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Comparison of two groups at a single timepoint

Number of subjects (N) in each of two groups (Fleiss, 1986):

N =
2(zα + zβ)

2σ2

(μ1 − μ2)2
=

2(zα + zβ)
2

[(μ1 − μ2)/σ]2

• zα is the value of the standardized score cutting off α/2
proportion of each tail of a standard normal distribution (for
a two-tailed hypothesis test)

• zβ is the value of the standardized score cutting off the upper
β proportion

• σ2 is the assumed common variance in the two groups

• μ1 − μ2 is the difference in means of the two groups
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Some common choices:

• zα = 1.645, 1.96, 2.576 for 2-tailed .10, .05, and .01 test

• zβ = .842, 1.036, 1.282 for power = .8, .85. and .90

• effect size = (μ1 − μ2)/σ = .2, .5, .8 for “small,” “medium,”
and “large” effects (Cohen, 1988)
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Example

• zα = 1.96 2-tailed .05 hypothesis test

• zβ = .842 power = .8

• effect size (μ1 − μ2)/σ = .5

N =
2(1.96 + .842)2

(.5)2
= 15.7/.25 = 62.8

⇒ need 63 subjects in each group
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Rule of thumb: N ≈ (4/δ)2, where δ = effect size
(for power = .8 for a 2-tailed .05 test)

effect size (δ) N per group (4/δ)2

.1 1571 1600

.2 394 400

.3 176 178

.4 100 100

.5 64 64

.6 45 44

.7 34 33

.8 26 25

.9 21 20
1.0 17 16

Amaze your friends with your sample size determination abilities!

5

Comparison of two groups across time
consistent difference across time

Number of subjects N in each of two groups (Diggle et al., 2002)

N =
2(zα + zβ)

2 (1 + (n− 1)ρ)

n[(μ1 − μ2)/σ]2

• σ2 is the assumed common variance in the two groups

• μ1 − μ2 is the difference in means of the two groups

• n is the number of timepoints

• ρ is the assumed correlation of the repeated measures
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Example

• zα = 1.96 2-tailed .05 hypothesis test

• zβ = .842 power = .8

• effect size (μ1 − μ2)/σ = .5

• n = 2 timepoints

• ρ = .6 correlation of repeated measures

N =
2(1.96 + .842)2(1 + (2− 1)× .6)

2× (.5)2
=

(15.7)(1.6)

(2)(.25)
= 50.3

⇒ need approximately 50 subjects in each group

if ρ = 0 then N = 31.4 (cross-sectional)
if ρ = 1 then N = 62.8 (one-timepoint)
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Stata code: longt.do

/* longitudinal t-test: longt.do

determines number of subjects per group

power = .8 for a 2-tailed .05 test

in the ’args’ statement below:

n = number of repeated observations per subject

icc = intraclass correlation

effsize = effect size

*/

args n icc effsize

drop _all

set obs 1

gen za = invnormal(.975)

gen zb = invnormal(.80)

gen num = (2*(za + zb)^2)*(1 + (‘n’-1)*‘icc’)

gen den = ‘n’*(‘effsize’^2)

gen npergrp = num/den

noisily display "number of subjects per group is " %8.2f npergrp

exit
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. cd "U:\Stata_long"

U:\Stata_long

. run longt 5 .4 .5

number of subjects per group is 32.65

. run longt 5 .5 .5

number of subjects per group is 37.67

. run longt 5 .6 .5

number of subjects per group is 42.70
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SAS code

* determines number per group;

* 5 timepoints (ICC=.4);

* effect size of .5;

* power = .8 for a 2-tailed .05 test;

DATA one;

n = 5;

za = PROBIT(.975);

zb = PROBIT(.8);

rho = .4;

effsize = .5;

num = (2*(za + zb)**2)*(1 + (n-1)*rho);

den = n*(effsize**2);

npergrp = num/den;

PROC PRINT;VAR npergrp;

RUN;
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Comparing two groups across timepoints - balanced case

As in Overall and Doyle (1994), sample size of contrast Ψc of
group population means across n timepoints:

N =
2(zα + zβ)

2σ2c
Ψ2
c

with

Ψc =
n∑
i=1

ci(μ1i − μ2i)

