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Abstract

We study the extent to which time-variation in market betas influence estimates of

CAPM alphas. Given the observed variation in conditional market betas, market risk

premia, and market variance, the required compensation for conditional market risk

can, in theory, be as large as the unconditional equity premium. We implement the

conditional CAPM using state-of-the-art methods in a broad global sample. We find

that accounting for conditional risk helps explain the return on all the major anomalies

we consider and that conditional risk explains two percentage points of alpha for value,

investment, and momentum strategies in recent years.
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According to the conditional CAPM, assets should have higher average returns if they

have high market betas during times when the market risk premium is high or the variance

is low. Following the seminal work by Lewellen and Nagel (2006), it is often argued that

such variation in market betas (conditional risk) cannot plausibly explain the return to the

major cross-sectional risk factors. The argument is often that the time-series variation in

conditional market betas, market risk premium, and market variance cannot be large enough

to materially influence the required return in the conditional CAPM.

Over the last decade, however, research in asset pricing suggests that conditional mo-

ments may be much more volatile than previously understood. Kelly and Pruitt (2013)

and Martin (2017), for instance, provide evidence that the equity premium is “extremely

volatile”, exhibits substantial high-frequency variation, and generally varies more than pre-

viously understood. Kelly, Moskowitz, and Pruitt (2021), moreover, argue that conditional

betas of dynamic trading strategies can be highly volatile, even at very short horizons. Fi-

nally, Moreira and Muir (2017) find that expected returns and volatility on the market are

not as highly correlated as previously expected, which – for technical reasons explained below

– increases the scope for conditional risk to explain asset returns.

Motivated by this apparent change in our understanding of the dynamics of conditional

moments, it is worthwhile revisiting the question of how large a role conditional risk plays

in the cross-section of stock returns. To do so, we first quantify the plausible effect of

conditional risk in the CAPM. When considering the conditional moments uncovered by the

above literature, conditional risk can in theory explain as much as five percentage points of

returns per year for a representative strategy, depending on the correlation between betas,

the risk premium, and variance. These five percentage points are similar in magnitude to the

full equity risk premium and to the unconditional CAPM alphas of equity factors studied

in the literature, meaning there is indeed scope for the conditional CAPM to explain equity

factors. Given the theoretical possibility of a large role for conditional risk, it becomes an

empirical question whether or not conditional risk can explain equity factors. We, therefore,

set out to quantify the exact impact of conditional risk on equity anomalies based on state-

of-the-art methods.

We find that conditional risk is a pervasive feature of the data. Conditional risk helps

explain a meaningful part of the alpha for the major risk factors we consider. For the value

factor, one of the most intensely studied factors in this context, conditional risk explains a

fourth of the unconditional alpha. In the most recent period, where risk premia are arguably

more volatile, conditional risk plays a relatively larger role, explaining almost all of the alpha
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for the value factor. For most of our regressions, controlling for conditional risk has a larger

impact on alphas than controlling for unconditional risk. Taken together, the results suggest

that conditional risk can be large enough to have a material impact on the alpha of equity

risk factors.

Despite this impact of conditional risk, the conditional CAPM is easily rejected. The

tangency portfolio spanned by the major equity factors remains highly significant after we

control for conditional risk. In this sense, our results strongly support the main point of

Lewellen and Nagel (2006), namely that the conditional CAPM does not explain the cross-

section of stock returns. Moreover, the tests explained above are tests of the unconditional

predictions of the conditional CAPM. Testing the richer conditional implications leads to

even stronger evidence against the CAPM (see also Nagel and Singleton 2011 and Roussanov

2014).

However, the rejection of the conditional CAPM does not necessarily mean that one

should ignore conditional risk: in many factor analyses, we want to control for market risk,

and to do so properly, even though the CAPM itself does not perfectly price assets. Through-

out our tests, conditional market risk has a bigger impact on alphas than unconditional

market risk, emphasizing the relevance of controlling for conditional risk when implementing

the CAPM.

Methodology and high-level summary

Our analysis begins by revisiting the theoretical analysis in Lewellen and Nagel (2006) (LN).

This analysis studies how much conditional risk can explain as a function of the time-series

volatility in conditional betas, conditional market risk premia, and conditional variance.

When using the variation in betas assumed by LN, along with estimates of market risk

premium volatility from Kelly and Pruitt (2013), we find that conditional market timing

(i.e. covariance between market betas and market risk premia) in principle can explain up

to 2.9 percentage points of annualized return. Similarly, volatility timing can explain up to

7 percentage points of annualized return under the most aggressive assumptions.

Market and volatility timing can thus be qualitatively relevant in factor analysis when

considered in isolation. Previous research has argued that one cannot easily combine the

effects of market and volatility timing. In fact, past work has argued that market risk

premia and market variance are likely highly positively correlated, causing market timing

and volatility timing to mechanically counteract each other. We should thus expect a modest

impact of conditional risk even if market timing and volatility can have a large impact when
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considered in isolation. Recent work by Moreira and Muir (2017), however, provides evidence

that the two moments are not perfectly correlated. Market and variance timing may thus,

in principle, work together to create substantial conditional risk. In particular, if one is

willing to assume that conditional market risk premia and variance are uncorrelated, as we

find empirically, it is possible for market timing and volatility timing to jointly explain up

to 5 percentage points of return.1 Empirically, we find that the two sources indeed tend to

strengthen each other, as further elaborated on below.

Motivated by these simple calculations, we set out to quantify the impact of conditional

risk on anomalies using state-of-the-art methods. Our main methodology implements the

CAPM using scaled factors, where the conditioning variables (instruments) are the condi-

tional market return, the conditional market variance, and the rolling betas of the test assets.

In theory, the conditional market risk premium and variance should be sufficient to capture

conditional risk if we measure the two perfectly. However, we include rolling betas in case

our measures are imperfect.

A key input to our analysis is the conditional market risk premium. We rely on state-of-

the-art methods that capture all of the variation in expected returns, including the very short

horizon variation that would not be captured by rolling betas. Recent research offers a series

of candidate estimators of the conditional market risk premium,2 some of which are limited

to the U.S. or the recent sample. In our main analysis, we rely on the three-stage estimator

of Kelly and Pruitt (2013), because this estimator can be implemented in all the countries

in our sample and over the full sample length, and because it is proven to forecast returns

well both in- and out-of-sample. As to variance, we estimate this based on the assumption

that it follows an AR(1) process.

Based on these moments, we quantify the impact of conditional risk in the cross-section

of U.S. and global equities. We start with the value factor, HML, which has been studied

extensively in the past. As is well known, the HML factor of Fama and French (1993) has

substantial CAPM alpha in the 1964-2022 sample. Controlling for conditional risk explains

around 1.25 percentage points of annual return in the US sample, which amounts to around

27% of the total alpha on the factor. In comparison, controlling for unconditional market

exposure explains only .86 basis points of annual alpha. As such, conditional risk cannot

1As detailed below, combining volatility and market timing cannot plausibly lead to a much bigger effect
of conditional risk than volatility timing on its own. The reason is that correlation risk premia and variance
cannot both be perfectly (negatively) correlated with betas, if the two themselves are uncorrelated.

2See e.g. Lettau and Ludvigson (2001a); Campbell and Thompson (2008); Binsbergen and Koijen (2010);
Kelly and Pruitt (2013); Martin (2017).
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explain the full alpha to the factor, but it explains a meaningful amount.

We find qualitatively similar results in our broad global sample. Conditional risk helps

explain the value factor in most of the large countries. In France, Germany, and Sweden,

conditional risk explains essentially the entire value premium, which is around 2 percentage

points in these countries. In our pooled global sample, conditional risk explains half of the

alpha for the value strategy.

Conditional risk also matters for other factors than the value factor. In our long U.S. sam-

ple, we find that the risk factors profitability, investment, momentum, and betting against

beta all load positively on conditional risk, in the sense that controlling for conditional risk

lowers the estimated alpha. We find similar results in our broad global sample of 23 countries.

In the global sample, all the major risk factors, except profit, load on our conditional-risk

factor, and the conditional-risk factor explains on average 18% of their unconditional CAPM

alpha.

As argued in the introduction, recent research suggests that conditional moments have

been particularly volatile over the last few decades. It is thus possible that conditional

risk has been pronounced over this period. Based on this observation, we study conditional

risk in the post-1996 sample. This is the period in which the equity premium has been

documented to be particularly volatile – and it also happens to be almost completely out of

sample relative to the first analyses of conditional risk in the value factor.

When considering this out-of-sample period, we find an even more pronounced role for

conditional risk. Conditional risk generally explains 2 percentage points of annual alpha

to the major risk factors. This amount is large relative to the unconditional market risk

premium and the alpha on the factors. For instance, it amounts to almost all of the alpha

on the value factor and half the alpha on the investment factor. For momentum and betting

against beta strategies, conditional risk explains around 30% and 10%.

As explained above, previous research has argued that market and volatility timing gener-

ally should counteract each other when estimating conditional risk. To test this assumption,

we introduce two new risk factors that can explicitly detect market and variance timing.

Using these factors, we find that most equity risk factors exhibit both market and volatility

timing. That is, contrary to the previous arguments, market and volatility timing appear

to work together to generate conditional risk. This finding may help explain why condi-

tional risk can account for a larger fraction of expected returns than previously argued. At

a technical level, this complimentary role of market and volatility timing is possible only

because equity premia and variances are not perfectly correlated. This view is supported, as
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mentioned earlier, by recent work of Moreira and Muir (2017).

We also implement alternative methods by Boguth, Carlson, Fisher, and Simutin (2011)

and Lewellen and Nagel (2006). Using these methods, we again find a large role for condi-

tional risk in our more recent sample. The effect is not always as large as our main methods

suggest, but the effect of conditional risk is similar in magnitude. This finding emphasizes

the robustness of our results across methodologies, but it also highlights the importance of

including the best possible estimates of equity premia and variance to properly account for

conditional risk.

The paper proceeds as follows. Section 1 covers the theory behind conditional risk in

factor models, quantifies the plausible impact of conditional risk, and develops new factors to

account for market and variance timing. Section 2 covers data and methodology. Section 3

quantifies the effect of conditional risk on estimates of alpha for major risk factors. Section 4

provides additional tests using managed portfolios as tests assets. The section also considers

conditional risk with respect to other risk factors. Section 5 discusses the results in relation

to previous implementations of conditional factor models. Section 6 concludes.

1 Theory

In this section, we first introduce the conditional CAPM and define terms in Section 1.1. We

next discuss the plausible effect of conditional risk on equity factors in Section 1.2. In Section

1.3, we introduce conditional-risk factors that researchers can use to quantify conditional risk

when observing conditional market risk premia and variance. These risk factors also allow

for precise estimation of the contribution of market and volatility timing.

1.1 Conditional Risk in the CAPM

The conditional CAPM is the following statement:

Et[r
i
t+1] =

covt(r
i
t+1; r

m
t+1)

vart(rmt+1)
Et[r

m
t+1] (1)

where rit+1 is the excess return to asset i between period t and t + 1, with m indexing the

market, and Et is the conditional expectation at time t.

To quantify the conditional risk in the CAPM, note first that taking unconditional ex-
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pectations of (1) gives

E[rit+1] = E[βt]E[rmt+1] + cov
(
βt;Et[r

m
t+1]

)
(2)

We show in the Appendix that the average beta can be written as

E[βt] = β̃ − cov

(
βt;

vart(r̃
m
t+1)

var(r̃mt+1)

)
(3)

where r̃mt+1 = rmt+1 − Et[r
m
t+1] is the shock to the market portfolio and

β̃ =
cov(rit+1; r̃

m
t+1)

var(r̃mt+1)
(4)

is the asset’s unconditional shock-beta. Inserting (3) into (2) gives

E[rit+1] = β̃E[rmt+1] + cov
(
βt;Et[r

m
t+1]− b vart(r̃

m
t+1)

)︸ ︷︷ ︸
Conditional Risk

(5)

where the covariance term summarizes the conditional risk and

b =
E[rmt+1]

var(r̃mt+1)
(6)

is the unconditional price of risk. The expression intuitively conveys what conditional risk is:

conditional risk is the tendency for an asset to have a higher conditional beta when either the

conditional market risk premium is high or the conditional market variance is low. Lewellen

and Nagel (2006), and the literature in general refers to these terms as market and volatility

timing.

