for the faction of time returns in excess
of growth rates are positive vary between 30% and 48% depending on the sample.

19The implied mean of the return on debt equals −.1% which is within two standard errors of its empirical
counterpart.

20We divide by the absolute value of the sum and not the sum to distinguish overall welfare loss from
welfare gains.
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Figure 5: DISTRIBUTION OF EXCESS DEBT RETURNS

−0.05 −0.03 0 0.03 0.05 0.08 0.1

0

5

10

15

20

25

mean

Notes: The �gure plots histogram of returns on debt in excess of the growth rate in the U.S. for

the sample period 1952-2021. The returns quarterly are computed by taking a weighted average of

nominal holding period returns across di�erent maturities. The growth rate is computed by taking

the average quarterly growth in log GDP over the same period.

economy) for di�erent values of β. The dashed vertical line corresponds to the baseline

value of β. The average return on capital ERk (pink line) is greater than the ERs. The

total welfare gains from the reform (black line) and the gains attributed to the e�ciency

component (blue line) are positive for low values of ERs and negative for high values of ERs.

The insurance component (gray line) is always positive and relatively �at across di�erent

values of β. The redistribution component (red line) is small and largely una�ected as we

vary β.

The e�ciency component captures the e�ects of the reform on the aggregate economy,

stripping out the role of incomplete markets. Without insurance considerations, public

debt and capital compete for household savings. When the return on capital Rk is lower

than growth rate, issuing debt raises output following standard arguments about dynamic

e�ciency by Diamond (1965). In our setting, the average return on capital exceeds the return

on bonds in order to compensate households for bearing risk. Our baseline calibration yields

an average return on capital that is greater than one while the return on debt is smaller

than one. In Figure 4, we see that if β becomes large enough that the average return on

bonds and capital are both lower than one, then the e�ciency component (blue line) turns
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TABLE 4: WELFARE DECOMPOSITIONS ACROSS PARETO WEIGHTS

More weight on initial generations Utilitarian Less weight on initial generations
α0 = −1 α0 = 0 α0 = 1

Agg. e�ciency -427.0% -249.4% -193.9%
Insurance 266.5% 149.5% 113.7%
Redistribution 60.5% -0.1% -19.8%

Notes: Component shares of welfare gains for di�erent values of Pareto Weights (α0). For a given

of α0, we divide the welfare gains from the baseline reform attributed to each of the component by

absolute value of the sum of all three components.

positive.

The insurance component captures the force that issuing risk-free debt allows younger

households to hedge aggregate risk better when they turn old. This force implies a gain

in welfare coming from better insurance across households. For the calibrated economy, we

�nd the contribution from insurance is positive. The gray line labeled �insurance� in the

left panel of Figure 6, shows that for the range of β considered in Figure 6, the insurance

component remains positive.

Next, we turn to the redistribution component. The red lines labeled �redistribution� in

both panels of Figure 6 indicate that the contribution of redistribution is small. The source

of welfare gains/losses from redistribution is the across-generation transfers of resources.

In the long run, the reform raises the return on capital while it lowers total capital and

output. This makes later generations worse o� relative to initial generations. The size of

the welfare change induced by this intergenerational transfer depends on two things�(i) the

speed of transition to the ergodic distribution after the reform, and (ii) how the planner

weighs early generations relative to later ones. For our calibrated economy, in which shocks

are independent across time and capital depreciates 100%, the speed of transition is quite

fast. This makes the contribution of redistribution governed by the shape of α (t) small in

the utilitarian case. In columns �More weight on initial generations� and �Less weight on

initial generations� of Table 4, we describe the decomposition for two values of parameter

α0 ̸= 0. Negative (positive) values re�ect more (less) weight on the initial generation relative

to the utilitarian benchmark. Evidently, the redistribution component is increasing in the

Pareto weight attached to the initial old.

Finally, we discuss the role of aggregate risk by turning o� stochastic productivity risk

(or σZ → 0). We repeat the same exercise, that is vary β ∈ [0.8, 1.2], and plot components
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Figure 6: WELFARE DECOMPOSITIONS ACROSS DISCOUNT RATES
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Notes: Ergodic average of debt returns and and components of welfare across values the discount

factor β ∈ [0.8, 1.2]. In the right panel (deterministic) we set σZ = 0 and in the left panel (stochastic)

we set σZ to its value in the baseline calibration.

of welfare in the right panel of Figure 6. We see that welfare gains (black line) switch near

Rs = 1. By construction, the insurance component is zero and nearly all the welfare gains

come from aggregate e�ciency. In the absence of risk, the return on capital equals the return

on debt. Thus, welfare considerations are solely driven by whether any of the returns are

below one. As mentioned before, the presence of aggregate risk generates a wedge between

the return on capital and return on bonds. In the realistic case in which the return on

capital is greater than the growth rate, welfare gains from issuing debt re�ect a tradeo�

between crowding out capital and better insurance.21 We �nd that while the insurance force

is positive, it is not enough to o�set the crowding out of capital unless the return to capital

is su�ciently low. In the appendix, we show that these conclusions are stronger when we

recalibrate the model to have larger risk-premia.

21These conclusions are in line with numerical simulations in Blanchard (2019) and in Brumm et al. (2021).
Our goal here is to interpret these outcomes in light of our proposed decomposition.
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6 Conclusion

We developed a decomposition of welfare changes into three components: aggregate e�-

ciency, which captures e�ects from changes in the aggregate quantity of resources; redistri-

bution, which captures e�ects from changes in shares of resources that ex-ante heterogeneous

households can expect to receive; and insurance, which captures e�ects of changes in the

uncertainties that households face. Our decomposition applies to a large class of multi-

person, multi-good, multi-period economies with general speci�cations of preferences and

shocks and sources of heterogeneity.
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A Appendix

A.1 Taylor series in abstract spaces

Recall some properties of Taylor series in general spaces. Let f : X → R be a mapping

from a normed space X (with some norm || · ||) into R. The �rst-order Frechet derivative

at a point x ∈ X is a linear mapping f ′ (x) : X → R such that for each h ∈ X, we

have lim||h||→0
|f(x+h)−f(x)−f ′(x)·h|

||h|| = 0. The second-order Frechet derivative is the Frechet

derivative of f ′ (x) . It is a bilinear map. Any function f that is twice Frechet di�erentiable

satis�es

f (x+ h) = f (x) + f ′ (x) · h+
1

2
f ′′ (x) · (h)2 +Rf (x, h) , (27)

where Rf (x, h) is a residual that is of the order o
(
||h||2

)
(see Cartan (1971), Theorem

5.6.3). When X ⊂ Rn, functionals f ′ (x) and f ′′ (x) are simply the Jacobian and Hessian of

f, respectively.

For any given (x, h) ∈ X × X, de�ne function g : R → R by g (σ) ≡ f (x+ σh). Take

Taylor expansion of g around σ = 0 to get

g (1) = g (0) + g′ (0) +
1

2
g′′ (0) +Rg (1) . (28)

Since we have g′ (0) = f ′ (x) · h and g′′ (0) = f ′′ (x) · (h)2 , we have

Rg (1) = Rf (x, h) = o
(
||h||2

)
. (29)

Finally, we use "≃" to denote that two relationships are equal up to any term of order

o
(
||h||2

)
. In this notation, relationship (27) and (28) can be rewritten as

f (x+ h) ≃ f (x) + f ′ (x) · h+
1

2
f ′′ (x) · (h)2 ,

g (1) ≃ g (0) + g′ (0) +
1

2
g′′ (0) .

A.2 Conventions and terminology

We de�ne some conventions to be used throughout our proofs. For expressions that take

the same value for policies j = A and j = B we occasionally use a shorthand �t.i.p.�,

meaning "terms independent of policy". By the Law of Iterated Expectations (LIE), we

mean the property that for any deterministic function xi of i and random variable εi with

Eiεi = 0, we have Exiεi = EEixiεi = ExiEiεi = 0, and that, by analogous arguments,
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Exi (εi)2 = Exivari (εi) . We use shorthands Ui, Uc,i, Ucc,i for Ui

(
cZi
)
, Uc,i

(
cZi
)
, Ucc,i

(
cZi
)
in

a one-good economy, and Ui, Uk,i, Ukm,i for Ui

({
cZk,i

}
k

)
, Uk,i

({
cZk,i

}
k

)
, Ukm,i

({
cZk,i

}
k

)
in

multi-good economies.

A.3 Derivations of equations (5), (7) and (8)

Equation (5) Let Γj ≡ lnCj−lnCZ and∆j
i ≡ lnwj

i−lnwZ
i . Observe that by construction

we have

ΓB = −ΓA =
1

2
Γ, ∆B

i = −∆A
i =

1

2
∆i, (30)

and therefore (
Γj
)2

,
(
∆j

i

)2
,Γj∆j

i are t.i.p. for all i.

Let WZ ≡ EαiUi

(
cZi
)
and write

WB −WA =
(
WB −WZ

)
−
(
WA −WZ

)
. (31)

We now apply Taylor series from Section A.1 to
(
WB −WZ

)
and

(
WA −WZ

)
. We can

write

Wj −WZ = EαiU
(
exp

(
Γj +∆j

i

)(
1 + εji

)
cZi

)
− EαiU

(
cZi
)
.