σ2c =
n∑
i=1

c2iσ
2
i + 2

n∑
i<j

cicjσij

• σ2i = common variance in the two groups at timepoint i

• σij = common covariance in the two groups between
timepoints i and j

• ci = contrast applied at timepoint i
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If the sample size is known and the degree of power is to be
determined, the formula can be re-expressed as:

zβ =

√√√√√√√√√
NΨ2

c

2σ2c
− zα =

√√√√√√√√√
Ψ2
c

V (Ψ̂c)
− zα

where the variance of the sample contrast Ψ̂c equals

V (Ψ̂c) =
2

N
σ2c
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Example

• zα = 1.96 2-tailed .05 hypothesis test

• zβ = .842 power = .8

• n = 2 timepoints

• variance-covariance of repeated measures

V (y) =

⎡
⎢⎢⎢⎢⎣
1 .6
.6 1

⎤
⎥⎥⎥⎥⎦

13

I. Average group difference over time

• mean difference μ1 − μ2 = .5 at both t1 and t2

• time-related contrasts: c1 = c2 = 1/2 (i.e., average over time)

Ψc =
1

2
(.5) +

1

2
(.5) = .5

σ2c =

⎛
⎜⎜⎜⎝
1

2

⎞
⎟⎟⎟⎠
2
+

⎛
⎜⎜⎜⎝
1

2

⎞
⎟⎟⎟⎠
2
+ 2

⎛
⎜⎜⎜⎝
1

2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
1

2

⎞
⎟⎟⎟⎠ (.6) = .8

contrast effect size δ = Ψc/σc = .5/
√
.8 = .56

N =
2(1.96 + .842)2

(.56)2
= 50
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Notice

• if ρ = 1, then σ2c = 1, δ = .5, N = 63 (one-timepoint)

• if ρ = 0, then σ2c = 1/2, δ = 1, N = 16 (cross-sectional)

where ρ is the assumed correlation of the repeated measures
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II. Group difference across time

• mean difference μ1 − μ2 = 0 at t1 and .5 at t2

• time-related contrasts: c1 = −1 and c2 = 1

Ψc = −1(0) + 1(.5) = .5

σ2c = (−1)2(1)2 + (1)2(1)2 + 2(−1)(1)(.6) = .8

contrast effect size δ = Ψc/σc = .5/
√
.8 = .56

N =
2(1.96 + .842)2

(.56)2
= 50
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Notice

• if N was calculated based on t2 only, then N = 63

H0 : μ12 = μ22 �= H0 : (μ12 − μ11) = (μ22 − μ21)

• if ρ = 1, then σ2c = 0

• if ρ = .9, then σ2c = .2, δ = 1.12, N = 14

• if ρ = 0, then σ2c = 1/2, δ = .25, N = 63 cross-sectional
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For average group effect over time

• as ρ ↑, then N ↑
since it’s a between-subjects comparison of averages

⇒ less subjects needed if the averages are based on more
independent data

For group difference across time

• as ρ ↑, then N ↓
since it’s a between-subjects comparison of a within-subjects
comparison

⇒ less subjects needed if the subject differences (i.e., pre to
post) are based on more reliable data
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More than 2 timepoints

• mean differences across time

• var-covar and/or correlation of repeated measures

• time-related contrast

3 timepoints

t1 t2 t3
1/3 1/3 1/3 average across time
-1 0 1 linear trend
1 -2 1 quadratic trend

trend coefficients from tables of orthogonal polynomials
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4 timepoints

t1 t2 t3 t4
1/4 1/4 1/4 1/4 average across time
-3 -1 1 3 linear trend
1 -1 -1 1 quadratic trend
-1 3 -3 1 cubic trend

often investigators expect

• overall group difference, or

• group by (approximately) linear time interaction
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Stata code: longt contrast.do

/* determines number of subjects per group

3 timepoints

linear increasing effect sizes of 0 .25 .5

group by linear contrast across time

AR1 structure with rho=.5

power = .8 for a 2-tailed .05 test

*/

mata

za = invnormal(.975)

zb = invnormal(.80)

meandiff = (0, .25, .5)

contrast = (-1, 0, 1)

corrmat = ( 1 , .5 , .25 \

.5 , 1 , .5 \

.25 , .5 , 1 )

contdiff = contrast * meandiff’

contvar = contrast * corrmat * contrast’