The expression for conditional risk in (5) features conditional betas, but we do not need

to observe these conditional betas to calculate conditional risk: we only need the part of

conditional betas that is spanned by the conditional market risk premium and variance. In

fact, there is an intuitive factor representation that captures the effect of time-varying betas.

Defining the conditional risk factor as

ct+1 = r̃mt+1(bt − b) (7)
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where

bt =
Etr

m
t+1

vart(r̃mt+1)

is the conditional price of risk, we show in the appendix that can write the covariance term

for conditional risk in (5) as

cov
(
βt;Et[r

m
t+1]− b vart(r̃

m
t+1)

)
= cov(rit+1; ct+1) (8)

and therefore write equation (5) as

E[rit+1] = β̃E[rmt+1] + cov(rit+1; ct+1)︸ ︷︷ ︸
Conditional Risk

(9)

Equation (9) shows that the impact of conditional risk on unconditional expected returns

can be completely summarized through the covariance with a conditional risk factor. This

factor is akin to a market timing strategy that is more exposed to the shock to the market

when the conditional risk price of risk is high relative to the unconditional average. Section

1.3 further expands on how one can use conditional-risk factors to capture conditional risk in

unconditional implementations of factor models. Before doing so, we quantify the plausible

effect of conditional risk on unconditional risk premia.

1.2 HowMuch Can Conditional Risk Explain? Revisiting Lewellen

and Nagel (2006)

The expression in equation (5) shows that conditional risk is the sum of two components:

(1) the unconditional covariance between conditional betas and conditional market risk pre-

mia and (2) the unconditional covariance between conditional market betas and conditional

variance,

E[rit+1]− β̃E[rmt+1] = cov
(
βt;Et[r

m
t+1]− b vart(r̃

m
t+1)

)
(10)

= cov
(
βt;Et[r

m
t+1]

)︸ ︷︷ ︸
Market timing

+ cov
(
βt;−b vart(r̃

m
t+1)

)︸ ︷︷ ︸
Volatility timing

(11)

The expression states how much of the unconditional return premium on a given asset can

be accounted for by conditional risk. The amount explained by market timing is determined
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by the volatility of conditional market betas, the volatility of the conditional market risk

premium, and the correlation between the two. Similarly, the amount explained by volatility

timing is determined by the volatility of conditional market betas, the volatility of the

conditional market variance, the correlation between the two, and the unconditional price of

risk b.

To quantify the effect of conditional risk, we first examine how much these conditional

moments may vary over time. Recent work by Kelly and Pruitt (2013) and Martin (2017)

suggests that the market risk premium is “extremely volatile,” even at very short horizons.

Martin finds that the volatility of the monthly horizon market risk premium is around 0.4%.

These results are obtained in the post-1996 sample, which is the period where the option

prices studied by Martin are available. In our paper, we instead focus on the measure by

Kelly and Pruitt (2013), which we describe in detail in the upcoming Section 2.1. The market

risk premium coming from this measure similarly has a standard deviation of 0.4% in the

post-1996 sample. In the full sample, the standard deviation is 0.35%, reflecting a slightly

less volatile equity premium in the earlier parts of the sample.

To understand how these estimates relate to previous estimates, Figure 1 plots the ex-

pected return from the Kelly and Pruitt-measure along with a traditional estimate of ex-

pected returns. The traditional estimate is the inverse of the CAPE ratio plus the expected

inflation from the Michigan survey. The figure shows that the measure from Kelly and

Pruitt (2013) is notably more volatile than the estimate from the CAPE ratio. The Kelly

and Pruitt-measure has a standard deviation of 0.5% in this sample, whereas the measure

from the CAPE has a standard deviation of only 0.3%. The two estimates comove substan-

tially over time, with a correlation of 0.5. Importantly, there is much more short-horizon

variation in the measure by Kelly and Pruitt. This short horizon makes it important to use

methods that can capture the effects of such short-horizon variation in market risk premia.

LN consider the possibility that the volatility of the equity premium is as high as docu-

mented above. In their calculations, they consider a volatility of the equity premium as high

as 0.5%. In this sense, the new sample does not lead to substantially higher estimates of

the volatility of the market risk premia than those entertained by past research. However,

as Figure 1 shows, this volatility was historically considered to come from long-run fluctu-

ations in expected returns (see also discussion in Campbell and Cochrane 1999), meaning

conditional risk could only matter over regressions with long samples. The new estimates,

however, suggest substantial variation over short horizons, which means that conditional risk

can matter even in short-period regressions and that one must, when estimating conditional
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risk, use methods that can capture the effects of such short-horizon variation in market risk

premia.

We next consider how much conditional betas may vary over time. We use two estimates

of conditional market betas: conditional rolling betas (calculated using the Fama and French

(1992) method) along with conditional betas using the state-of-the-art machinery from Kelly,

Moskowitz, and Pruitt (2021). Figure 2 Panel A plots a histogram of the time-series volatility

in these betas across firms. The figure shows that the volatility of conditional betas is around

0.2 on average when using the Kelly, Moskowitz, and Pruitt (2021) betas and 0.3 when using

rolling betas. However, we cannot rule out a substantially higher variation for subsets of

stocks. Considering the volatility of strategy-level betas yields roughly similar results.

While Kelly, Moskowitz, and Pruitt (2021) betas are not more volatile overall than rolling

betas, they vary more on the very short horizon for the median firm. To visualize this, Figure

2 Panel B plots the standard deviation of monthly changes in betas. Here, the volatility of

Kelly, Moskowitz, and Pruitt (2021) betas for the median firm is above that obtained using

rolling betas. The average volatility of the changes is, however, fairly similar across the

two measures. In addition, Kelly, Moskowitz, and Pruitt (2021) show that the variation in

betas is not idiosyncratic across firms and can translate into substantial variation in factor

portfolios. Taken together, the new research does not change our estimates the of volatility

of the conditional market betas, but they highlight that the betas can be volatility on the

very short horizon, meaning the methods we use to test for conditional risk must be able to

account for such variation.

In Table 1, we study how much market and volatility timing can plausibly influence esti-

mates of required returns in the CAPM. We calculate conditional risk for a range of different

values of the volatility of conditional moments, motivated by the discussion above. We first

consider the effect of market timing. In our first calculations, we consider a correlation

between conditional betas and market risk premia of 1 to obtain an upper bound on the

effect of market timing. Assuming that the volatility of market risk premium is 0.6 and

the volatility of market betas is 0.4, which is at the very high end based on the discussions

above, conditional market timing can account for 2.9 percentage points of annual return

on the strategies. This is a substantial amount, given that the average factor in the Fama

and French model has an unconditional CAPM alpha of 3.7 percentage points per year (and

given the unconditional equity premium of 5 to 6 percentage points).

We next consider volatility timing. The impact of volatility timing is given by the negative

covariance between conditional market betas and conditional market variance, multiplied by
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the unconditional price of risk b. Empirically, this price of risk is around 2.5. Because

variance and risk premia vary roughly by the same amount over time, the multiplication on

the volatility timing term leads to a higher potential effect of volatility timing than expected

return timing. Table 1 shows that, assuming a correlation of -1 between conditional betas

and variance, volatility timing may explain as much as 7 percentage points of annual return

under the most aggressive assumptions. This is large in magnitude, larger than the alpha

to most risk factors, and similar to the equity risk premium itself. These estimates are

consistent with those in Boguth, Carlson, Fisher, and Simutin (2011).

As a novel part of the quantification, we consider the joint effect of market and volatility

timing. When considering the joint effect of market and volatility timing, a key determinant

is the correlation between the conditional market risk premium and variance. If the two are

perfectly correlated, then market and volatility timing must counteract each other: any asset

that loads positively on market timing must load negatively on volatility timing. However, if

the two are imperfectly correlated, or even uncorrelated, the two effects need not counteract

each other. As we shall see in the upcoming empirical analysis, the conditional market risk

premium and variance are close to uncorrelated under our main measure, meaning the two

need not counteract each other.

To estimate an upper bound on the joint impact of market timing and volatility timing,

we relax the assumption of a perfectly positive correlation between betas and market premia

and a perfectly negative correlation between betas and variance. We instead assume that the

correlation between conditional betas and conditional market risk premia is 0.5 and similarly

that the correlation between conditional betas and conditional variance is -0.5. We note that

under such a correlation structure, the conditional market premia and conditional variance

can remain uncorrelated.

Table 1 Panel B shows the joint effect market and volatility timing, i.e. conditional

risk, under the above assumptions. Based on the exact assumptions about the variance of

conditional moments, we see conditional risk explains up to 5 percentage points. This is

almost the entire equity premium, emphasizing that conditional risk can, in theory, be a

quite powerful force.

Another way to illustrate the potential importance of conditional risk is by comparing

the Sharpe ratios of the market and a managed market portfolio for the market. If there is

substantial variation in expected returns and variance, and if the variations in these objects

do not offset each other, we should expect substantial Sharpe ratio gains from timing the

market (Moreira and Muir 2017). We indeed find that such market timing leads to substantial
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Sharpe ratio gains. When scaling the position in the market by the ratio of the conditional

market risk premium to the conditional variance, we obtain a portfolio that has a Sharpe ratio

of 0.68 in our sample. In comparison, the market has a Sharpe ratio of 0.34 in our sample.

Incorporating the information in the conditional moments thus expands the mean-variance

frontier substantially, highlighting the scope of conditional risk to help explain anomalies.

In conclusion, the above estimates suggest that conditional risk can, in principle, ac-

count for a large fraction of risk premia. Under a sufficiently strong correlation structure,

the variation in conditional moments appears large enough that it can generate substantial

conditional risk. Whether the correlation structure is such that conditional risk matters

is thus ultimately an empirical question. We will embrace this question in the upcoming

sections. We note, based on the discussions above, that properly accounting for conditional

risk will require methods that allow us to account for the potential impact of high-frequency

variation in conditional risk.

Finally, we emphasize that we use largely similar assumptions as LN. The main reason

we differ in our conclusions is that we consider it plausible that market timing and volatility

timing both contribute positively to conditional risk. We will present direct evidence of

this assumption in the upcoming empirical section. Moreover, there is a slight difference in

semantics between our studies: We consider a potential impact of 2.9 percentage points from

market timing a large impact on expected returns, particularly considering that the equity

premium is likely around 5 percentage points and the average Fama and French factor has

historically had an unconditional alpha of 3.7 percentage points. The focus of LN is different:

LN focus on whether conditional risk can explain all of the alpha on the value premium, in

which case the effect of market timing is indeed too small.

1.3 Conditional Risk Factors

This section introduces a set of conditional risk factors that can help researchers account for

conditional risk. We also introduce risk factors that allow us to explicitly estimate the role

of conditional risk premia and conditional variance in generating conditional risk (i.e. split

conditional risk into expected return and volatility timing).

1.3.1 Conditional Risk in the CAPM

We can arrive at the above expression for conditional risk more easily if we use the stochas-

tic discount factor language instead of the beta language. The stochastic discount factor
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approach is also useful when generalizing the results to a multi-factor model.