In the language of section A.1, the space X consists of sequences and stochastic processes{
Γ̃, ∆̃i, ε̃i

}
i
. We have that Γ̃ ∈ R and

{
∆̃i

}
i
is a mapping from [0, 1] to R. We can represent

stochastic processes ε̃i as mappings ε̃i (ξ) with distribution Pri (dξ) where without loss of

generality ξ ∈ [0, 1]. Thus, {ε̃i}i maps from [0, 1]2 to R. Any x ∈ X can be represented

as x =
(
Γ̃, ∆̃, ε̃

)
∈ R × L2 ([0, 1]) × L2

(
[0, 1]2

)
. We endow X with a corresponding norm.

We de�ne function f : X → R by EαiU
(
exp

(
Γ̃j + ∆̃j

i

)(
1 + ε̃ji

)
cZi

)
− EαiU

(
cZi
)
. The

analogue to g (σ) is

Wj (σ) = EαiU
(
exp

(
σ
(
Γj +∆j

i

))(
1 + σεji

)
cZi

)
.

To apply (27) and (28), we set x = (0, 0,0) and h =
(
Γj ,∆j , εj

)
. Applying (28) and
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(29) we get

Wj −WZ = EαiUc,ic
Z
i

(
Γj +∆j

i

)
+

1

2
EαiUc,ic

Z
i

(
Γj +∆j

i

)2
+
1

2
EαiUcc,i ×

(
cZi
)2 [(

Γj +∆j
i

)2
+
(
εji

)2]
+ o

(∥∥Γj ,∆j , εj
∥∥2)

≃ EαiUc,ic
Z
i

(
Γj +∆j

i

)
+

1

2
EαiUcc,i ×

(
cZi
)2

vari

(
εji

)
+ t.i.p. (32)

Here the expression in the last line is obtained by applying the LIE and dropping o
(∥∥Γj ,∆j , εj

∥∥2)
terms from the �rst expression on the right side of (32).

Substitute (32) into (31) to get

WB−WA ≃ EαiUc,ic
Z
i︸ ︷︷ ︸

≡ϕi

Γ+EαiUc,ic
Z
i︸ ︷︷ ︸

≡ϕi

∆i+
1

2
EαiUc,ic

Z
i︸ ︷︷ ︸

≡ϕi

Ucc,ic
Z
i

Uc,i︸ ︷︷ ︸
≡−γi

[
Ei

(
εBi
)2 − Ei

(
εAi
)2]

. (33)

Finally, observe that

vari

(
ln cji

)
= Ei

(
ln
(
1 + εji

)
− Ei ln

(
1 + εji

))2
≃ Ei

(
εji

)2
. (34)

Substitute this relationship and the de�nitions of γi, ϕi into (33) to obtain (5).

Equation (7) Written in σ notation we have

U(cce,ji (σ)) = EU
(
exp

(
σ
(
Γj +∆j

i

))(
1 + σεji

)
cZi

)
.

A second-order expansion of both sides yields

U(c̄ce,ji ) + U ′(c̄ce,ji )c̄ce,ji,σ

+ 0.5

(
U ′(c̄ce,ji )c̄ce,ji,σσ + U ′′(c̄ce,ji )

(
c̄ce,ji,σ

)2)
≃ U(cZi ) + U ′(cZi )c

Z
i

(
Γj +∆j

i

)
+ 0.5

(
U ′′ (cZi ) (cZi (Γj +∆j

i

))2
+ U ′′(cZi )

(
cZi
)2 Ei

(
εji

)2
+ U ′(cZi )c

Z
i

(
Γj +∆j

i

)2)
.
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Combining like terms yields

c̄ce,ji = cZi

c̄ce,ji,σ = cZi

(
Γj +∆j

i

)
c̄ce,ji,σσ = cZi

(
Γj +∆j

i

)2
+

U ′′(cZi )
(
cZi
)2

U ′(cZi )
Ei

(
εji

)2
= cZi

(
Γj +∆j

i

)2
− γic

Z
i Ei

(
εji

)2
so

cce,ji ≃ cZi + cZi

(
Γj +∆j

i

)
+

1

2

(
cZi

(
Γj +∆j

i

)2
− cZi γiEi

(
εji

)2)
.

Similarly, we have that

Eic
j
i ≃ cZi + cZi

(
Γj +∆j

i

)
+

1

2

(
cZi

(
Γj +∆j

i

)2)
and thus

cce,ji ≃ Eic
j
i −

1

2
cZi γiEi

(
εji

)2
≃ Eic

j
i −

1

2

(
Eic

j
i

)
γiEi

(
εji

)2
.

All together this implies that

ln

(
cce,ji

Eic
j
i

)
≃ −1

2
γiEi

(
εji

)2
≃ −1

2
γivari

(
ln cji

)
Equation (8) We now verify equation (8). As a preliminary step, observe that

wj
i

wZ
i

= exp
(
∆j

i

)
≃ ∆j

i + t.i.p. = ln
wj
i

wZ
i

+ t.i.p. (35)

Therefore,

redistribution =
√
CACBEαiUc,i ln

wB
i

wA
i

√
wA
i w

B
i =

√
CACBEαiUc,i

(
ln

wB
i

wZ
i

− ln
wA
i

wZ
i

)
wZ
i

≃
√
CACBEαiUc,i

(
wB
i

wZ
i

− wA
i

wZ
i

)
wZ
i =

√
CACBEαiUc,i

(
wB
i − wA

i

)
,

which veri�es equation (8).

A.4 Uniqueness

We are interested in additive decompositions of WA −WB that satisfy Properties (a)�(d)

in the main text. We �rst de�ne the space of additive decompositions. Let X be the space

of allocations de�ned in Appendix A.3. An additive decomposition of WA −WB consist of
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three mappings Wk : X2 → R for k ∈ {E, I,R} such that

WA −WB = WE
A→B +WI

A→B +WR
A→B.

Let L2
(
[0, 1] ,Rk

)
be the space of square-integrable functions f : [0, 1] → Rk. Let X̃F =

R× L2 ([0, 1] ,R)× L2 ([0, 1] ,R) and X̃O = L2
(
[0, 1] ,RN

)
.

We focus on additive decompositions in which each of the mappings
{
Wk

A→B

}
k∈{E,I,R}

are represented by functions: F i,k : X̃F × X̃F → RN and Ok : X̃O → R such that

Wk
A→B

({
cAi
}
,
{
cBi
})

= Ok
({

EiF
i,k
({

CA, wA
i , ϵ

A
i

}
i
,
{
CB, wB

i , ϵ
B
i

}
i

)}
i

)
. (36)

The �inner� functions F i,k map an allocation for some realized states to RN . We then take

expectations of thoseN outcomes across states with household-speci�c probability measures.

The outer function Ok maps the collection of these expectations into a real number. In this

decomposition, we assume that households have identical beliefs over risk so Eiϵ
j

ĩ
= 0 by

construction. The class of additive decompositions that satisfy (36) is quite general and

includes the decomposition that we propose in Section (3), the decompositions proposed by

Benabou (2002), Floden (2001) and the one proposed in Davila and Schaab (2022).

We expand Wk
A→B around the mid-point allocation cZi . As before, Γj ≡ lnCj − lnCZ

and ∆j
i ≡ lnwj

i − lnwZ
i ,and we parameterize allocations using σ

Wk
A→B (σ)

= Ok
({

EiF
i,k
({

exp
(
σΓA

)
CZ , exp

(
σ∆A

i

)
wZ
i , σϵ

A
i

}
i
,
{
exp

(
σΓB

)
CZ , exp

(
σ∆B

i

)
wZ
i , σϵ

B
i

}
i

)}
i

)
,

and take Taylor expansion of Wk
A→B (σ) with respect to σ around σ = 0. Exploiting the

fact that the shocks are mean zero, Eiϵ
j

ĩ
= 0, and the cZi is a midpoint, 1

2Γ = ΓB = −ΓA

and 1
2∆i = ∆B

i = −∆A
i , we have that this expansion can be represented by the following

quadratic form

Wk
A→B ≃ Wk

A→B,ΓΓ +

∫
Wk

A→B,∆∆idi+
1

2

(
Wk

A→B,ΓΓΓ
2 + 2

∫
Wk

A→B,Γ∆i
Γ∆idi

+

∫∫
Wk

A→B,∆i∆ĩ
∆i∆ĩdĩdi+

∑
j,j̃

∫∫
Wk

A→B,ϵji ϵ
j̃
i

Eiϵ
j
i ϵ

j̃
idĩdi

)
. (37)

This must hold for arbitrary Γ,∆i and ϵji . First consider the case where ∆i = 0 and ϵji = 0.

In order to satisfy property (a) the decomposition must attribute all of the welfare gains to
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e�ciency so from equation (37)

WE
A→B,ΓΓ +

1

2
WE

A→B,ΓΓΓ
2 ≃ WE

A→B ≃ WA→B ≃ EϕiΓ.