The stochastic discount factor of the conditional CAPM3 is

mt+1 =
1

Rf
t

− 1

Rf
t

btr̃
m
t+1 (12)

which can be written as

mt+1 =
1

Rf
t

− 1

Rf
t

br̃mt+1 −
1

Rf
t

(bt − b)r̃mt+1 (13)

The law of one price implies that

0 = Et[mt+1r
i
t+1] = Et[R

f
tmt+1r

i
t+1] (14)

By the law of iterated expectations, we have

0 = E[Rf
tmt+1r

i
t+1] (15)

= E[rit+1] + cov(rit+1;R
f
tmt+1) (16)

meaning that

E[rit+1] = −cov(rit+1;R
f
tmt+1) (17)

= β̃E[rmt+1] + cov(rit+1; ct+1)︸ ︷︷ ︸
Conditional Risk

(18)

which is the same expression as in (9). In the following section, we use the stochastic discount

factor language to more formally derive a multi-factor model with conditional risk.

3The notation for the stochastic discount factor for the CAPM in expression (12) differs slightly from the
one usually used. Cochrane (2001) uses

mt+1 = At +BtR
M
t+1

where At = 1/Rf
t −BtEt[R

M
t+1] and Bt = −bt/R

f
t . But this expression is of course the same as ours:

mt+1 = At +BtR
M
t+1 =

1

Rf
t

+Bt(R
M
t+1 − Et[R

M
t+1]) =

1

Rf
t

− 1

Rf
t

btr̃
m
t+1
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1.3.2 Conditional Risk in Factor Models

We now derive a general statement for conditional risk in factor models. Consider the class

of factor models captured by the following stochastic discount factor for k = 1, . . . , K traded

risk factors:

mt+1 =
1

Rf
t

− 1

Rf
t

K∑
k=1

bkt r̃
k
t+1 (19)

where

r̃kt+1 = rkt+1 − Et[r
k
t+1] (20)

and

bkt =
Et[r

k
t+1]

vart(r̃kt+1)

is the time t shock and price of risk for factor k. The expression in (19) can be rewritten as

mt+1 =
1

Rf
t

− 1

Rf
t

K∑
k=1

bkr̃kt+1 −
1

Rf
t

K∑
k=1

(bkt − bk)r̃kt+1 (21)

where bk is the unconditional price of risk for factor k

bk =
E[rkt+1]

var(r̃kt+1)

By applying the law of one price and taking unconditional expectations, we can state

an unconditional model that incorporates conditional risk. Before doing so, we define the

conditional risk factors ckt+1 = r̃kt+1(b
k
t − bk).

Proposition 1 (conditional risk in factor models)

The unconditional expected excess return on an asset i is given by

E[rit+1] =
K∑
k=1

β̃kλk +
K∑
k=1

βk
c λ

k
c (22)
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where

β̃k =
cov(rit+1; r̃

k
t+1)

var(r̃kt+1)
, λk = E[rkt+1], (23)

βk
c =

cov(rit+1; c
k
t+1)

var(ckt+1)
, λk

c = var(ckt+1) (24)

In the factor model above, each factor k is represented by two betas: one for its uncondi-

tional risk and the other for its conditional risk. These factors capture all of the unconditional

return implications of the stochastic discount factor in (19). The following proposition sum-

marizes the properties of the conditional-risk factors and their betas.

Proposition 2 (properties of conditional risk factors and betas)

2.a (zero mean factors): The means of all conditional-risk factors are zero:

E[r̃kt+1] = E[ckt+1] = 0 (25)

2.b (uncorrelated factors): For each factor k, the return and shock to the risk factor is

uncorrelated with the conditional risk factor:

cov(rkt+1; c
k
t+1) = cov(r̃kt+1; c

k
t+1) = 0 (26)

2.c (shock betas for the factors): The factor k has a loading of one on its own shock:

cov(rkt+1; r̃
k
t+1)

var(r̃kt+1)
= 1 (27)

2.d (constant-beta equivalence): If an asset j has a constant conditional beta, the expected

return is given by the usual unconditional beta. That is, if

βk
t =

covt(r
j
t+1; r

k
t+1)

vart(rkt+1)
= c (28)

then

β̃k = βk and βk
c = 0 (29)
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While Proposition 1 allows for the estimation of a k factor model, we will focus on the

one-factor CAPM model in most of the empirical analysis. We do so because the conditional

risk with respect to the market portfolio has the most tangible interpretation and because

the market factor is the most widely used factor. However, we extend the analysis in Section

4.2 to also cover multi-factor models.

1.3.3 Expected return and variance timing

Recall that conditional risk comes from covariance between conditional betas and two terms,

namely the conditional expected returns and conditional variance (multiplied by a constant):

E[rit+1] = β̃E[rmt+1] + cov
(
βt;Et[r

m
t+1]− b vart(r̃

m
t+1)

)︸ ︷︷ ︸
Conditional Risk

(30)

The conditional risk factors introduced above allow one to estimate the net impact of these

two terms. We next introduce two factors that allow one to effectively separate the two terms.

In particular, we decompose the kth conditional-risk factor into two parts, ckt+1 = ck,et+1+ ck,vt+1,

where we define the two factors as

ck,et+1 = r̃kt+1

(
bt −

E[rkt+1]

vart(rkt+1)

)
(31)

ck,vt+1 = −r̃kt+1

(
b−

E[rkt+1]

vart(rkt+1)

)
. (32)

These two conditional-risk factors can be used to summarize how conditional betas of test

assets covary with expected returns and variance for factor k, as summarized in the next

proposition.

Proposition 3 (market and volatility timing)

The effect of market timing and volatility timing can be captured by the unconditional co-

variance between expected excess return on asset i and the two factors ck,et+1 and ck,vt+1:

cov(rit+1; c
k,e
t+1) = cov

(
βk
t ;Et[r

k
t+1]

)
(33)

cov(rit+1; c
k,v
t+1) = cov

(
βk
t ;−b vart(r̃

k
t+1)

)
, (34)

with total conditional risk given by the sum of the two covariances.
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2 Methodology

In our empirical analysis, we control for conditional risk by including a number of condition-

ing variables in our regressions. Motivated by the theory section above, we include estimates

of the conditional market risk premium, the conditional variance, and conditional betas. If

we observe these variables perfectly, we can use the conditional-risk factors from Proposition

1 and need not include conditional betas or the conditional variance and market risk premia

in isolation. However, given that our measures of these inputs are likely to be imperfect,

we include both the conditional betas and conditional market moments to ensure that we

capture as much conditional risk as possible. More precisely, we implement the following

time-series regression for each asset i:

rit+1 = α + a1r
Mkt
t+1 + a2r

Mkt
t+1Et + a3r

Mkt
t+1 vart +a4r

Mkt
t+1 β

i
t + ϵt+1. (35)

We outline our estimation strategy for conditional market betas, risk premia, and variance

below.

2.1 Identifying Conditional Moments

In order to estimate our factor model, we must estimate the conditional mean and variance

of the factors. In this section, we outline the identifying assumptions we rely on in doing so.

To estimate the conditional market risk premium, we use the three-pass estimator sug-

gested by Kelly and Pruitt (2013). The estimator uses the cross-section of valuation ratios

to estimate the expected return. By using the cross-section of valuation ratios rather than

just the valuation ratio for the market, it is possible to separate the effect of expected growth

rates and expected discount rates. Accordingly, the methodology consistently recovers the

conditional market risk premium based on two simple identifying assumptions: (1) the ex-

pected log return and log growth rates are linear in a set of latent factors, and (2) these

factors evolve according to a first-order vector autoregression.

We rely on the Kelly and Pruitt estimator for multiple reasons. Most importantly, the

method is proven to predict the one-month expected market return well both in- and out-

of-sample, and it is proven to work in both the U.S. and internationally. Indeed, Kelly

and Pruitt (2013) show that the estimator predicts the one-month expected return on the
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U.S. market portfolio with an R2 of 2.38 in-sample and 0.93 out-of-sample, and it predicts

the global market portfolio with an R2 of 1.5 out-of-sample. In addition, the estimator

consistently recovers the market risk premium under assumptions that are consistent with

the null hypothesis we test against when we are testing for conditional risk.

The estimator by Kelly and Pruitt (2013) is a three-stage estimator that extracts the

conditional market risk premium using information from the cross-section of book-to-market

values. By first estimating the sensitivity of valuation ratios of different portfolios to changes

in expected returns, the methodology afterwards aggregates the information into a single

estimate of expected one-period stock returns.

With respect to the variance, we similarly assume that the market variance evolves ac-

cording to a first-order autoregression. We rely on this assumption because it is transparent

and in line with recently published papers revolving around time-varying variance, such as

Campbell, Giglio, Polk, and Turley (2017).

2.2 Data

Our sample consists of 75,274 stocks covering 23 countries between January 1964 and De-

cember 2022. The 23 markets in our sample correspond to the countries belonging to the

MSCI World Developed Index as of December 31, 2018. We report summary statistics in

Table 2. Stock returns are from the union of the CRSP tape and the XpressFeed Global

Database. All returns are in USD and do not include any currency hedging. All excess

returns are measured as excess returns above the U.S. Treasury bill rate.

We study conditional risk in each country in our sample, a broad global sample, and

an international sample. Our broad sample of global equities contains all available common

stocks on the union of the CRSP tape and the XpressFeed Global database. Our interna-

tional sample excludes U.S. firms from the global sample. For companies traded in multiple

markets, we use the primary trading vehicle identified by XpressFeed. Our global sample

runs from June 1990 to December 2022, based on factor availability on Ken French’s website.

In some individual countries, we start our sample earlier if data is available (see Table 2 for

an overview of country-level start dates).

For the U.S. and global samples, we download all risk factors except betting against beta

from Ken French’s webpage. For other samples, we construct our own version of these risk
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factors.4 We use the version of betting against beta from the authors’ webpage.5

The Kelly and Pruitt (2013) estimator takes as input portfolios sorted on size and book-

to-market. In the U.S., we use 100 portfolios sorted unconditionally on size and book-to-

market from Ken French’s website. In the global sample, we similarly create 100 portfolios

sorted unconditionally on size and book-to-market. In the individual international countries,

we create 25 portfolios sorted first on size and then conditionally on book-to-market.6 We

use only 25 portfolios and conditional sorts because some of the countries have few firms

at the beginning of the sample and the conditional sorts into 25 portfolios helps ensure an

adequate number of firms in each portfolio.

We calculate monthly variance as the sum of squared daily residuals over the month with

a degree of freedom adjustment for the estimation of the mean.

v̂art(r̃
m
t+1) =

n

n− 1

n∑
i=1

(rmi − r̄m)2 (36)

where n is the number of trading days in the month. The estimation assumes that the

expected return is constant during each month.

The expected time t variance is then calculated as:

vart(r̃
m
t+1) = θ̂0 + θ̂1v̂art−1(r̃

m
t ) (37)

where θ̂0 and θ̂1 are parameter estimates from the following regression:

v̂art(r̃
m
t+1) = θ0 + θ1v̂art−1(r̃

m
t ) (38)

We rely on in-sample estimations for the expected variance, but the results are generally

robust to using out-of-sample estimates of the variance as in Bollerslev, Tauchen, and Zhou

(2009).

Finally, in order to estimate the betas of a given portfolio, we use what Boguth, Carlson,

Fisher, and Simutin (2011) refer to as lagged-component betas. These are estimated as the

portfolio-weighted average of the ex-ante beta of the stocks in the portfolio. We follow Fama

and French (1996) and use 60 months of monthly returns to calculate betas on individual

4We use the methodology of Asness and Frazzini (2011) for constructing Fama and French portfolios
outside the U.S., although we use the traditional Fama and French measure of value.

5https://www.aqr.com/Insights/Datasets
6Note that, unless stated otherwise, we use global risk factors on the right-hand side except in the U.S.
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stocks.7 See Boguth, Carlson, Fisher, and Simutin (2011) for details.

3 Conditional Risk in Major Risk Factors

In this section, we study the effect of conditional market risk on the major risk factors

studied in the literature. We first study the behavior of our estimates of conditional market

moments before quantifying the impact of conditional risk.

3.1 Variation in Conditional Moments of Market Returns

Table 2 offers summary statistics of the 23 exchanges in our sample along with the interna-

tional and global samples. The first three columns show the starting year of the sample, the

time-series median number of firms, and the time-series average weight of the given country

in the global portfolio. The U.S. has a high average weight in the global portfolio, but this is

in part driven by the early years where the U.S. constitutes most of the sample. The weight

of the U.S. market is downward trending throughout the sample and towards the end of the

sample, the weight of the U.S. is closer to .2. The fifth and sixth columns in Table 2 show

the average standard deviation and market risk premium in annualized terms.

The last three columns of Table 2 show the R2 of the expected variance and return to the

market portfolio. Regarding the variance, the R2 is generally around 20% to 50%, with the

U.S. and the global portfolio being on the low end. This high R2 corresponds to previous

studies on predicting variance (Bollerslev, Tauchen, and Zhou, 2009; Bollerslev, Hood, Huss,

and Pedersen, 2016), suggesting that the simple AR(1) method for predicting variance works

well.

The two last columns of Table 2 summarize the R2 of the expected return on the market

portfolio. The first column shows the R2 of the expected log return to the market portfolio,

which is what the Kelly Pruitt estimator extracts. The last column shows the expected excess

returns, which are calculated under the assumption of log-normally distributed returns by

adding one-half the conditional log-variance to the log-return, taking the exponential, and

subtracting the risk-free rate.

The table shows that the R2 for the excess returns in the U.S. and the global sample is

1.3% and 1.5%, which is around the same as reported by Kelly and Pruitt (2013). Inter-

7An exception is for BAB, where we use the Frazzini and Pedersen (2014) betas, which means the
conditional beta is always zero (the strategy is hedged ex-ante to have a zero beta). Using Fama and French
betas means betas are not exactly zero, although conceptually they should be.
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nationally, the R2 varies between 0.02% to 3.5%, with the median being 1.5%. The results

reported by Kelly and Pruitt for the U.S. and global sample thus appear to extend to most

individual exchanges.

The expected variance and market return are used to calculate the relative price of risk

bt−b, which is an important input for the conditional-risk factors used in Section 3.4. Figure

3 visually inspects this relative price of risk in the U.S. (Panel A) and the global sample

(Panel B). The price of risk varies substantially on both the short and long horizon. The

substantial short-horizon variation in the price of risk underlines the importance of using a

forward-looking measure of the price of risk. Indeed, an alternative to our approach is to

implement the conditional CAPM over short horizons for which the price of risk is assumed

to be constant. If daily data are available, the horizon is often around three to six months,

and if daily data are not available, the horizon is substantially longer. The price of risk in

Figure 3 exhibits substantial variation over these horizons, which, if statistically significant

and not driven by forecast errors, challenges this nonparametric approach.

The price of risk in Figure 3 also shows the substantial long-run variation that appears

linked to economic conditions. In the U.S. in particular, the price of risk tends to be the

highest in the years after economic recessions. The price of risk peaks a few years after the

recessions in 1973-1975, 1981–1982, 1990–1991, 2001, and 2007–2009. On the other hand,

the price of risk is lowest during the tech bubble. The price of risk is also low during the

onset of the financial crisis. The low price of risk at the onset of the financial crisis appears

to run counter to the notion of counter-cyclical risk aversion, but it is consistent with the

findings in Moreira and Muir (2017). Moreira and Muir argue that in the beginning of the

financial crisis, and crises more generally, the variance increases by more than the market

risk premium which causes the price of risk to go down.

3.2 Conditional Risk in Major Equity Risk Factors

In this section, we quantify how much of the unconditional alpha to major equity factors

can be explained by conditional risk. We consider six cross-sectional portfolios throughout

the section: value (HML), profitability (RMW), investment (CMA), momentum (UMD),

betting against beta (BAB), and the tangency portfolio (TAN) spanned by the market and

these five factors.

Table 3 Panel A shows the results of the U.S. sample. The first row shows the un-

conditional CAPM alpha, revealing the well-known empirical fact that these factors have

substantial CAPM alpha. The next row shows the intercept obtained from estimating the
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model in equation (35). If our conditioning variables capture all the relevant variation in

conditional market risk premia and variance, this intercept is equal to the average condi-

tional alpha over the given sample. Controlling for conditional risk lowers the alpha for all

strategies.

In the rows below, we specify the conditional risk premia for the different factors (in annu-

alized terms). Conditional risk explains between 38 basis points and 1.25 percentage points

across the factors. The t-statistics for these estimates are calculated using the methodology

in Boguth, Carlson, Fisher, and Simutin (2011). The largest effect of conditional risk is for

the value factor, where conditional risk explains 27% of the unconditional alpha.

In Panel B, we zoom in on our the post-1996 sample. We focus on this period for

two reasons. First, recent research suggests that the equity premium may be particularly

volatile during this period (as can be seen in Figure 1). Second, it represents essentially an

out-of-sample analysis relative to the original study by Lewellen and Nagel (which ends in

June 2001). When considering this sample period, we find a substantially larger impact of

conditional risk. For the value, investment, and momentum factors, we find that conditional

risk can explain around 2% points of alpha.

The impact of conditional risk in Panel B is large relative to the impact of market

risk in general. The compensation is close to half the market risk premium. Moreover,

the compensation for conditional risk is substantially higher than the compensation for

unconditional risk. The conditional risk and unconditional risk appear to work in opposite

directions. In fact, the raw average returns are substantially closer to the true alpha of the

factors than the unconditional CAPM alphas are.

The magnitude is also large relative to the unconditional alpha on the factors. For

instance, the 2 percentage points represent 83% of the unconditional alpha on the HML

factor. We note that the unconditional alpha to the HML factor is insignificant in this

sample even before controlling for conditional risk. This is partly because value is slightly

weaker in the modern sample but of course also because the sample is shorter.

For the other factors, conditional risk has a substantial impact as well. For the investment

factor, the alpha is cut almost in half and becomes insignificant. For momentum, the impact

on the alpha, relative to the unconditional alpha, is more modest, although the momentum

factor also becomes insignificant.

Taken together, the above results from the U.S. sample emphasize the importance of

controlling for conditional risk when doing performance evaluation. Conditional risk can

have a material impact on alphas.
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To further illustrate the importance of conditional risk, Figure 4 plots country-level re-

sults for the value factor. The figure focuses on the G10 countries, excluding Italy because

the value factor has negative unconditional alpha in this country. The figure plots the com-

pensation for conditional risk in the value factor in each country along with the percentage

of the unconditional alpha that is explained by conditional risk. The compensation for con-

ditional risk is as high as 2% in France, Germany, and Sweden. This amounts to almost the

entire value premium in France and Germany and more than the entire premium in Sweden.

This finding reaffirms one of the key points of the paper: there is enough conditional risk

in the data to potentially have a material influence on estimates of alphas on major risk

factors. One must therefore be careful to control for such conditional risk whenever doing

performance evaluation.

We next turn our attention to our broad global sample. In Table 3 Panel C, we study

the effect of conditional in our broad global sample spanning 23 countries. We find very

similar results to those in the U.S. sample. All factors except profitability continue to load

on conditional risk, in the sense that controlling for conditional risk reduces the estimated

alpha.

The effect is again most pronounced for the value factor and the investment factor.

Controlling for conditional risk lowers the alpha of HML by 50 %. Similarly, controlling for

conditional risk lowers the alpha of CMA by 30 % and makes the alpha insignificant. These

findings further highlight the ways in which controlling for conditional risk has an impact

on our estimates of the performance of the major risk factors.

We also study conditional risk in individual countries. In Table 4, we report the impact

of conditional risk on the tangency portfolio in each country in our sample. For all but 3

countries, we find that controlling for conditional risk reduces the alpha of the tangency

portfolio. The median effect of conditional risk is 58 basis points. However, in none of the

countries considered is alpha for the tangency portfolio insignificant, emphasizing the clear

rejection of the conditional CAPM.

3.3 Timing of Expected Returns and Volaility

The previous section documents that conditional risk can have a substantial impact on

estimates of alphas on major factors. In this section, we study to what extent these results

are driven by market timing or volatility timing – and whether the two reinforce or counteract

each other in the generation of conditional risk.

As discussed in Section 1.2, one may be worried that market timing and volatility timing
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counteract each other in the generation of conditional risk. In particular, if the conditional

market risk premium and variance are perfectly positively correlated, market timing and

volatility timing will counteract each other and reduce the impact of conditional risk. In

such a setting, conditional risk is unlikely to have a large impact on alphas. However, if

the two moments are uncorrelated, market timing and volatility timing need not counteract

each other. In fact, the two may work together to generate variation in conditional risk.

To better understand how market timing and volatility timing work together in the

creation of conditional risk – and thus help assess the overall scope for conditional risk in

explaining equity returns – we directly estimate the two terms using the conditional risk

factors from Proposition 3. Proposition 3 provides two precisely defined factors, for which

the covariance between these factors and the test asset tells us the exact impact of market

timing and volatility timing. These factors have the advantage that we can estimate the

impact of market and volatility timing without first estimating conditional betas.

Table 5 shows the loadings of the major risk factors on the market timing and the

volatility timing factors. The first asset we consider is the value factor. The value factor

loads positively on the market timing factor but negatively on the volatility timing factor.

This result suggests that volatility timing cannot help explain the return to the value factor,

consistent with Lewellen and Nagel (2006).

For the other factors, however, we find positive loadings on both the market timing factor

and the volatility timing factor. This finding suggests that market and volatility timing

contribute to conditional risk, i.e., the two factors work together in generating conditional

risk.

Table 6 reports similar results using rolling conditional betas instead of the conditional

risk factors. In this table, we regress the estimates of conditional betas at a given time

onto the estimate of conditional market premia and conditional market variance. The slope

coefficients on the market risk premium are generally positive in the US sample, and the

coefficients on the variance are negative. This finding is consistent with the idea that market

and volatility timing work together in generating conditional risk (a negative relation between

variance and betas increases the amount of conditional risk. The results are more mixed in

the global sample, but this could reflect that the methodology based on rolling betas does not

perfectly capture the behavior of realized betas (as the risk factors used in Table 5 should,

according to Proposition 3).
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3.4 Estimates Using Alternative Methods

The above analysis suggests that conditional risk has a material impact on conditional alphas,

particularly in recent years. To ensure that these conclusions are not driven by the specific

implementation of the conditional CAPM that we have chosen, we redo the analysis using

the methods in Lewellen and Nagel (2006) and Boguth, Carlson, Fisher, and Simutin (2011).

3.4.1 Conditional Risk Using Methods in Lewellen and Nagel (2006)

Lewellen and Nagel (2006) suggests estimating alphas as the average alpha across a long

series of short-horizon regressions. The intuition behind this method is simple: if betas are

constant over the short horizon on which the regression is estimated, the average alpha will

be an unbiased estimate of the true CAPM alpha of the test asset.

Lewellen and Nagel (2006) implement the short-horizon regressions over various horizons,

finding largely similar results across the horizons. We consider here the annual horizon, which

– unlike the shorter horizons considered by the authors – has the advantage that it can be

implemented using monthly return data.

Table 7 Panel A reports the results in the post-1996 regressions. The results are not

too dissimilar to those obtained in our main specifications: conditional risk explains 1 to 3

percentage points of return (annualized) across the different factors. For value, the estimates

are quite similar, with conditional risk explaining 83% of the unconditional alpha. The main

difference relative to our main specification is that conditional risk has a large effect on

profitability effect but a more modest effect on momentum and investment. We note that

these differences can potentially arise from an overconditioning bias identified by Boguth,

Carlson, Fisher, and Simutin (2011).