Similarly, when Γ = 0 and ϵji = 0 property (b) implies that all of the welfare gain must be

attributed to redistribution so WE
A→B = 0 and hence∫

WE
A→B,∆∆idi+

1

2

∫∫
WE

A→B,∆i∆ĩ
∆i∆ĩdĩdi ≃ 0.

Finally, when Γ = 0 and ∆i = 0 all of the welfare gains must be attributed to insurance,

WE
A→B = 0, so

1

2

∑
j,j̃

∫∫
Wk

A→B,ϵji ϵ
j̃
i

Eiϵ
j
i ϵ

j̃
idĩdi = 0.

All put together we have

WE
A→B ≃ EϕiΓ +

∫
WE

A→B,Γ∆i
Γ∆idi.

In order for the decomposition to satisfy property (d) it must be the case that WE
A→B ≃

−WE
B→A which implies (for WE

B→A we replace Γ with −Γ and ∆i with −∆i)

EϕiΓ +

∫
WE

A→B,Γ∆i
Γ∆idi ≃ EϕiΓ−

∫
WE

A→B,Γ∆i
Γ∆idi

and thus
∫
WE

A→B,Γ∆i
Γ∆idi = 0. We conclude that WE

A→B ≃ EϕiΓ. Identical arguments

imply that WR
A→B ≃ Eϕi∆i and WI

A→B ≃ EϕiΛi as desired.

A.5 Details for Section 3.1.1

We can write the welfare di�erence as

WB −WA = Eϕi [Γ + ∆i + γiΛi] +R,

where R is a residual in decomposition (5). Let RΓ, R∆, RΛ with RΓ + R∆ + RΛ = R be

parts of R attributed to the aggregate e�ciency, redistribution, and insurance components

so that the "true" contribution, for example, of aggregate e�ciency component is EϕiΓ+RΓ

WB−WA .

We have

EϕiΓ +RΓ

WB −WA
=

EϕiΓ +RΓ

Eϕi [Γ + ∆i + γiΛi] +R
=

EϕiΓ

Eϕi [Γ + ∆i + γiΛi]
×

1 + RΓ
EϕiΓ

1 + R
Eϕi[Γ+∆i+γiΛi]

.
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Therefore, the aggregate e�ciency under the true decomposition and the one given in equa-

tion (5) coincide if the second term in the second equality is equal to 1 or, equivalently,

RΓ

R
=

EϕiΓ

Eϕi [Γ + ∆i + γiΛi]
.

Analogous arguments apply to the redistribution and insurance components.

The third-order residual in decomposition (5) can be written as

R
((
lnCZ , lnwZ ,0

)
,
(
lnCB, lnwB, εB

))
−R

((
lnCZ , lnwZ ,0

)
,
(
CA, wA, εA

))
.

It converges to zero as ||cB − cA|| → 0. The speed of this convergence is

max
{
o
(
||ΓA,∆A, εA||2

)
, o
(
||ΓB,∆B, εB||2

)}
.

Since ΓB = −ΓA = 1
2Γ and ∆B

i = −∆A
i = 1

2∆i, using the properties of a norm, we have

∥∥ΓA,∆A, εA
∥∥2 = ∥∥∥∥−1

2
Γ,−1

2
∆, εA

∥∥∥∥2 = 1

4

∥∥Γ,∆,−2εA
∥∥2 ,

and o
(
1
4 ||Γ,∆,−2εA||2

)
= o

(
||Γ,∆,−2εA||2

)
. This and the analogous argument for ||ΓB,∆B, εB||2

provide the approximation errors in decomposition (5).

The construction of composition (3.1.1) is identical to that of (5), with appropriate

modi�cation of the spaceX to consist of sequences
{
Γ̃, ∆̃i, δ̃i

}
i
, but now δBi (ξ) = −δAi (ξ) =

1
2δi (ξ) and, therefore,∥∥ΓA,∆A, εA

∥∥2 = ∥∥ΓB,∆B, εB
∥∥2 = 1

4
∥Γ,∆, ε∥2 ,

and max
{
o
(
||ΓA,∆A, δA||2

)
, o
(
||ΓB,∆B, δB||2

)}
= o

(
∥Γ,∆, δ∥2

)
.

A.6 Derivation of equation (13)

As in Section 3.1, we de�ne Γj
k ≡ lnCj

k− lnCZ
k and ∆j

k,i ≡ lnwj
k,i− lnwZ

k,i, and observe that

they satisfy ΓA
k = −ΓB

k , ∆A
k,i = −∆B

k,i and, therefore,

Γj
kΓ

j
m,Γj

k∆
j
m,i,∆

j
k,i∆

j
m,i are t.i.p. for all k,m, i.
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We have

Wj (σ) = EαiU
({

exp
(
σ
(
Γj
k +∆j

k.i

))(
1 + σεjk,i

)
cZk,i

}
k

)
.

Therefore, its second-order expansion can be written, using the LIE, as

Wj (1)−Wj (0) ≃ E
∑
k

αiUk,ic
Z
k,i

(
Γj +∆j

k,i

)
+
1

2
E
∑
k

∑
m

αiUkm,ic
Z
k,ic

Z
m,iEi

(
εjk,iε

j
m,i

)
+t.i.p.

Since Wj = Wj (1) , we have

WB −WA ≃ E
∑
k

αiUk,ic
Z
k,iΓk + E

∑
k

αiUk,ic
Z
k,i∆k,i

+
1

2
E
∑
k

αiUk,ic
Z
k,i

∑
m

Ukm,ic
Z
m,i

Uk,i

[
Ei

(
εBk,iε

B
m,i

)
− Ei

(
εAk,iε

A
m,i

)]
.

Use the approximation

covi

(
ln cjk,i, ln c

j
m,i

)
≃ Ei

(
εjk,iε

j
m,i

)
,

together with the de�nitions of ϕk,i, γkm,i, we obtain (13).

A.7 Proofs for Section 4

A.7.1 Derivation of equation (18)

Floden derives (18) for the case of utilitarian planner. We show here that it holds more

generally. We have

EαiU
(
cBi
)

= EαiU
(
cce,Bi

)
=
(
1− pBredis

)1−γ
U
(
Cce,B

)
=
(
1− pBredis

)1−γ (
1− pBinsur

)1−γ
U
(
CB
)

=
(
1− pBredis

)1−γ (
1− pBinsur

)1−γ
(1 + ωeff )

1−γ U
(
CA
)

and

EαiU
(
(1 + ω) cAi

)
= (1 + ω)1−γ (1− pAredis

)1−γ (
1− pAinsur

)1−γ
U
(
CA
)
.

Therefore

(1 + ω)1−γ = (1 + ωeff )
1−γ

(
1− pBredis
1− pAredis

)1−γ (
1− pBinsur
1− pAinsur

)1−γ

,

or

(1 + ω) = (1 + ωeff ) (1 + ωredis) (1 + ωinsur) .

Take logs to get (18).
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A.7.2 Derivation of equation (20)

Properties of normal distributions imply that

Ei exp

(
(1− τ) ξ + τ (1− τ)

υ2ξ
2

)
= E exp

(
(1− τ) ei + τ (1− τ)

υ2e
2

)
= 1,

Eαi ln

{
exp

(
(1− τ) ei + τ (1− τ)

υ2e
2

)}
= (1− τ)Eαiei + τ (1− τ)

υ2e
2

= (1− τ)cov(αi, ei)− (1− τ)2
υ2e
2
,

E ln

{
exp

(
(1− τ) ξi,t + τ (1− τ)

υ2ξ,t
2

)}
= − (1− τ)2

υ2ξ,t
2

.

As welfare is given by W (τ) = Eαi

{
ln ci,t (τ)− 1

1−ηL (τ)1−η
}
, substitute (19) and the

expressions above into it to obtain (20).

A.7.3 Derivations for equations (21)�(23), and (24)

To derive Benabou-Floden decomposition for the Section 4.2 economy, we begin by noting

that

ln(C(τ))− 1

1 + η
L(τ)1+η =

1

1 + η
ln(1− τ)− 1

1 + η
(1− τ).

Thus

ln (1 + ωeff ) =

(
1

1 + η
ln(1− τB)− 1

1 + η
(1− τB)

)
−
(

1

1 + η
ln(1− τA)− 1

1 + η
(1− τA)

)
=

1

1 + η
ln

(
1− τB

1− τA

)
+

1

1 + η

(
τB − τA

)
. (38)

Next, we note that Cce(τ) = C(τ)× exp

{
−(1− τ)2

ν2ξ
2

}
, thus lnCce(τ)− lnC(τ) = −(1−

τ)2
ν2ξ
2 , and

ln (1 + ωinsur) =
(
lnCce(τB)− lnC(τB)

)
−
(
lnCce(τA)− lnC(τA)

)
=

υ2ξ
2

[(
1− τA

)2 − (1− τB
)2]

. (39)

Finally,

W(τ)−
(
ln(Cce(τ))− 1

1 + η
L(τ)1+η

)
= (1− τ)cov(αi, ei)− (1− τ)2

υ2e
2
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so

ln (1 + ωredis) =
υ2e
2

[(
1− τA

)2 − (1− τB
)2]

+ cov (αi, ei)
[
τA − τB

]
. (40)

To derive the last lines of (21)�(23), we note that since utility is separable, we can apply

our decomposition separately for each good. Consider good c �rst. From (19) and properties

of normal distributions, we have

wc,i (ξ) = exp

(
(1− τ) ei + τ (1− τ)

υ2e
2

)
, 1 + εc,i = exp

(
(1− τ) ξ + τ (1− τ)

υ2ξ
2

)
.