We also consider the alphas in the full sample. As in our main specification, the impact

of conditional risk is smaller in the full sample. But the conditional risk remains substantial.

For the value factor, conditional risk explains 50% of the unconditional alpha in the long

sample, again emphasizing a large role for conditional risk in the return to the value strategy.

3.4.2 Conditional Risk Using Methods in Boguth, Carlson, Fisher, and Simutin

(2011)

We next consider the methods of Boguth, Carlson, Fisher, and Simutin (2011). Boguth,

Carlson, Fisher, and Simutin argue that using short-horizon windows as Lewellen and Nagel

(2006) potentially induces what they refer to as an over-conditioning bias, which arises
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because small-sample estimates of beta are different from the ex-ante expected beta. Instead,

they use ex ante betas as instruments to capture conditional risk. They propose both a proxy

approach and an IV approach. The proxy method constructs an ex ante beta-estimate and

estimates average conditional alphas as the average difference between the realized excess

returns and the product of the beta and the realized market excess returns. The IV method

augments the usual CAPM regressions with the market returns times a vector of ex-ante

instruments, one of which is the lagged betas. See Boguth, Carlson, Fisher, and Simutin

(2011) page 372 for details on the procedures.

The IV procedure used by Boguth, Carlson, Fisher, and Simutin is very similar to our

main implementation. The only difference is in the choice of conditioning variables. The

authors use conditional betas, like we do, along with three measures of equity premia, namely

the dividend-price ratio, the risk-free rate, and the term premium. We instead use the

measure from Kelly and Pruitt (2013) to capture the conditional market risk premium and

we directly include the conditional market variance. These choices are guided by the theory

discussed in Section 1.

Our measure of conditional betas is what Boguth, Carlson, Fisher, and Simutin (2011)

refer to as lagged-component betas. These are estimated as the portfolio-weighted average

of the ex ante beta of the stocks in the portfolio. As explained earlier, we follow Fama and

French (1996) and use 60 months of monthly returns to calculate betas on individual stocks.8

Table 8 Panel A shows the results in the post-1996 U.S. sample. We again find a substan-

tial impact of conditional risk on estimates of alpha in this sample. For value, conditional

risk explains the entire risk premium. The effect is also large for the investment factor,

with conditional risk explaining 50% of the unconditional alpha in the best specifications.

The only factor for which the estimated alpha is substantially worse using the methods in

Boguth, Carlson, Fisher, and Simutin (2011) is the betting against beta factor. These results

emphasize the robustness of our empirical finding that conditional risk materially influences

estimates of alpha in the recent period. For the full sample in Panel B, the results are similar

as when using our methods, although they are slightly weaker.

8An exception is for BAB, where we use the Frazzini and Pedersen (2014) betas, which means the
conditional beta is always zero (the strategy is hedged ex ante to have a zero beta). Using Fama and French
betas means betas are not exactly zero, although conceptually they should be.
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4 Conditional Risk in Managed Portfolios and Multi-

factor Models

The previous section documents a large role for conditional market risk in explaining the

returns to major cross-sectional risk factors. In this section, we go beyond the tests of the

major risk factors in the conditional CAPM. In Section 4.1, we test whether the CAPM can

price managed portfolios. In Section 4.2, we explore the empirical importance of conditional

risk with respect to other factors than the market.

4.1 Testing the Conditional CAPM using Managed Factors

To go beyond the unconditional tests in Section 3, we next consider managed versions of the

major risk factors as test asset on the left-hand side. For each test asset i, we consider the

managed portfolio,

ri,managed
t+1 =

bit
bi

× rit+1. (39)

These portfolios increase the position in the test asset when the asset has a high conditional

price of risk. We expect such timing to cause the factors to have unconditional alpha with

respect to the original test asset. The upcoming analysis tests whether such unconditional

alpha can be explained by conditional market risk. We divide the managed portfolios by the

unconditional price of risk, such that the average weight in the input portfolio is close to one

(see discussion in Moreira and Muir 2017).

To construct these managed portfolios, we need estimates of the conditional expected

return and variance on the test assets. We estimate these moments in the same way we

estimate the moments for the market. That is, we estimate conditional variance assuming

an AR(1) process and we estimate the conditional expected return using the method by

Kelly and Pruitt (2013) (see Section 2). These methods predict moments fairly well in-

sample as shown in Appendix A1, although the predictability of expected returns on the

factors is slightly weaker than that on the market reported in Table 2, particularly in the

global sample.

Table 9 reports results from two sets of regressions. In the first, unconditional regressions,

we estimate

ri,managed
t+1 = αu + β1r

i
t+1 + β2r

m
t+1 + ϵit+1. (40)
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In the second set of regressions, we estimate what we refer to as conditional alphas. We

do so by implementing our main specification (equation (35)) augmented with the baseline

version of the managed factor i (that is, rit+1). In other words, for the managed version of

the value factor, we estimate its alpha in our baseline specification augmented with the value

factor.

The table shows that most managed portfolios have significant alpha with respect to the

market and the baseline portfolio. The unconditional alpha is significant for the momentum

and betting against beta factors. In general, the effect of conditional risk is fairly modest for

the conditional versions of the test assets. Controlling for conditional risk lowers the alpha

for value, profit, and momentum, but it increases the alpha on betting against beta and

profitability. The very strong performance to the scaled momentum portfolio is consistent

with the findings in Barroso and Santa-Clara (2015). Overall, the results suggest that a large

part of the time-series variation in the conditional moments of these factors is independent

of the movement in the conditional moments with respect to the market portfolio.

The results also emphasize an additional dimension along which the conditional CAPM

is rejected. We refer to Nagel and Singleton (2011) and Roussanov (2014) for in-depth tests

of the conditional implications of the CAPM.

4.2 Conditional Risk with Respect to Other Factors

We next consider the conditional risk with respect to other risk factors than the market. To

this end, we test how much of the return on the tangency portfolio that can be explained by

conditional risk with respect to the HML, RMW, CMA, UMD, and BAB factors.

For each factor, we first calculate the unconditional alpha by regressing the tangency

portfolio on the market portfolio and the factor in question. We next estimate alphas in the

conditional model by augmenting the unconditional model with variables capturing condi-

tional dynamics of the given risk factor. For each factor, we include two additional right-hand

side variables, namely the factor in question multiplied by the conditional expected return on

the factor and the conditional variance of the factor. We continue to estimate the conditional

moments of the given risk factor as described in the previous section.

Table 10 reports the results. Conditional risk with respect to the major risk factors

generally has a trivial impact on the alpha of the tangency portfolio. The largest effect

of conditional risk is from conditional risk with respect to the value factor, for which the

reduction in alphas is 5%.

The results contrast the results on the market factor. Conditional risk with respect to the
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market factor appears unique relative to conditional risk with respect to other well-known

factors, as the impact of conditional market risk is an order of magnitude larger than the

impact of the other conditional risk factors.

5 Further Relation to the Literature

Our results relate to and extend a long strand of literature on conditional CAPM. A large

literature including Ferson and Harvey (1991), Ferson and Schadt (1996), Ferson and Harvey

(1999), and Jagannathan and Wang (1996) document that a series of conditioning variables

predict time-variation in returns and betas in the cross-section of equities and use these con-

ditioning variables as instruments in factor models. Lettau and Ludvigson (2001b) show that

using the cay variable as an instrument in the CAPM explains the returns to size and value

sorted portfolio, but Lewellen and Nagel (2006) argue that the effect is overestimated and

that the conditional CAPM cannot explain the cross-section of stocks. Lewellen and Nagel

further advocate the use of short-horizon regressions as an instrument-free way of testing the

conditional CAPM. However, Boguth, Carlson, Fisher, and Simutin (2011) argue that the

short-horizon regressions have certain small-sample issues and instead advocate the use of

an instrumental approach that uses past betas and state variables as instruments. Using this

approach, they show that momentum portfolios load on conditional risk. In addition, Ceder-

burg and O’Doherty (2016) argue that the conditional CAPM explains the low-risk anomaly

documented by Black, Jensen, and Scholes (1972) and Frazzini and Pedersen (2014). Going

beyond unconditional expected returns, Nagel and Singleton (2011) test the additional im-

plication that conditional expected returns must be consistent with the conditional factor

models. More recently, Kelly, Pruitt, and Su (2018) and Fama and French (2018) advocate

the use of characteristics as measures of conditional betas.

Our results on the low-risk effect differ substantially from those by Cederburg and

O’Doherty, as they find that the low-risk effect is statistically insignificant once control-

ling for conditional risk. One potential reason for this discrepancy is that we study the

returns to the monthly betting against beta factor and not quarterly beta sorted portfolios

as Cederburg and O’Doherty do. The advantage of studying the betting against beta factor

is that the factor is hedged ex ante to have a conditional beta of zero, mitigating the risk of

missing variation in conditional betas. In addition, the fact that the factor is hedged condi-

tionally to have a beta of zero, and an alpha of 10 percentage points per year, means that

it is unlikely that the conditional CAPM can explain its average return in the first place. It
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would require the estimated conditional betas to be far from the true betas.

Finally, we note that Liu, Stambaugh, and Yuan (2018) redo the analysis in Cederburg

and O’Doherty (2016) using a slightly different methodology, and, consistent with our results,

they find that the conditional CAPM does not explain the low-risk anomaly.9

6 Conclusion

This paper documents a substantial impact of conditional risk on the alpha for major risk

factors. Across 23 developed countries, risk factors generally load on conditional risk. The

impact of conditional risk is substantial in many instances. In the long U.S. sample, condi-

tional risk explains around 30% of the unconditional alpha for the value factor. For the more

recent U.S. sample, as well as the French, German, and Swedish samples, conditional risk

explains essentially all the alpha to the value factor. In the global and recent U.S. sample,

conditional risk explains half the alpha to the investment factor and in general commands

premia of around 2 percentage points annualized across the major factors. These results

challenge the view that conditional risk cannot plausibly influence estimates of CAPM al-

pha.

The conditional CAPM is strongly rejected, in that conditional risk does not explain all

the alpha to the factors we consider. However, this rejection does not necessarily imply that

we should not control for conditional risk in factor analyses. It is, for instance, very common

to control for the market factor in factor analysis, even though the CAPM is rejected.

Overall, the impact of conditional market risk on anomaly alphas is larger than the impact

of unconditional market risk, suggesting that researchers and practitioners should seriously

consider controlling for conditional risk whenever implementing the CAPM in the future.

Controlling for conditional risk in the usual CAPM implementations can have broad

economic implications. For instance, a CFO of a value firm who discounts cash flows using

the unconditional CAPM would use the company’s beta of, say, 1 times the global market

risk premium, which gives an annual discount rate of around 5% in excess of the appropriate

risk-free rate. However, given the conditional risk in global value firms, the CFO should in

fact use an annual discount rate of around 7% in excess of the risk-free rate to also reflect the

conditional-risk premium. Such an increase in the perceived cost of equity of 2 percentage

points may have a material influence on a firm’s discount rate and ultimately its investment

9See also Asness, Frazzini, Gormsen, and Pedersen (2020) for discussion of the role of conditional betas
in the low-risk anomaly.
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decisions (Gormsen and Huber 2023, 2024). In addition to influencing corporate investment,

controlling for conditional risk is also important for judging the economic importance of

different anomalies, understanding market efficiency, evaluating the performance of asset

managers, and in financial analysis more generally.
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Appendix

A Conditional Cash Flow and Discount Rate Risk

Conditional market risk arises because conditional market betas are higher when the price of

risk is higher. As shown by Campbell and Vuolteenaho (2004), conditional market betas are

the sum of the given asset’s conditional cash flow and discount rate betas. Accordingly, the

conditional risk must come from either conditional cash flow or discount rate betas being

high when the price of risk is high. In this section, we show how to estimate these two

sources of conditional risk by decomposing the conditional risk factor into two.

First note that shocks to the market portfolio, r̃mt+1, are given by cash flow news and

discount rate news (Campbell and Shiller, 1988):

r̃mt+1 = NCF,t+1 +NDR,t+1 (41)

The beta of an individual stock can then be expressed as:

βt = βCF
t + βDR

t (42)

where βCF
t =

covt(rit+1;NCF,t+1)

vart(r̃mt+1)
and βDR

t =
covt(rit+1;NDR,t+1)

vart(r̃mt+1)
.

Similarly, the market’s conditional-risk factor can be decomposed into two parts:

ct+1 = r̃mt+1(b
m
t − bm) (43)

= cCF
t+1 + cDR

t+1 (44)

where cCF
t+1 = NCF,t+1(b

m
t −bm) is the conditional cash-flow-risk factor and cDR

t+1 = NDR,t+1(b
m
t −

bm) is the conditional discount-rate-risk factor. Loading on conditional cash flow risk and

conditional discount rate risk has a tangible economic interpretation. Indeed, the uncon-

ditional covariance with the two risk factors summarizes the covariance of cash flow- and

discount rate betas with the expected return and variance:

cov(rit+1, c
CF
t+1) = cov

(
βCF
t ;Et[r

m
t+1]− b vart(r̃

m
t+1)

)
(45)
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and

cov(rit+1, c
DR
t+1) = cov

(
βDR
t ;Et[r

m
t+1]− b vart(r̃

m
t+1)

)
(46)

Table A2 reports empirical results of the decomposition. Statistical significance is gen-

erally limited, but we find evidence of conditional discount rate risk for the investment and

value factors. Both in the U.S. and globally, factors load positively on the factor for con-

ditional discount rate risk. The loadings on the factor for cash flow risk are, on the other

hand, generally negative. These results imply that conditional risk comes mostly from time

variation in conditional discount rate betas, not cash-flow betas.

B Proofs

Proof of (3). Note that we can write the conditional beta as βt = E[β] + ηt. We can then

write the unconditional covariance between the excess return to asset i and the shock to the

market portfolio as

cov(rit+1; r̃
m
t+1) = cov(E[β]r̃mt+1 + ηtr̃

m
t+1; r̃

m
t+1)

= E[β] var(r̃mt+1) + cov(ηt; var(r̃
m
t+1))

given that cov(ηtr̃
m
t+1; r̃

m
t+1) = E[ηt(r̃

m
t+1)

2] = cov(ηt; (r̃
m
t+1)

2) and using that (r̃mt+1)
2 = Et[(r̃

m
t+1)

2]+

ϵt+1 = vart(r̃
m
t+1) + ϵt+1 where cov(ηt; ϵt+1) = 0. By dividing both sides by the unconditional

variance of r̃mt+1 we obtain the expression in (3).

Proof of (9). Note that the covariance term in (5) can be written as

cov
(
βt;Et[r

m
t+1]− b vart(r̃

m
t+1)

)
=E

[
βt(Et[r

m
t+1]− b vart(r̃

m
t+1))

]
−
(
E [βt]E

[
(Et[r

m
t+1]− b vart(r̃

m
t+1))

])
where the first term is equal to

E

[
Et[r

i
t+1r̃

m
t+1]

vart(r̃mt+1)
(Et[r

m
t+1]− b vart(r̃

m
t+1)

]
=E

[
rit+1

]
E
[
r̃mt+1(bt − b)

]
+ cov(rit+1; r̃

m
t+1(bt − b))

= cov(rit+1; ct+1),
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given that E[ct+1] = 0 (shown later), and the second term is equal to zero:

E [βt]E
[
(Et[r

m
t+1]− b vart r̃

m
t+1)

]
= E [βt]

(
E[rmt+1]− b var(r̃mt+1)

)
= 0

Finally, to see that E[ct+1] = 0, note that

E[ct+1] = E
[
r̃mt+1

]
E[bt − b] + cov(r̃mt+1; bt − b)

which is equal to zero because the shock to the market portfolio has a zero mean and is

uncorrelated with (unpredictable by) the ex ante price of risk, bt.

Proof of Proposition 2.b. The covariance between the conditional-risk factor and the

shock to the market is zero:

cov(r̃mt+1; ct+1) = E[r̃mt+1ct+1] = E
[
(r̃mt+1)

2(bt − b)
]
= 0

Proof of Proposition 3. Because the conditional-risk factors have zero mean, we have

that

cov(rit+1; c
k,e
t+1) = E

[
rit+1r̃

k
t+1

(
bt −

E[rkt+1]

vart(rkt+1)

)]
= E

[
Et[r

i
t+1r̃

k
t+1]

(
bt −

E[rkt+1]

vart(rkt+1)

)]
= E

[
βt

(
Et[r

k
t+1]− E[rkt+1]

)]
= cov(βk

t ;Et[r
k
t+1]).

Similarly, for the variance factor, we have that

cov(rit+1; c
k,v
t+1) = −E

[
rit+1r̃

k
t+1

(
b−

E[rkt+1]

vart(rkt+1)

)]
= −E

[
Et[r

i
t+1r̃

k
t+1]

(
b−

E[rkt+1]

vart(rkt+1)

)]
= −E

[
βt

(
b vart(r

k
t+1)− E[rkt+1]

)]
= cov

(
βk
t ;−b vart(r̃

k
t+1)

)
.
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Table 1 

Unconditional Alphas Implied by the Conditional CAPM 
This table reports the unconditional alphas in annual percentage points implied by the conditional CAPM for varying 
values of: (1) 𝜎"#, the unconditional standard deviation of the conditional expected excess return on the market, (2)	𝜎%&'# , 
the unconditional standard deviation of the conditional variance of the market, and (3) 𝜎(#, the unconditional standard 
deviation of the conditional CAPM beta. The correlations between the conditional CAPM beta and the conditional market 
risk premia and variance are denoted by 𝜌(#,"# and 𝜌(#,%&'# . The unconditional alpha in the conditional CAPM is given 
by: 

𝛼, = cov1(𝛽4, 𝐸4) − 	𝑏 × cov1(𝛽4, 𝑣𝑎𝑟4), 

where 𝑏 is the ratio of the unconditional market risk premium to the unconditional market variance. Panel A reports the 
unconditional alphas when considering either the market timing strategy, cov4(𝛽4, 𝐸4), or the volatility timing strategy, 
−	𝑏cov1(𝛽4, 𝑣𝑎𝑟4), in isolation. Panel B reports the total unconditional alpha when combining the market and volatility 
timing effects. In Panel B, we set 𝜌(#,"# = −𝜌(#,%&'# = 0.5. In the left part of Panel B, we set 𝜎%&'# = 0.5 and compute 
the unconditional alpha for a range of unconditional standard deviations of the conditional market risk premium and betas. 
In the right part of Panel B, we set 𝜎"# = 0.5 and compute the unconditional alpha for a range of unconditional standard 
deviations of the conditional market variance and the betas. All returns are measured in annualized percentage points. 
 

           

Panel A: Upper bounds for market timing and volatility timing  

 Market timing   Volatility timing 

 
 

𝜎"#  

 
 

𝜎%&'#  
𝜌(#,"# = 1 0.2 0.4 0.6  𝜌(#,%&'# = −1 0.2 0.4 0.6 

 0.2 0.24 0.48 0.72   0.2 0.60 1.20 1.80 

𝜎(# 0.3 0.72 1.44 2.16  𝜎(# 0.3 1.80 3.60 5.40 

 0.4 0.96 1.92 2.88   0.4 2.40 4.80 7.20 

           

           
Panel B: Joint effect of market and volatility timing  

  
𝜎"#  

   
𝜎%&'#  

𝜎%&'# = 0.5 0.2 0.4 0.6  𝜎"# = 0.5 0.2 0.4 0.6 

 0.2 1.74 1.98 2.22   0.2 1.20 1.80 2.40 

𝜎(# 0.3 2.61 2.97 3.33  𝜎(# 0.3 1.80 2.70 3.60 

 0.4 3.48 3.96 4.44   0.4 2.40 3.60 4.80 
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Table 2 

Summary Statistics 
This table reports summary statistics for the 24 exchanges in our sample. Our sample consist of the union of all U.S. 
common stocks on CRSP tape (“shrcd” equal to 10 or 11) and all global stocks in the Xpressfeed global database (“tcpi” 
equal to 0). The expected market risk premium is calculated using the Kelly and Pruitt (2013) estimator. Expected variance 
is calculated using an AR(1) regression. All returns are in USD. The standard deviation of the market risk premium is 
annualized. The market risk premium is in annual percent. The R2 is based on monthly regressions. Outside the U.S., we 
use the global measures of expected return and variance in all samples. Returns are total log returns. Excess returns are 
simple returns in excess of the risk-free rate. 

Exchange 
Starting 

year 

Median 
number 
of firms 

Mean 
weight in 

global 
portfolio 

  Market risk premium   R2 in predictive regressions 

  St. dev Average   Variance Returns 
Excess 
returns 

AUS 1994 1733 0.018  0.192 8.0%  0.462 0.002 0.004 
AUT 1992 90 0.007  0.185 3.5%  0.441 0.020 0.020 
BEL 1991 157 0.009  0.175 8.0%  0.419 0.017 0.017 
CAN 1986 484 0.023  0.161 6.7%  0.516 0.010 0.011 
CHE 1991 268 0.027  0.149 7.9%  0.328 0.025 0.022 
DEU 1991 1208 0.084  0.174 5.0%  0.379 0.010 0.009 
DNK 1992 165 0.005  0.182 9.0%  0.375 0.013 0.014 
ESP 1991 154 0.014  0.204 6.7%  0.384 0.005 0.002 
FIN 1991 140 0.004  0.242 12.1%  0.530 0.032 0.027 
FRA 1991 766 0.044  0.191 6.6%  0.433 0.012 0.011 
GBR 1988 2105 0.162  0.162 4.4%  0.381 0.013 0.015 
HKG 1995 1209 0.052  0.212 10.9%  0.380 0.005 0.005 
IRL 1995 51 0.002  0.231 6.0%  0.339 0.023 0.015 
ISR 1996 369 0.002  0.206 8.4%  0.353 0.008 0.007 
ITA 1992 279 0.018  0.203 3.9%  0.389 0.000 0.000 
JPN 1989 3612 0.146  0.197 0.7%  0.227 0.003 0.011 
NLD 1991 160 0.017  0.181 7.7%  0.469 0.039 0.032 
NOR 1991 244 0.004  0.231 8.8%  0.454 0.022 0.022 
NZL 1999 131 0.003  0.198 7.9%  0.437 0.017 0.020 
PRT 1997 56 0.002  0.214 4.3%  0.370 0.011 0.009 
SGP 2000 699 0.009  0.170 8.0%  0.398 0.057 0.061 
SWE 1991 380 0.012  0.220 8.4%  0.433 0.014 0.015 
USA 1964 4656 0.420  0.174 6.3%  0.196 0.007 0.013 
WOR 1990 19698 1.000  0.146 5.3%  0.188 0.013 0.015 
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Table 3 

Conditional Risk in Equity Factors 
This table reports results from the evaluation of different equity trading strategies when controlling for conditional risk. 
We control for conditional risk by including a number of conditioning variables in our regression: 𝐸4, the conditional 
market premium, 𝑣𝑎𝑟4 , the conditional market variance, and 𝛽4A, the conditional beta of the factor. For each asset i, we 
implement the following time-series regression: 

𝑟4BCA = 𝛼A + 𝑎C𝑟4BCEFG + 𝑎H𝑟4BCEFG𝐸4 + 𝑎I𝑟4BCEFG𝑣𝑎𝑟4 + 𝑎J𝑟4BCEFG𝛽4A + 𝜀4BC	 

where 𝑟4BCA 	is the excess return to the risk factor i. TAN refers to the tangency portfolio spanned by the other five portfolios 
and the market. “Compensation for conditional risk” is the difference between the unconditional CAPM alpha of the 
factor and the alpha stemming from the regression above. “Compensation for unconditional risk” is the factor’s 
unconditional CAPM beta times the market risk premium. Alphas and compensation for conditional risk are in annual 
percentage points. Below parameter estimates we report t-statistics based on Newey-West standard errors. Statistical 
significance at the 5% level is indicated in bold. The Full U.S. sample is 1964-2022 and the global sample is 1986-2022.  