Therefore,

Γc = lnC
(
τB
)
− lnC

(
τA
)
, (41)

∆c,i =
[(
1− τB

)
−
(
1− τA

)]
ei +

[
τB
(
1− τB

)
− τA

(
1− τA

)] υ2e
2
, (42)

Λc,i = −
[(
1− τB

)2 − (1− τA
)2] υ2ξ

2
. (43)

Given logarithmic preferences and utilitarian weights, we have ϕc,i = αi and γc,i = 1 and

therefore

agg. e�ciencyc = lnC
(
τB
)
− lnC

(
τA
)
,

redistributionc = Eαi∆c,i = −
[(
1− τB

)2 − (1− τA
)2] υ2e

2
+ cov (αi, ei)

[
τA − τB

]
,

insurancec = EαiΛc,i = −
[(
1− τB

)2 − (1− τA
)2] υ2ξ

2
.

We now apply this decomposition to labor. Since there is no heterogeneity in hours, we

immediately have ∆l,i = Λl,i = 0, lZi =
√
L (τA)L (τB) =

[(
1− τA

) (
1− τB

)]1/2(1+η)
, and

ϕl,i = αi

[(
1− τA

) (
1− τB

)]1/2
. This gives

agg. e�ciencyl = −
√

(1− τA) (1− τB)
(
lnL

(
τB
)
− lnL

(
τA
))

,

redistributionl = insurancel = 0.

Combine the decompositions for consumption and labor to get equation the last lines of

equations (21)-(23).
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Finally, consider the residual term. Let 1 + e ≡ ln 1−τB

1−τA
. We have(

1− τB
)
−
(
1− τA

)
1 + η

=
1− τA

1 + η
[exp e− 1] =

1− τA

1 + η

[
e+

1

2
e2 +O

(
e3
)]

and√
(1− τA) (1− τB)

ln
(
1− τB

)
− ln

(
1− τA

)
1 + η

=
1− τA

1 + η
exp

(
1

2
e

)
e =

1− τA

1 + η

[
e+

1

2
e2 +O

(
e3
)]

.

This implies that R = O
(
e3
)
.

To derive equation (24) note that

1− pjinsur =
Cce,j

Cj
.

Taking logs gives us

ln
(
1− pjinsur

)
= ln

(
Cce,j

)
− ln(Cj),

so

ln(1 + ωinsur) =
(
ln
(
Cce,B

)
− ln(CB)

)
−
(
ln
(
Cce,A

)
− ln(CA)

)
.

We then have

ln(1 + ωinsur) =
(
ln
(
Cce,B

)
− ln(CB)

)
−
(
ln
(
Cce,A

)
− ln(CA)

)
≃
∫

1

CZ
cZi

(
cce,Bi(
EcBi

) − 1

)
di−

∫
1

CZ
cZi

(
cce,Ai(
EcAi

) − 1

)
di

≃
∫

1

CZ
cZi

(
cce,Bi(
EcBi

) − cce,Ai(
EcAi

)) di.

So now we have

ln(1 + ωinsur) ≃
∫

cZi
CZ

(
cce,Bi(
EcBi

) − cce,Ai(
EcAi

)) di.

A.7.4 Proof of Lemma 1

We focus in the proof only on Floden decomposition, since the proof for Benabou decompo-

sition follows the same steps but is simpler.

As a �rst step, we want to characterize approximations of consumption certainty equiv-
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alent cce,ji . De�ne a function cce,ji (σ) by

U
(
cce,ji (σ)

)
= EiU

(
exp

(
σ
(
Γj +∆j

i

))(
1 + σεji

)
cZi

)
. (44)

While cce,ji (1) = cce,ji , it is more convenient to work with an arbitrary σ �rst. We will prove

several intermediate claims �rst about cce,ji (σ) and Cce,j
i (σ) = Ecce,ji (σ). Throughout these

proofs, unless noted otherwise, U,Uc have arguments EcZi , while Uc,i, Ucc,i have arguments

cZi .

Claim 1. cce,ji (σ) = cZi + σcZi

(
Γj +∆j

i

)
+ σ2

2 cZi

[(
Γj +∆j

i

)2
− vari

(
εji

)]
+ o

(
σ2
)
.

Proof. The right and left sides of (44), respectively, are

RHS (σ) = Ui + σUc,ic
Z
i

(
Γj +∆j

i

)
+

σ2

2
Ucc,i ×

(
cZi
)2 [(

Γj +∆j
i

)2
+ vari

(
εji

)]
+
σ2

2
Uc,ic

Z
i

(
Γj +∆j

i

)2
+ o

(
σ2
)
,

and

LHS (σ) = U
(
c̄ce,ji

)
+σUc

(
c̄ce,ji

)
cce,ji,σ +

σ2

2

[
Ucc

(
c̄ce,ji

)(
cce,ji,σ

)2
+ Uc

(
c̄ce,ji

)
× cce,ji,σσ

]
+o
(
σ2
)
,

where c̄ce,ji ≡ cce,ji (0) , cce,ji,σ ≡ ∂cce,ji (σ)
∂σ

∣∣∣∣
σ=0

, cce,ji,σσ ≡ ∂2cce,ji (σ)

∂σ2

∣∣∣∣
σ=0

. SinceRHS (σ) = LHS (σ)

for all σ, it follows that

cce,ji,0 = cZi , cce,ji,σ = cZi

(
Γj +∆j

i

)
, cce,ji,σσ =

Ucc,i

Uc,i

(
cZi
)2

vari

(
εji

)
+ cZi

(
Γj +∆j

i

)2
.

We have

cce,ji (σ) = cce,ji,0 + σcce,ji,σ +
σ2

2
cce,ji,σσ + o

(
σ2
)
.

Substitute previous expression and use the fact that U is CRRA to prove the claim.

Claim 2. U
(
Cce,j (σ)

)
= σ

EcZi (Γj+∆j
i)

EcZi
− σ2

2 γ
EcZi vari(εji)

EcZi
+ t.i.p.+ o

(
σ2
)
.
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Proof. By claim 1,

U
(
Cce,j (σ)

)
= U + σUc × EcZi

(
Γj +∆j

i

)
+

σ2

2
Ucc ×

(
EcZi

(
Γj +∆j

i

))2
(45)

+
σ2

2
Uc ×

[
E
Ucc,i

Uc,i

(
cZi
)2

vari

(
εji

)
+ EcZi

(
Γj +∆j

i

)2]
+ o

(
σ2
)

= σUcEcZi
(
Γj +∆j

i

)
+

σ2

2
UcE

Ucc,i

Uc,i

(
cZi
)2

vari

(
εji

)
+ t.i.p.+ o

(
σ2
)
.

Use the fact that U is CRRA and evaluate this expression at σ = 1 to prove the claim.

Claim 3. Let x (σ) be a twice di�erentiable function, with x̄ = x (0) , xσ = x′ (0) , xσσ =

x′′ (0) , so that

x (σ) = x̄+ σxσ +
σ2

2
xσσ + o

(
σ2
)
.

Then

lnx (σ) = ln x̄+ σ
xσ
x̄

+
σ2

2

[
xσσ
x̄

−
(xσ
x̄

)2]
+ o

(
σ2
)
. (46)

Proof. This follows from a routine application of a Taylor expansion of lnx (σ) around

lnx (0) .

Claim 4.

lnWj ≃ (1− γ)
Eαi

(
cZi
)1−γ

(
Γj +∆j

i

)
− γ

2Eαi

(
cZi
)1−γ

vari

(
εji

)
Eαi

(
cZi
)1−γ + t.i.p.,

lnU
(
Cce,j

)
≃ (1− γ)

EcZi
(
Γj +∆j

i

)
− γ

2Ec
Z
i vari

(
εji

)
EcZi

+ t.i.p.,

lnU
(
Cj
)

≃ (1− γ)
EcZi

(
Γj +∆j

i

)
EcZi

+ t.i.p.

Proof. (�rst equation). From (32), we can write

Wj (σ) = WZ + σEαiUc,ic
Z
i

(
Γj +∆j

i

)
+
σ2

2

{
EαiUc,ic

Z
i

(
Γj +∆j

i

)2
+ EαiUcc,i ×

(
cZi
)2 [(

Γj +∆j
i

)2
+
(
εji

)2]}
+ o

(
σ2
)
.

Apply claim 3 to get

lnWj (σ) = σ
EαiUc,ic

Z
i

(
Γj +∆j

i

)
WZ

+
σ2

2

EαiUcc,i ×
(
cZi
)2 (

εji

)2
WZ

+ t.i.p.+ o
(
σ2
)
.
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Use the fact that U is CRRA, WZ = (1− γ)−1 Eαi

(
cZi
)1−γ

, and that o
(
σ2
)
at σ = 1 is of

order o
(∥∥Γj ,∆j , εj

∥∥2) by equation (29) to show the �rst equation of the claim.

(second equation). Combine claims 2 and 3 to get

lnU
(
Cce,j (σ)

)
= σ

Uc × EcZi
(
Γj +∆j

i

)
U

+
σ2

2

Uc ×
[
EUcc,i

Uc,i

(
cZi
)2

vari

(
εji

)]
U

+t.i.p.+o
(
σ2
)
.

Use the fact that U is CRRA and that o
(
σ2
)
at σ = 1 is of order o

(∥∥Γj ,∆j , εj
∥∥2) by

equation (29), to show the second equation of the claim.

(third equation). Let cji (σ) ≡ exp
(
σ
(
Γj +∆j

i

))(
1 + σεji

)
cZi , Cj (σ) ≡ Ecji (σ) =

E exp
(
σ
(
Γj +∆j

i

))
cZi , where the last equation follows due to the LIE. Therefore,

U
(
Cj (σ)

)
= U

(
E exp

(
σ
(
Γj +∆j

i

))
cZi

)
= U + σUcEcZi

(
Γj +∆j

i

)
+

σ2

2

{
Ucc

[
EcZi

(
Γj +∆j

i

)]2
+ UcE

[
cZi

(
Γj +∆j

i

)]2}
+ o

(
σ2
)
.

Apply claim 3 to get

lnU
(
Cj (σ)

)
= σ

UcEcZi
(
Γj +∆j

i

)
U

+ t.i.p.+ o
(
σ2
)
.

Use the fact that U is CRRA and that o
(
σ2
)
at σ = 1 is of order o

(∥∥Γj ,∆j , εj
∥∥2) by

equation (29), to show the third equation of the claim.

Claim 5. ln (1 + ω) ≃ Eαi(cZi )
1−γ

(Γ+∆i)+
γ
2
Eαi(cZi )

1−γ
[vari(εAi )−vari(εBi )]

Eαi(cZi )
1−γ .

Proof. From equation (17), the term ln (1 + ω) in Floden decomposition satis�es

(1− γ) ln (1 + ω) = lnWB − lnWA. (47)

Substitute the �rst equation from claim 4 to prove this claim.

Claim 6. ln (1 + ωinsur) ≃ γ
2

EcZi [vari(εAi )−vari(εBi )]
EcZi

.

Proof. Using its de�nition, observe that ln (1 + ωinsur) can written as

(1− γ) ln (1 + ωinsur) =
[
lnU

(
Cce,B

)
− lnU

(
Cce,A

)]
−
[
lnU

(
CB
)
− lnU

(
CA
)]

.

Apply the second and third equations from claim 4 and simplify.
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Claim 7. ln (1 + ωeff ) = Γ.

Proof. This follows from the de�nitions of 1 + ωeff and Γ.

With these claims we can now prove the second part of the lemma. Suppose that

condition (25) is satis�ed. Then 2
[
vari

(
εAi
)
− vari

(
εBi
)]

≃ Λ for all i and therefore

ln (1 + ωinsur)

ln (1 + ω)
=

γΛEαi

(
cZi
)1−γ

Eαi

(
cZi
)1−γ

(Γ + ∆i + γΛ)
+ o (1) ,

ln (1 + ωeff )

ln (1 + ω)
=

ΓEαi

(
cZi
)1−γ

Eαi

(
cZi
)1−γ

(Γ + ∆i + γΛ)
+ o (1) ,

and, since equation (18) holds,

ln (1 + ωredis)

ln (1 + ω)
=

Eαi

(
cZi
)1−γ

∆i

Eαi

(
cZi
)1−γ

(Γ + ∆i + γΛ)
+ o (1) .

The �rst terms on the right sides of these equations are the very same terms that we

obtained using our decomposition (9) under the assumptions of the lemma. Thus, the two

decompositions coincide up to o (1) , meaning that o (1) → 0 as ∥Γ,∆, ε∥ → 0. Since our

decomposition satis�es Properties (a), (b), and (c), so does Floden's, to the order o (1) .

A.7.5 More details for example referenced in Footnote (9)

Condition (25) relies critically on the assumption that households hold no assets. Since asset

dispersion plays an important role in many heterogeneous households economies (including

the one considered by Floden (2001)), our decomposition will di�er from that of Benabou

or Floden's approach more broadly. To illustrates that those di�erences can be quite large,

we consider the following variant of the Section 4.2 Benabou economy.

We maintain the assumption that U is logarithmic, so that the decompositions of Benabou

and Floden coincide, and that the planner is utilitarian. We assume that consumptions of

households under policies A and B are

cAi = ai + wi (1 + ε̃i) ,

cBi = ai + wi,

where {ai, wi}i are some non-stochastic variables and ε̃i is a non-trivial stochastic process.

We assume that Eiε̃i = 0 and that vari (ε̃i) = var (ε̃) for all i. This highly stylized example
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captures key features of richer heterogeneous households models like Aiyagari (1995) in which

household consumption comes from asset income (captured here by ai) and labor income

(wi) , which is also subject to idiosyncratic shocks (ε̃i here). Policy B is a social insurance

program that removes all the uncertainty that households face about their earnings without

reallocating resources across households or changing the aggregate amount of resources.

Since households are risk-averse, policy B improves welfare. All improvement comes from

better insurance.22

In this reform, decomposition (9) attributes 100% of welfare gains to the insurance

component. We now apply the Benabou-Floden decomposition. Since it is not available

in closed form for this example, we consider approximations of their expressions for small

values of idiosyncratic shocks, ||ε||. Certainty equivalents of consumption for household i are

cce,Ai = cZi − 1

2
c̄Zi

(
wi

ai + wi

)2

var (ε) + o
(
||ε||2

)
, (48)

cce,Bi = cZi ,

where cZi = ai + wi. Certainty equivalents of consumption under policy B coincide with

expected consumption cZi , since households face no uncertainty. Under policy A, cer-

tainty equivalents equal expected consumptions adjusted by the coe�cient of risk aver-

sion (which is equal to one with logarithmic preferences) and the variance of consumption(
wi

ai+li

)2
var (ε̃) . Note that even though all households face the same uncertainty about la-

bor earnings ln [wi (1 + ε̃i)], their consumption risk varies due to heterogeneity in their asset

holdings.

Using expressions (48), it is easy to show that

ln (1 + ωinsur) = lnEcce,Bi − lnEcce,Ai =
1

2
var (ε̃)

EcZi
(

wi
ai+wi

)2
EcZi

+ o
(
||ε||2

)
,

ln (1 + ω) = E ln cce,Bi − E ln cce,Ai =
1

2
var (ε̃)E

(
wi

ai + wi

)2

+ o
(
||ε||2

)
.

22The assumed consumption policy and the reform can be microfounded as a special case of the Section
4.2, with wi = exp(ei) and 1 + ε̃i = exp(ξi), in which the labor supply elasticity parameter η → ∞ and the
tax function parameters are allowed to condition on ex-ante heterogeneity ei.
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Combining these two expressions, we get that

ln (1 + ωinsur)

ln (1 + ω)
=

EcZi
(

wi
ai+wi

)2
EcZi × E

(
wi

ai+wi

)2 + o (1) , (49)

where o (1) → 0 as ||ε|| → 0.

Equation (49) shows that the Benabou-Floden decomposition would assign 100% of wel-

fare gains to insurance only if cZi = ai+wi is uncorrelated with
(

wi
ai+wi

)2
across households.

This condition is generally not satis�ed unless ai = 0 for all i, so that households have no

asset income.

The insurance component in equation (49) is always positive, but it is easy to see that

it can be arbitrarily large or small. Suppose that the relationship between ai and li is

ai + li = lκi for all i,

where the parameter κ captures covariance between assets and labor income. Furthermore,

assume that li is distributed according to a Pareto distribution with shape parameter ρ. In

that case expression (49) implies that

ln (1 + ωinsur)

ln (1 + ω)
=

(ρ− κ) (ρ− (2− 2κ))

ρ (ρ− (2− κ))
+ o (1) .

The �rst term on the right hand side is well de�ned so long as ρ > max {2− κ, κ, 2− 2κ} .
By varying ρ and κ, the left side of the above equation can take any value in the (0,∞)

interval. The residual term o (1) can be made arbitrarily small by choosing small enough

idiosyncratic shocks. This implies that the Benabou-Floden decomposition could assign any

value in (0,∞) to the insurance component in our simple social insurance example. For

instance, set ρ = 3 (which is in the range of estimates for the Pareto exponents of US labor

incomes reported in de Vries and Toda (2022)). At κ = 0, asset heterogeneity fully o�sets

labor income heterogeneity to make cZi same across households. Thus, there is no redistri-

bution induced by the policy, and in this case, the Benabou-Floden decomposition assigns

100% to insurance. For a su�ciently large κ, assets are positively correlated with labor

income. Wealth-rich households value the reduction in labor income risk less than wealth-

poor households. Benabou-Floden decomposition views this as redistribution and assigns a

share smaller than 100% to insurance. Since aggregate consumption C is unchanged, and

the three components always sum to one, this also implies that the Benabou-Floden decom-
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position could assign any value in (−∞, 1) to the redistribution component. We summarize

this analysis in

Claim 8. In the constructed example, depending on κ, ρ, and the shock process ε, the insur-

ance share ln(1+ωinsur)
ln(1+ω) can take any value in (0,∞), and the redistribution share ln(1+ωredis)

ln(1+ω)

can take any value in (−∞, 1) .