 HML RMW CMA UMD  BAB  TAN 
       
Panel A: Full U.S. Sample       
       
Alpha in unconditional CAPM 4.58 3.95 4.70 8.63 9.99 4.97  

(2.67) (3.43) (4.54) (4.93) (5.11) (7.91) 
       
Alpha in conditional model 3.33 3.57 3.80 8.05 8.95 4.24 
 (2.08) (3.55) (4.02) (4.61) (4.91) (7.87) 
       
Compensation for conditional risk 1.25 0.38 0.90 0.58 1.04 0.73 
 (2.12) (0.85) (2.68) (0.67) (1.47) (1.98) 
Fraction of alpha explained by conditional risk 0.27 0.10 0.19 0.07 0.10 0.15 
       
Compensation for unconditional risk -0.86 -0.58 -1.04 -0.99 -0.33 0.58 
       
Observations 708 708 708 708 708 708 
Adjusted R2 0.11 0.15 0.22 0.29 0.03 0.30  

      
Panel B: Post 1996 U.S. Sample       
       
Alpha in unconditional CAPM 2.45 6.29 4.43 7.25 10.42 5.23 
 (0.77) (3.30) (2.50) (2.62) (2.92) (4.44) 
       
Alpha in conditional model 0.43 5.62 2.61 5.19 9.19 3.76 
 (0.15) (3.33) (1.64) (1.75) (2.88) (3.81) 
       
Compensation for conditional risk 2.02 0.68 1.82 2.05 1.24 1.47 
 (1.63) (0.77) (2.42) (1.19) (1.38) (2.25) 
Fraction of alpha explained by conditional risk 0.83 0.11 0.41 0.28 0.12 0.28 
       
Compensation for unconditional risk -0.48 -1.64 -1.17 -2.63 -1.74 0.17 
       
Observations 324 324 324 324 324 324 
Adjusted R2 0.15 0.22 0.26 0.32 0.10 0.25 
       
      

continued 
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Table 3 – Continued 

Conditional Risk in Equity Factors 

 HML RMW CMA UMD  BAB  TAN 
       
Panel C: Global Sample       
       
Alpha in unconditional CAPM 3.40 4.80 3.50 8.78 9.92 4.90  

(1.48) (5.69) (2.29) (3.89) (4.36) (7.06) 
       
Alpha in conditional model 1.71 4.90 2.48 8.70 8.96 4.47 
 (0.88) (6.10) (1.88) (3.86) (4.20) (7.35) 
       
Compensation for conditional risk 1.69 -0.09 1.03 0.08 0.95 0.43 
 (1.89) (-0.25) (1.85) (0.09) (1.60) (1.67) 
Fraction of alpha explained by conditional risk 0.50 -0.02 0.29 0.01 0.10 0.09 
       
Compensation for unconditional risk -0.38 -0.55 -0.77 -1.54 -0.54 0.29 
       
Observations 390 390 390 390 390 390 
Adjusted R2 0.15 0.17 0.21 0.23 0.06 0.11 
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Table 4 

Conditional Risk Around the World 
This table reports results from the evaluation of the tangency portfolio (TAN) in the unconditional CAPM and in the 
conditional model across different exchanges. For each exchange, we regress the monthly excess returns for the tangency 
portfolio on the shock to the market factor and the conditional model in equation (41) for the given exchange. TAN refers 
to the tangency portfolio spanned the market and HML, RMW, CMA, UMD, and BAB. “Compensation for conditional 
risk” is the difference between the unconditional CAPM alpha and the alpha of the conditional model. Alphas and 
compensation for conditional risk are in annual percent. We report t-statistics based on Newey-West standard errors. 
Statistical significance at the 5% level is indicated in bold.  

 

 

 
 

 
 
 

 
 
 

CAPM Conditional model 

Fraction 
explained by 
conditional 

risk 

Compensation 
for conditional 

risk  
Unconditional 
risk premium Observations 

Adjusted 
R2 

Exchange alpha 𝑡-stat alpha 𝑡-stat      

AUS 10.83 (7.68) 10.75 7.39 0.01 0.08 0.54 342.00 0.09 
AUT 6.16 (3.34) 5.13 3.06 0.17 1.02 0.53 366.00 0.18 
BEL 5.71 (2.80) 4.45 2.33 0.22 1.26 1.87 378.00 0.30 
CAN 11.70 (6.10) 10.77 6.45 0.08 0.93 0.78 438.00 0.16 
CHE 4.59 (3.94) 3.67 3.69 0.20 0.92 1.72 378.00 0.40 
DEU 6.58 (4.75) 5.79 4.60 0.12 0.78 0.44 378.00 0.12 
DNK 7.86 (5.26) 6.82 4.37 0.13 1.05 2.20 366.00 0.30 
ESP 4.19 (3.44) 3.96 3.35 0.05 0.22 0.72 378.00 0.23 
FIN 8.86 (4.29) 8.44 4.41 0.05 0.42 1.86 378.00 0.34 
FRA 10.95 (5.42) 10.21 5.83 0.07 0.74 0.88 378.00 0.11 
GBR 3.55 (2.72) 3.27 2.60 0.08 0.28 0.50 414.00 0.15 
HKG 9.86 (3.84) 8.88 3.83 0.10 0.97 0.79 330.00 0.16 
IRL 5.13 (2.47) 5.23 2.54 -0.02 -0.10 0.86 330.00 0.25 
ISR 11.28 (6.28) 12.15 8.09 -0.08 -0.87 0.88 318.00 0.11 
ITA 8.16 (4.82) 8.37 5.10 -0.03 -0.21 0.53 366.00 0.14 
JPN 3.75 (3.69) 3.13 3.62 0.17 0.62 0.01 402.00 0.08 
NLD 5.94 (4.66) 5.51 4.38 0.07 0.43 1.32 378.00 0.24 
NOR 9.81 (4.90) 9.65 4.86 0.02 0.17 0.84 378.00 0.11 
NZL 11.09 (8.50) 11.03 8.23 0.01 0.06 0.73 282.00 0.06 
PRT 12.53 (4.51) 11.98 4.23 0.04 0.55 0.56 306.00 0.06 
SGP 8.47 (5.32) 7.58 5.13 0.10 0.89 0.55 270.00 0.09 
SWE 6.88 (3.38) 5.50 3.37 0.20 1.39 1.32 378.00 0.32 
USA 4.97 (6.54) 4.24 7.07 0.15 0.73 0.58 708.00 0.30 
WOR 4.90 (6.01) 4.47 6.75 0.09 0.43 0.29 390.00 0.11 
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Table 5 

Conditional Risk in Equity Factors: Decomposing Conditional Risk 
This table reports of estimates of market timing and variance timing for the major equity factors. For each of the test 
assets, we regress the monthly excess returns on the factor capturing market timing and the factor capturing variance 
timing, as defined in Proposition 3. A positive loading on these factors reflects that conditional betas for the test assets 
covary positively with the conditional market risk premium or negatively with the conditional market variance, 
respectively. Below parameter estimates of betas we report t-statistics based on Newey-West standard errors. Statistical 
significance at the 5% level is indicated in bold. TAN refers to the tangency portfolio spanned by the other five portfolios 
and the market. The U.S. sample is 1964-2022 and the global sample is 1986-2022.  

 HML RMW CMA UMD  BAB  TAN 
       
Panel A: U.S. Sample       
       
Loading on conditional expected return factor 0.30 0.06 0.26 0.40 0.53 0.21  

(1.92) (0.67) (2.77) (1.74) (2.43) (1.50) 
       
Loading on conditional market variance factor -0.18 0.24 0.02 0.94 0.55 0.27 
 (-0.78) (1.86) (0.23) (3.10) (2.13) (2.29) 
       
Panel B: Global sample        
       
Loading on conditional expected return factor 0.64 0.00 0.46 0.06 0.57 0.15 
 (2.65) (0.57) (3.21) (0.79) (3.04) (0.86) 
       
Loading on conditional market variance factor -0.06 0.01 0.15 0.87 0.18 0.14 
 (-0.12) (1.08) (2.42) (2.67) (0.99) (1.04) 
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Table 6 

Conditional Risk in Equity Factors 
This table reports the results when regressing conditional rolling window betas of equity factors onto the market risk 
premium and the conditional market variance: 

𝑟𝑜𝑙𝑙𝑖𝑛𝑔	𝑤𝑖𝑛𝑑𝑜𝑤	𝛽4A = 𝑎A + 𝑎C𝐸4 + 𝑎H𝑣𝑎𝑟4 +	𝜖4 

where 𝛽4A is the five-year rolling window CAPM beta of factor i, 𝐸4 is the conditional market risk premium, and var1.	The 
table reports the parameter estimates 𝑎C and 𝑎H.	Below parameter estimates we report t-statistics based on Newey-West 
standard errors. TAN refers to the tangency portfolio spanned by the other five portfolios and the market. Statistical 
significance at the 5% level is indicated in bold. The U.S. sample is 1964-2022 and the sample is 1986-2022.  

 HML RMW CMA UMD  TAN 
      
Panel A: U.S. Sample      
      
Loading on conditional market risk premium 5.36 -8.57 12.04 4.02 3.03  

(0.77) (-1.44) (2.28) (0.44) (1.14) 
      
Loading on conditional market variance 1.62 -2.59 -8.30 -30.06 -7.34 
 (0.26) (-0.42) (-2.04) (-2.65) (-2.65) 
      
Observations 702 702 702 708 702 
Adjusted R2 0.01 0.01 0.05 0.03 0.05 
      
      
Panel B: Global sample 
 
 
  

      
      
Loading on conditional market risk premium 2.01 -6.97 -26.65 -7.82 -8.88 
 (0.41) (-2.29) (-0.97) (-0.80) (-1.37) 
      
Loading on conditional market variance 2.93 12.77 25.33 -41.29 6.46 
 (0.27) (2.65) (0.62) (-3.18) (0.78) 
      
Observations 384 384 384 390 384 
Adjusted R2 0.03 0.04 0.07 0.02 0.02 
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Table 7 

Conditional Risk Using Other Methods: Short-Window Regressions 
This table reports results from short-horizon CAPM regressions. For each calendar year, we regress monthly excess return 
on a given test asset on the monthly excess returns of the market portfolio. For each test asset, we average across the 
intercepts estimates each year to get the average conditional alpha for the test asset. The unconditional CAPM alpha is 
the intercept from a full-sample regression of excess returns to the test asset onto the excess returns on the market. The 
sample is 1996-2022 in Panel A and 1964-2022 in Panel B. All numbers are annualized. 