A.7.6 Benabou-Floden decomposition violate Properties (a),(b), and (c).

We focus in the proof only on Floden decomposition, since the proof for Benabou decompo-

sition follows the same steps but is simpler.

It is easy to see that generically Properties (a), (b), and (c) will be violated in the

Floden decomposition. Consider, for example, Property (a). Take any allocation
{
cAi
}
i
,

where consumptions of households are non-trivial stochastic process, and construct
{
cBi
}
i

by cBi = DcAi for all i for some D > 0. Property (a) is satis�ed if all welfare changes from

this policy are attributed to the aggregate e�ciency component. This would require that

1 − pBinsur = 1 − pAinsur. Since CB = DCA, this would be the case only if Cce,B = DCce,A.

But for arbitrary U function, there is no reason to expect that Eccei scales with D under

policy B. On the other hand, if U is CRRA, using equation (6) it is easy to verify that

cce,Bi = Dcce,Ai for all i, and therefore CB = DCA. Failure of other properties follow from

analogous arguments.

A.7.7 Davila and Schaab's decomposition violates Properties (a), (b), and (c).

We show that Davila and Schaab (2022) decomposition violates property (a)�(c) and dis-

agrees with Benabou (2002) (and Floden (2001)) by considering the following examples

Property (a) Consider allocations in which the policy scales all households consump-

tion by a common factor exp {θ}, that is, ci (θ, ξ) = (exp {θ}C) × (1 + ϵi (ξ)) × wi, with∫
widi = 1 and Eiϵi = 0. By construction, this policy a�ects neither shocks {ϵi} nor ex-ante

consumption shares {wi}. It is easy to verify that ∂θ lnEci (θ) = 1 and ∂θ ln
(
Eici(θ)
Eci(θ)

)
=

∂θ ln (ci (ξ, θ) /Eici (θ)) = 0. So decomposition (12) assigns 100% of welfare gains to aggre-

gate e�ciency. Now apply the Davila and Schaab decomposition. From equation (26) we

obtain that the redistribution (i.e., the third) term is

cov

(
w−γ
i αi

∫
Pr (dξ) [1 + ϵi (ξ)]

−γ∫ ∫
w−γ
i αi Pr (dξ) [1 + ϵi (ξ)]

−γ di
,
wi

∫
Pr (dξ) [1 + ϵi (ξ)]

1−γ∫
Pr (dξ) [1 + ϵi (ξ)]

−γ

)
, (50)
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where cov is the cross-sectional covariance. The covariance term in (50) does not gener-

ally equal zero. For instance, set ϵi (s) = 0 and γ = 1, then the expression (50) equals

cov
(

αi
wi
, wi

)
and will be non-zero except in pathological cases.

Notice that when ϵi (s) = 0 and γ = 1, our decomposition (12) agrees with Benabou

(2002) (and Floden (2001)). This shows that the Davila and Schaab (2022) decomposition

is inconsistent with the Benabou and Floden decompositions too.

Property (b) Consider an allocation under policy θ given by ci (ξ, θ) = C× (1 + ϵi (ξ))×
(1 + θxi) with

∫
xidi = 0 and

∫
Pr (dξ) ϵi (ξ) = 0. It is easy to see decomposition (12)

will attribute welfare gains from any change in θ to redistribution. Now apply (26). The

aggregate e�ciency (�rst) term is

C

∫
Pr (dξ)

[{∫
(1 + ϵi (ξ))xidi

}
×

{∫ (
[1 + ϵi (ξ)]

−γ∫
Pr (dξ) [1 + ϵi (ξ)]

−γ

)
di

}]
.

Observe that when cov (ϵi (ξ) , xi) ̸= 0, Davila and Schaab's decomposition will attribute a

nonzero contribution to aggregate e�ciency.

Property (c) Consider an allocation under a policy θ such that ci (θ, ξ) = C×(1 + θxi (ξ))×
wi with

∫
widi = 1 and

∫
Pr (dξ)xi (ξ) = 0. Evidently, ∂θ lnEci (θ) = ∂θ ln

(
Eici(θ)
Eci(θ)

)
= 0 so

decomposition (12) attributes all welfare gains from re-scaling risk to insurance with both

aggregate e�ciency and redistribution being zero. Now apply (26). The aggregate e�ciency

(�rst) term is

C

∫ [{∫
wixi (ξ) di

}
×

{∫ (
[1 + θxi (ξ)]

−γ∫
Pr (dξ) [1 + θxi (ξ)]

−γ

)
di

}]
Pr (dξ)

This term is zero when θ = 0 and the derivative with respect to θ at θ = 0 is

d

dθ

∫
Pr (dξ)

[{∫
wixi (ξ) di

}
×

{∫ (
[1 + θxi (ξ)]

−γ∫
Pr (dξ) [1 + θxi (ξ)]

−γ

)
di

}]

= −γC

∫
Pr (dξ)

[(∫
wixi (ξ) di

)
×
(∫

xi (ξ) di

)]
This derivative is generally nonzero. We conclude that more generally gains from a change

in θ that alters only ex post risk but that keeps �xed both ex ante shares and aggregate

consumption ends up a�ecting Davila and Schaab's aggregate e�ciency component in their

decomposition.
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A.7.8 Example to show why e�ciency and insurance components, and not just

the redistribution component, should depend on the Pareto weights.

The next example spotlights another di�erence between our decomposition and Davila and

Schaab's. From the de�nition of ϕ̂i, we observe that Pareto weights appear in all three

components of equation (12), while they only appear in the redistribution (third) term in

decomposition (26). We next consider an example that brings out the economic reasons for

why e�ciency and insurance components, and not just the redistribution component, should

depend on the Pareto weights.

Let individuals be of ex ante types 1 and 2. We set index i ∈ [0, .5) for type 1 and index

i ∈ [0.5, 1] for type 2 so that both types have measure 1
2 . The baseline allocation is

ci (θE , θI , ξ) = θE i ∈ [0, .5),

ci (θE , θI , ξ) = 1 + θIxi (ξ) i ∈ [0.5, 1],

where we assume that xi (ξ) is identically and independently distributed across i ∈ [0.5, 1]

with
∫ 1
0.5 xi (ξ) di = 0, and the vector θ = (θE , θI) indexes policies. The component θE a�ects

the level of consumption for type 1 households. The component θI of the policy a�ects the

degree of partial insurance (risk-sharing) for type 2 households. A planner assigns Pareto

weights

αi = 2α, i ∈ [0, .5)

αi = 2− 2α, i ∈ [0.5, 1]

Now consider the welfare e�ects and the decomposition thereof induced by changing

policy parameters (θE , θI) one at a time. These policies a�ect only a subset of households,

and therefore, aggregate welfare gains (or losses) should automatically be larger when the

welfare weight of a�ected households is bigger. Through the lens of decomposition (12), this

implies that all components (and not just redistribution) will vary with Pareto weights.

To see this, set θE = 1 and vary θI . A lower (higher) θI holds the total endowment

constant, provides no redistribution either across types or within types before idiosyncratic

risk is realized, and re�ects only better (worse) risk sharing. Observe that for any α, changing

θI changes the level of partial insurance only for a type 2 person and does not a�ect type

1 people. So it is natural to expect that the share of gains coming from insurance is 100%,

and that as full weight is placed on type 1 households, that is, α → 1, total welfare gains,

and therefore gains from insurance should both approach zero. Apply decomposition (12)
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to see that ∂θI ln (ci (1, θI , s) /Eici) equals zero for i ∈ [0, 0.5) and that it equals xi(s)
1+θIxi(s)

for

i ∈ [0.5, 1) . So

∂θIW (1, θI) = 2 (1− α)

∫ 1

0.5

∫
Pr (dξ)Uc,i (1 + θIxi (ξ))xi (ξ) di,

which con�rms our anticipation.

Now apply Davila and Schaab's decomposition. It is clear that their aggregate e�-

ciency and risk-sharing (�rst and second) components are invariant to changes in α, so

their decomposition attributes changes in partial insurance to a combination of risk sharing

and redistribution. For this example, the aggregate e�ciency (�rst) term is zero, but the

risk-sharing is not, and as α → 1, the risk-sharing (second) term equals the negative of

redistribution (third) term.

Next, consider a reform that changes θE and keeps θI = 0 �xed. By changing the

consumption of type 1 households, this reform changes the size of the pie (1 + θE ). Our

decomposition (12) implies that the contribution from aggregate e�ciency is increasing in

the parameter α that increases the weight on type 1 households and that it approaches 100%

as α → 1. On the other hand, from equation (26), the aggregate e�ciency term for Davila

and Schaab's decomposition equals 1
2 for all values of α and the share of aggregate e�ciency

approaches 50% as α →1.23

A.7.9 Details of applying marginal decompositions to Section 4.2 economy

In this section, we apply marginal versions of ours and Benabou's, and Davila and Schaab

decomposition to the Section 4.2 economy.

Marginal decomposition for Benabou Decomposition Benabou-Floden decomposi-

tion is de�ned for two economies A and B. We index economy A with a policy vector τ and

economy B with a policy vector τ+dτ . Next we de�ne shares of each component as dτ → 0.

Start with Benabou's decomposition (15), we can de�ne shares in a marginal decomposition

as

∂τW
BF,agg.eff = lim

dτ→0

U (C (τ))− U (C (τ + dτ))

W (τ)−W (τ + dτ)

∂τW
BF,redist = lim

dτ→0

{W (τ)−W (τ + dτ)} − {U (Cce (τ))− U (Cce (τ + dτ))}
W (τ)−W (τ + dτ)

23In fact, their decomposition implies the redistribution term to be zero only when Pareto weights are
utilitarian or when α = 1

2
.
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∂τW
BF,ins = lim

dτ→0

{U (Cce (τ))− U (Cce (τ + dτ))} − U (C (τ))− U (C (τ + dτ))

W (τ)−W (τ + dτ)

Now we apply the Benabou marginal decomposition to Section 4.2 economy. First, we

approximate W (τ)−W (τ + dτ) for small dτ . Use the expression for C(τ) = L(τ) = (1 −
τ)

1
1+η , and equation (20), which is the expression for W (τ) to get

W (τ)−W (τ + dτ) =

[
− τ

(1 + η)(1− τ)
+ (1− τ) ν2e − cov (αi, ei) + (1− τ) υ2ξ

]
dτ+o (dτ) .

Next we use expressions (38), (39), and (40) for each of the components and set τA = τ ,

τB = τ + dτ , and take limits with dτ to get

∂τW
BF,agg.eff =

− τ
(1+η)(1−τ)

− τ
(1+η)(1−τ) + (1− τ) ν2e − cov (αi, ei) + (1− τ) υ2ξ

,

∂τW
BF,Ins =

(1− τ) υ2ξ
− τ

(1+η)(1−τ) + (1− τ) ν2e − cov (αi, ei) + (1− τ) υ2ξ
,

and

∂τW
BF,redist =

(1− τ) ν2e − cov (αi, ei)

− τ
(1+η)(1−τ) + (1− τ) ν2e − cov (αi, ei) + (1− τ) υ2ξ

.

Let ∂τW
BEGS,agg.eff , ∂τW

BEGS,Ins, ∂τW
BEGS,redist be shares for our marginal decompo-

sition de�ned in (12). For the Section 4.2 economy, ϕ̂i (τ, ξ) = αi and γi = 1 and us-

ing expressions (41)-(43), we get that ∂τW
BF,agg.eff = ∂τW

BEGS,agg.eff , ∂τW
BF,redist =

∂τW
BEGS,redist, and ∂τW

BF,ins = ∂τW
BEGS,ins.

We next show that Davila and Schaab decomposition disagrees with Benabou/our de-

composition in a special case of the Section 4.2 economy. Assume that αi = 1, and υ2ξ = 0.

Davila and Schaab e�ciency component To apply the Davila and Schaab decompo-

sition we �rst need to construct a consumption equivalent change in policy since the policy

e�ects both labor and consumption.

dui|c

dτ
=

dci
dτ

− li(τ)
η

ci(τ)−1

dli
dτ

.

This will take the place of dci
dτ in (26). In the main text we show taht

ci (ei, ξi, τ) = C (τ)× exp

(
(1− τ) ei + τ (1− τ)

υ2e
2

)
× exp

(
(1− τ) ξi + τ (1− τ)

υ2ξ
2

)
.

(51)
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From (51), we note that

dci
dτ

=

(
− 1

(1 + η)(1− τ)
− ei + (1− 2τ)

ν2e
2

− ξi + (1− 2τ)
ν2ξ
2

)
ci(τ)

li(τ)
η

ci(τ)−1
= (1− τ)

η+1
1+η × exp

(
(1− τ)ei + τ(1− τ)

ν2e
2

)
× exp

(
(1− τ)ξi + τ(1− τ)

ν2ξ
2

)
dli
dτ

= − 1

(1 + η)(1− τ)
li(τ)

Consider the case where τ > 0 but ν2ξ = 0. Then we have that

dui|c

dτ
=

(
− 1

(1 + η)(1− τ)
− ei + (1− 2τ)

ν2e
2

)
ci(τ) +

1

(1 + η)
ci(τ)

=

(
− τ

(1 + η)(1− τ)
− ei + (1− 2τ)

ν2e
2

)
ci(τ).

According to (26), the aggregate e�ciency term is∫
dui|c

dτ
di =

(
− τ

(1 + η)(1− τ)
+ (1− 2τ)

ν2e
2

)∫
ci(τ)di−

∫
eici(τ)di.

We know that
∫
ci(τ)di = (1− τ)

1
1+η . We can write that second term as∫

eici(τ)di = (1− τ)
1

1+η

∫
ei exp

(
(1− τ)ei + τ(1− τ)

ν2e
2

)
di

= (1− τ)
1

1+η
1

(1− τ)

∫
(1− τ)ei exp

(
(1− τ)ei + τ(1− τ)

ν2e
2

)
di

= (1− τ)
1

1+η
1

(1− τ)

∫
êi exp (êi) di

− (1− τ)
1

1+η
1

(1− τ)

∫
τ(1− τ)

ν2e
2

exp

(
(1− τ)ei + τ(1− τ)

ν2e
2

)
di

= (1− τ)
1

1+η
1

(1− τ)

(1− τ)2ν2e
2

− (1− τ)
1

1+η τ
ν2e
2

= (1− τ)
1

1+η (1− 2τ)
ν2e
2

where êi = (1− τ)ei + τ(1− τ)ν
2
e
2 . So we get that∫

dui|c

dτ
di = − τ

(1 + η)(1− τ)
(1− τ)

1
1+η .
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Davila and Schaab redistribution component Redistribution is given by

cov

(
1/ci(τ)∫
1/ci(τ)di

,
dui|c

dτ

)
=

(∫
1/ci(τ)di

)−1(∫
1/ci(τ)

dui|c

dτ
di−

(∫
1/ci(τ)di

)∫
dui|c

dτ
di

)
To simplify this, �rst note that(∫

1/ci(τ)di

)−1

=

(
(1− τ)

−1
1+η

∫
exp

(
−(1− τ)ei − τ(1− τ)

ν2e
2

)
di

)−1

= (1− τ)
1

1+η exp

(
τ(1− τ)

ν2e
2

)(∫
exp (−(1− τ)ei) di

)−1

= (1− τ)
1

1+η exp

(
τ(1− τ)

ν2e
2

)(
exp

(
(1− τ)

ν2e
2

+ (1− τ)2
ν2e
2

))−1

= (1− τ)
1

1+η exp
(
−(1− τ)2ν2e

)
and ∫

1/ci(τ)
dui|c

dτ
di =

∫ (
− τ

(1 + η)(1− τ)
− ei + (1− 2τ)

ν2e
2

)
di

= − τ

(1 + η)(1− τ)
+ (1− τ)ν2e

This implies that(∫
1/ci(τ)di

)∫
dui|c

dτ
di = (1− τ)

−1
1+η exp

(
(1− τ)2ν2e

) τ

(1 + η)(1− τ)
(1− τ)

1
1+η

= exp
(
(1− τ)2ν2e

) τ

(1 + η)(1− τ)

All combined we have that the redistribution term is given by

cov

(
1/ci(τ)∫
1/ci(τ)di

,
dui|c

dτ

)
= (1− τ)

1
1+η exp

(
−(1− τ)2ν2e

)((
exp

(
(1− τ)2ν2e

)
− 1
) τ

(1 + η)(1− τ)
+ (1− τ)ν2e

)
Davila and Schaab shares The Davila and Schaab component shares are given by

∂τW
DS,agg.eff

=
− τ

(1+η)(1−τ)
(1 − τ)

1
1+η

− τ
(1+η)(1−τ)

(1 − τ)
1

1+η + (1 − τ)
1

1+η exp
(
−(1 − τ)2ν2

e

) ((
exp

(
(1 − τ)2ν2

e

)
− 1

) τ
(1+η)(1−τ)

+ (1 − τ)ν2
e

)

∂τW
DS,redist

=
(1 − τ)

1
1+η exp

(
−(1 − τ)2ν2

e

) ((
exp

(
(1 − τ)2ν2

e

)
− 1

)
τ

(1+η)(1−τ)
+ (1 − τ)ν2

e

)
− τ

(1+η)(1−τ)
(1 − τ)

1
1+η + (1 − τ)

1
1+η exp

(
−(1 − τ)2ν2

e

) ((
exp

(
(1 − τ)2ν2

e

)
− 1

) τ
(1+η)(1−τ)