 HML RMW CMA UMD  BAB  TAN 
       
Panel A: Post 1996 U.S. Sample        
Alpha in unconditional CAPM 2.00 6.50 4.24 7.74 9.22 5.11 
Alpha in conditional model 0.34 3.58 3.27 6.89 7.44 3.80 
       
Compensation for conditional risk 1.66 2.91 0.97 0.85 1.78 1.31 
Fraction of alpha explained by conditional risk 0.83 0.45 0.23 0.11 0.19 0.26 

 

Panel B: Full U.S. Sample        
Alpha in unconditional CAPM 4.47 3.98 4.65 8.96 9.10 4.88 
Alpha in conditional model 2.27 3.29 3.43 7.98 8.26 4.05 
       
Compensation for conditional risk 2.20 0.69 1.22 0.99 0.84 0.83 
Fraction of alpha explained by conditional risk 0.49 0.17 0.26 0.11 0.09 0.17 
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Table 8 

Conditional Risk Using Other Methods: Boguth, Carlson, Fisher, and Simutin (2011) 
This table reports estimates of conditional risk in equity factors after hedging time-varying betas using the methods in 
Boguth et al. (2011). When using the proxy method to hedge, we subtract from the factor the time-series of conditional 
betas times the time-series of realized excess market returns. When using the IV method, we subtract from the factor the 
estimated betas in the IV regressions times the time-series of the regressors. The simple IV regressions use only the lagged 
betas as instruments and the full IV regressions use lagged betas, the dividend-price ratio, the risk-free rate, and the term 
spread.  Below the estimates we report t-statistics based on Newey-West standard errors. The U.S. and global samples 
run from 1964-2022 and 1986-2022. 
 
 
 

HML RMW CMA UMD BAB TAN 

Panel A: Post 1996 U.S. Sample       

       

Unconditional alpha 2.45 6.29 4.43 7.25 10.42 5.23 
       
Conditional alpha (proxy) 0.91 5.94 2.66 5.87 10.42 4.37 
Conditional alpha (simple IV) 0.92 5.97 2.75 5.52 10.42 3.98 
Conditional alpha (full IV) 0.42 5.25 2.35 6.26 9.01 3.54 

Fraction of alpha explained by conditional risk:    

 

 

 

Proxy  0.63 0.06 0.40 0.19 0.00 0.16 
Simple IV 0.62 0.05 0.38 0.24 0.00 0.24 
Full IV 0.83 0.17 0.47 0.14 0.14 0.32 
Panel B: Full U.S. Sample       

       

Unconditional alpha 4.58 3.95 4.70 8.63 9.99 4.97 
       
Conditional alpha (proxy) 3.53 3.91 3.95 8.61 9.99 4.70 
Conditional alpha (simple IV) 3.86 3.91 4.16 8.61 9.99 4.60 
Conditional alpha (full IV) 3.14 3.46 3.79 9.53 9.70 4.58 

Fraction of alpha explained by conditional risk:     

Proxy  0.23 0.01 0.16 0.00 0.00 0.05 
Simple IV 0.16 0.01 0.11 0.00 0.00 0.07 
Full IV 0.31 0.12 0.19 -0.10 0.03 0.08 
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Table 9 

Managed Portfolios 
This table reports results of the performance of managed portfolios in the conditional CAPM. For each of the five major 
risk factors, we construct managed portfolios that scales the position in the portfolio based on the conditional price of risk 
on the portfolio. We regress the excess returns to these portfolios on the market portfolio and the underlying factor, as 
explained in the text, to estimate unconditional alphas. We next estimate alphas in the conditional model by augmenting 
the unconditional model by the conditional market risk factors from our main specification. The table reports t-statistics 
for the two different alphas along with the fraction of conditional risk explained by the inclusion of the conditional factors. 
The sample is U.S. 1964-2022.  

  HML RMW CMA UMD BAB 
      
Alpha in unconditional model  2.39 0.25 0.61 9.50 11.70 
 (1.41) (0.24) (0.48) (4.62) (7.09) 
Alpha in conditional model  1.77 0.32 -0.07 8.55 11.97 
 (1.04) (0.32) (-0.05) (4.14) (7.22) 
      
Compensation for conditional risk 0.62 -0.07 0.68 0.95 -0.27 

Fraction of unconditional alpha explained by  
conditional risk: 

0.26 -0.28 1.11 0.10 -0.02 

      
Observations 708 708 708 708 708 
Adjusted R2 0.63 0.71 0.59 0.62 0.61 
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Table 10 

Conditional Risk in Multifactor Models 
This table reports results from evaluation of the tangency portfolio in conditional multifactor models. For each of the 
factors HML, RMW, CMA, UMD, and BAB, we study how much of the return to the tangency portfolio that can be 
explained by the conditional risk with respect to the factors. For each factor, we first estimate the unconditional alpha of 
the tangency portfolio with respect to the market and the given factor. We next estimate alphas in a conditional model by 
augmenting the unconditional model with variables capturing conditional dynamics of the given risk factor. For each 
factor, we include two additional right-hand side variables, namely the factor in question multiplied by the conditional 
expected return on the factor and the conditional variance of the factor. TAN refers to the tangency portfolio spanned by 
the market, HML, RMW, CMA, UMD, and BAB. Compensation for conditional risk is the annualized difference in the 
alphas estimated with and without controlling for conditional factor risk. Statistical significance at the 5% level is 
indicated in bold. The U.S. sample is 1964-2022 and the global and international samples are 1986-2022.  

 Tangency portfolio 

Factor used on the right-hand side: HML RMW CMA UMD BAB 
      
Alpha without controls for conditional factor risk 4.26 4.03 3.26 3.72 2.33 
 (8.47) (8.23) (7.33) (7.88) (6.11) 
      
Alpha with controls for conditional factor risk  4.06 4.07 3.14 3.69 2.47 
 (8.44) (8.81) (7.62) (7.73) (6.46) 
      
Compensation for conditional factor 𝑘 risk 0.20 -0.04 0.12 0.02 -0.14 
Fraction of alpha explained by conditional risk   
conditional risk: 

0.05 -0.01 0.04 0.01 -0.06 
      
Observations 708 708 708 708 708 
Adjusted R2 0.31 0.36 0.50 0.35 0.61 
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Table A1 

Inputs to Conditional-Risk Factors 
This table shows the R2 for the expected return and variance for the individual risk factors. These inputs are used for 
constructing conditional-risk factors for these risk factors. The procedure for estimating expected return and variance 
follows that for the market used in the main conditional-risk factor.   

 US  World 
 R2 excess returns R2 variance  R2 excess returns R2 variance 

HML 0.02 0.51  0.00 0.43 

RMW 0.02 0.48  0.01 0.24 

CMA 0.01 0.37  0.00 0.34 

UMD 0.01 0.48  0.01 0.48 

BAB 0.03 0.56  0.02 0.53 
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Table A2 

Conditional Cash Flow- and Discount Rate Risk 
This table reports results from evaluation of different equity strategies in the conditional CAPM. We regress quarterly 
excess returns of different factors on the shock to the market portfolio, the conditional discount-rate-risk factor and the 
conditional cash-flow-risk factor. TAN refers to the tangency portfolio spanned by the market, HML, RMW, CMA, UMD, 
and BAB. “Compensation for conditional risk” is the conditional risk beta multiplied by the risk premium on the 
conditional risk factor. Alphas and compensation for conditional risk are in annual percent. Below parameter estimates 
we report t-statistics based on Newey-West standard errors. Statistical significance at the 5% level is indicated in bold. 
The U.S. and global samples run from 1964-2015 and 1986-2015. 

       
 
 HML RMW CMA UMD BAB TAN 
 
Panel A: U.S. Sample 
     
Alpha 0.93 0.75 0.79 2.02 2.28 1.28 
 (2.04) (2.43) (2.85) (3.03) (3.67) (7.53) 

 

 

 

       
Market beta -0.29 -0.17 -0.25 -0.12 -0.02 0.07 
 (-2.35) (-1.77) (-3.03) (-0.84) (-0.14) (1.31) 
       
Conditional cash flow beta 
factorfactorflowalph(simple IV) 

-0.01 -0.08 -0.02 0.02 -0.02 -0.03 
 (-0.07) (-1.20) (-0.37) (0.20) (-0.26) (-1.02) 
       
Conditional discount rate beta 
Fraction of alpha explained by 
conditional risk: 

0.09 0.07 0.09 0.06 0.08 0.04 
 (1.72) (1.76) (3.44) (0.84) (1.27) (1.65) 

 
       
Observations 192 192 192 192 192 192 
Adjusted R2 0.08 0.10 0.17 0.00 0.01 0.04 

 
     
 
Panel B: Global Sample 
     
Alpha 1.23 0.25 0.60 1.69 1.85 1.21 
 (2.53) (0.72) (1.89) (2.08) (2.64) (4.41) 
       
Market beta -0.27 -0.23) -0.17 -0.14 -0.15 0.03 
 (-1.86) (-3.24) (-2.06) (-0.70) (-0.97) (0.41) 
       
Conditional cash flow beta 
factorfactorflowalph(simple IV) 

0.01 -0.02) -0.03 -0.06 0.05 0.00 
 (0.11) (-0.59) (-0.73) (-0.98) (1.08) (-0.13) 
       
Conditional discount rate beta 
Fraction of alpha explained by 
conditional risk: 

0.07 0.04) 0.04 -0.01 0.09 0.04 
 (1.83) (2.28) (2.37) (-0.29) (3.69) (3.81) 
       
Observations 102 102 102 102 99 102 
Adjusted R2 0.14 0.15 0.14 -0.01 0.12 0.10 
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Figure 1 

Time-Variation in the Market Risk Premium  
This figure shows two measures of the (annualized) market risk premium. The solid blue line shows the estimate obtained 
using the methodology in Kelly and Pruitt (2013). The dotted green line is expected returns estimated as the inverse of 
the CAPE ratio plus expected inflation on the 10-year horizon from the Michigan survey. The figure shows the equity 
premium as of December each year between 1982 and 2022 in the US.   
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Figure 2 

Standard Deviation in Levels and Changes of Conditional Betas 
For each stock, we compute the monthly horizon conditional market beta in two ways: 1) using a five-year rolling window 
to compute the CAPM beta or 2) using the IPCA method of Kelly, Moskowitz, and Pruitt (2021). For each stock, we use 
the conditional betas to compute the unconditional standard deviations of the levels and changes in the betas. Subfigure 
(a) shows the distribution of the unconditional standard deviation of the levels in the conditional betas for individual 
stocks. Subfigure (b) shows the distribution of the unconditional standard deviation of the changes in the conditional 
betas. The sample is US 1963-2014. 

Panel A: Unconditional standard deviation of conditional betas 

 

Panel B: Unconditional standard deviation of changes in conditional betas 
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Figure 3 

Conditional Price of Risk 
This figure plots the time series of the conditional price of risk minus the unconditional price of risk. The (conditional) 
price of risk is the (conditional) market risk premium relative to the (conditional) variance. Panel A plots the price of 
risk in the U.S. sample and Panel B plots the price of risk in the global sample. 
 

Panel A: U.S. conditional price of risk (𝑏4 − 𝑏) 
 

 
 
 

Panel B: Global conditional price of risk (𝑏4 − 𝑏) 
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Figure 4 
Compensation for Conditional Risk in HML for G10 Countries  

This figure shows the compensation for conditional risk and the fraction of the unconditional CAPM alpha in HML that 
is explained by conditional risk in ten G10 countries. “Compensation for conditional risk” is the difference between the 
alpha of the unconditional CAPM and the alpha of the conditional model in equation (41), measured in annual percentage 
points. HML is the Fama and French (1993) value factor. We exclude Italy because the value factor has negative alpha in 
this country.   
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Figure 5 

Compensation for Conditional Risk Around the World 
This figure shows the annualized compensation for conditional risk in percentage points. We regress the tangency 
portfolio (TAN) in each country on: i) the unconditional CAPM and ii) the conditional model in equation (41). The 
compensation for conditional risk is the difference between the unconditional alpha and the conditional alpha. TAN refers 
to the tangency portfolio spanned by the five equity factors HML, RMW, CMA, UMD, and BAB along with the market. 
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