+ (1 − τ)ν2
e

)
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To compare them to Benabou/our marginal shares, we use a small ν2e approximation. This

gives us

cov

(
1/ci(τ)∫
1/ci(τ)di

,
dui|c

dτ

)
≈ (1− τ)

1
1+η (1− τ)ν2e

(
1 +

τ

(1 + η)(1− τ)

)
.

and the shares are given by

∂τW
DS,agg.eff ≈

− τ
(1+η)(1−τ)(1− τ)

1
1+η

− τ
(1+η)(1−τ)(1− τ)

1
1+η + (1− τ)

1
1+η (1− τ)ν2e

(
1 + τ

(1+η)(1−τ)

)

∂τW
DS,redist ≈

(1− τ)
1

1+η (1− τ)ν2e

(
1 + τ

(1+η)(1−τ)

)
− τ

(1+η)(1−τ)(1− τ)
1

1+η + (1− τ)
1

1+η (1− τ)ν2e

(
1 + τ

(1+η)(1−τ)

)
These simplify to

∂τW
DS,agg.eff ≈

− τ
(1+η)(1−τ)

− τ
(1+η)(1−τ) + (1− τ)ν2e

(
1 + τ

(1+η)(1−τ)

)

∂τW
DS,redist ≈

(1− τ)ν2e

(
1 + τ

(1+η)(1−τ)

)
− τ

(1+η)(1−τ) + (1− τ)ν2e

(
1 + τ

(1+η)(1−τ)

)
The corresponding Benabou (or our) shares for this special case are

∂τW
BEGS,agg.eff =

− τ
(1+η)(1−τ)

− τ
(1+η)(1−τ) + (1− τ) ν2e

∂τW
BEGS,redist =

(1− τ) ν2e
− τ

(1+η)(1−τ) + (1− τ) ν2e

So we see that ∂τW
DS,agg.eff ̸= ∂τW

BEGS,agg.eff and ∂τW
DS,redist ̸= ∂τW

BEGS,redist. The

Davila and Schaab decomposition only agrees with Benabou and us when τ = 0 otherwise

it overstate redistribution when τ > 0.

B More Details for Quantitative Application

B.1 Expressions for implementing decomposition in Section

To implement the welfare decomposition outlined in Section 5.1, we need expressions for the

quasi-weights {ϕx,t} as well as the three components {Γx,t,∆x,t,Λx,t} for x ∈ {c, n}. We list
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them below:

ϕc,t (a0, ϵ0) = βtα (a0, ϵ0)
[
cZt (a0, ϵ0)

]1−σ
ϕn,t (a0, ϵ0) = −βtα (a0, ϵ0)χ

[
nZ
t (a0, ϵ0)

]1+γ
,

Γx,t = ln

∫
µ0 (a0, ϵ0)E

[
xBt |a0, ϵ0

]
− ln

∫
µ0 (a0, ϵ0)E

[
xAt |a0, ϵ0

]
,

∆x,t (a0, ϵ0) = lnwB
x,t (a0, ϵ0)− lnwA

x,t (a0, ϵ0) ,

Λx,t (a0, ϵ0) = −1

2

[
var

(
lnxB|a0, ϵ0

)
− var

(
lnxA|a0, ϵ0

)]
,

where objects with superscript Z are harmonic means of their counterparts across j ∈
{A,B} .

A key object that appears in all the terms above is the future expectations of individual

policy variables conditioned on states in date t = 0, E
[
xjt |a0, ϵ0

]
. One could compute

E
[
xjt |a0, ϵ0

]
by simulating several paths of shocks and constructing the expectations using

Monte Carlo integration. However, this is ine�cient and prone to simulation errors. We

show how to construct approximations to E
[
xjt |a0, ϵ0

]
directly using approximations to

policy functions that are obtained as outcomes of standard methods of solving incomplete

market economies.

Let
{
mj

0, x
j
t

}
be a vectors that stores the initial distribution (as a histogram) and the

policy function xt on some discrete grid A × E ; let Hj
t (at+1, ϵt+1|at, ϵt) be a matrix that

stores the transition probabilities between date t and t+1 for the same discrete grid A×E .
We solve for stationary equilibrium using the endogenous grid method and solve for the

transition paths globally using a Newton algorithm. We use the histogram method to store

mj
0 and store

{
Hj

t

}
as sparse matrices. The approximation to E

[
xjt |a0, ϵ0

]
for all pairs

(a0, ϵ0) ∈ A × E can be stored as a column vector Ej
x,t that has length |A × E| and is

computed using the matrix product

Ej
x,t =

[
Hj

1 ×Hj
2 × · · ·Hj

t

]
× xjt .

B.2 Algorithm to implement decomposition 3.3

Suppose we have M points on assets and N points on productivity. We de�ne s = (a, ϵ)

such that {(a0, ϵ0) , (a1, ϵ0) . . . (aM , ϵ0) . . . (a0, ϵN ) , . . . (aM , ϵN )}. This gives an lexicographic
order to s with respect to a, e(ϵ) and we denote it by ⪰ to mean sj+1 ⪰ sj . De�ne a CDF
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Notes: Welfare decomposition across Pareto weights: α (a0, ϵ0) ∝ exp {δcc (a0, ϵ0)} with δc ∈ [−2, 2].

The three components of welfare are normalized by WB −WA at the Utilitarian weights.
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F j (s) using the sum

F j (s) =
∑
s⪰s̃

µj (s̃)

For example:

F j (a0, ϵ1) = µj (a0, ϵ0) + µj (a1, ϵ0) + . . .+ µj (aM , ϵ0) + µj (a0, ϵ1)

Construct a set I such that

I ≡
{
FA (s1) , . . . F

A (sM×N )
}
∪
{
FB (s1) , . . . F

B (sM×N )
}

Now sort I and store it as Isorted = sort (I). The set Isorted constitutes a partition of [0, 1].

Every point in Isorted gets mapped uniquely a state sj (ι) representing the interval in which

quantile ι would lie under policy j. Formally sj (ι) = sk such that

k = argmink̃
{
F j
(
sk̃
)
≥ ι
}
.

1. A matrix Tj [ι, s] with |Isorted| rows and |A × E| columns such that

Tj [ι, s] =

1 if sj (ι) = s

0 otherwise

that stores the mapping between Isorted and A×E . Now we construct the matrix T j .

2. A vector m̃ of size |Isorted|

m̃ [i] = Isorted [i]− Isorted [i− 1]

with the normalization that Isorted [0] = 0.

The components of equation (13) are given by

agg. e�ciency =
∑
t

∑
ι

m̃ (ι) [ϕc,t (ι) Γc,t + ϕn,t (ι) Γn,t] ,

redistribution =
∑
t

∑
ι

m̃ (ι) [ϕc,t (ι)∆c,t (ι) + ϕn,t (ι)∆n,t (ι)] ,

insurance =
∑
t

∑
ι

m̃ (ι) [ϕc,t (ι)σΛc,t (ι)− ϕn,t (ι) γΛn,t (ι)] ,
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TABLE 5: WELFARE DECOMPOSITIONS ACROSS RISK AVERSION

Baseline High Risk aversion
λ = 10.5 λ = 21

Agg. e�ciency -249.4% -140.46%
Insurance 149.5% 40.76%
Redistribution -0.1% -0.30%

Notes: Component shares of welfare gains for di�erent values of risk aversion paramter(λ). For a

given of λ, we divide the welfare gains from the baseline reform attributed to each of the component

by absolute value of the sum of all three components.

where

wj
x,t (ι) =

E
[
xjt |ι

]
∫
m̃ (ι)E

[
xjt |ι

] x ∈ {c, n} ,

E
[
xjt |ι

]
= Tj ×Hj

1→t × xjt .

The rest of the terms are de�ned as before:

wZ
x,t (i, ι) ≡

√
wA
x,t (ι)w

B
x,t (ι) x ∈ {c, n}

cZt (ι) = CZ
t w

Z
c,t (ι)

nZ
t (ι) = NZ

t wZ
n,t (ι)

ϕc,t (ι) = βtα (ι)
[
cZt (ι)

]1−σ

ϕn,t (ι) = −βtα (ι)χ
[
nZ
t (ι)

]1+γ

Γc,t = lnCB
t − lnCA

t Γn,t = lnNB
t − lnNA

t

CZ
t =

√
CA
t C

B
t , NZ

t =
√
NA

t NB
t

∆x,t (ι) = lnwB
x,t (ι)− lnwA

x,t (ι) x ∈ {c, n}

Λx,t (ι) = −1

2

[
var

(
lnxB|ι

)
− var

(
lnxA|ι

)]
x ∈ {c, n}

B.3 Results for Section 5.2 with alternative calibrations

In the baseline, we set λ = 10.5 to target a coe�cient of relative risk aversion equal to two.

In this section, we report results from 5.2 for a higher value of λ = 21 which correspond to

coe�cients of relative risk aversions equal to 4. Figure 7 and Table 5 report the results.

71



Figure 7: WELFARE DECOMPOSITIONS ACROSS DISCOUNT RATES FOR HIGH RISK
AVERSION
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Notes: Ergodic average of debt returns and and components of welfare across values the discount

factor β ∈ [0.8, 1.2] with λ = 21.
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