NperGrp = ((2*(za+zb)^2) * contvar) / (contdiff^2)

NperGrp

end
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SAS IML code

* determines number per group;

* 3 timepoints;

* linear increasing effect sizes of 0 .25 .5;

* group by linear contrast across time;

* AR1 structure with rho=.5;

* power = .8 for a 2-tailed .05 test;

PROC IML;

za = PROBIT(.975);

zb = PROBIT(.8);

meandiff = {0, .25, .5};

contrast = {-1, 0, 1};

corrmat = { 1 .5 .25 ,

.5 1 .5 ,

.25 .5 1 };

contdiff = T(contrast) * meandiff;

contvar = T(contrast)*corrmat*contrast;

NperGrp = ((2*(za+zb)**2) * contvar)/(contdiff**2);

PRINT NperGrp;
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What about Attrition?

• could use N from calculations as N for last timepoint

– e.g., N = 50, retention at last timepoint = .9
⇒ start the study with 50/.9 = 56 subjects

• can build the retention rate information into the sample size
formula

– Hedeker, Gibbons, & Waternaux (1999), JEBS, 24:70-93
program RMASS2 available at

https://hedeker-sites.uchicago.edu/page/methodological-publications-1987-1999

(named RMASS2.txt - need to download it and then rename it as RMASS2.exe)
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Comparing two groups across timepoints
unbalanced case

Denote sample size in first group as N1i and second group as N2i
at timepoint i (i = 1, . . . , n). The variance of the sample
contrast Ψ̂c equals

V (Ψ̂c) =
n∑
i=1

c2iσ
2
i

⎛
⎜⎜⎜⎝
1

N1i
+

1

N2i

⎞
⎟⎟⎟⎠

+2
n∑
i<j

cicjσij

⎛
⎜⎜⎜⎜⎜⎝

1√
N1iN1j

+
1√

N2iN2j

⎞
⎟⎟⎟⎟⎟⎠

Notice, that if N1i = N2i = N , then

V (Ψ̂c) =
2

N

n∑
i=1

c2iσ
2
i + 2

n∑
i<j

cicjσij as before
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The current formulation is fine to calculate power, given the
varying group sample sizes across time, for the sample contrast:

zβ =

√√√√√√√√√
Ψ2
c

V (Ψ̂c)
− zα

However, to figure out the necessary group sample sizes given
power, more work is needed since these (N1i and N2i) vary
across time in the equation for V (Ψ̂c):

V (Ψ̂c) =
n∑
i=1

c2iσ
2
i

⎛
⎜⎜⎜⎝
1

N1i
+

1

N2i

⎞
⎟⎟⎟⎠

+2
n∑
i<j

cicjσij

⎛
⎜⎜⎜⎜⎜⎝

1√
N1iN1j

+
1√

N2iN2j

⎞
⎟⎟⎟⎟⎟⎠
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Use sample size in first group at first timepoint (N11) as a
reference

• define retention rates for this group as r1i for timepoints
i = 1, . . . , n, which indicate the proportion of N1 subjects
observed at timepoint i
(note that r11 = 1 and N1i = r1iN11)

• similarly, define N21 and r2i for group two

Then,

V (Ψ̂c) =
1

N11

⎡
⎢⎢⎢⎣
n∑
i=1

c2iσ
2
i

⎛
⎜⎜⎜⎝
1

r1i
+

1

r2i

N11

N21

⎞
⎟⎟⎟⎠

+2
n∑
i<j

cicjσij

⎛
⎜⎜⎜⎜⎜⎝

1√
r1ir1j

+
N11

N21

1√
r2ir2j

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦
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and, denoting the ratio of sample sizes at the first timepoint
(N11/N21) as N.1, then

V (Ψ̂c) =
1

N11

⎡
⎢⎢⎢⎣
n∑
i=1

c2iσ
2
i

⎛
⎜⎜⎜⎝
1

r1i
+
N.1

r2i

⎞
⎟⎟⎟⎠

+2
n∑
i<j

cicjσij

⎛
⎜⎜⎜⎜⎜⎝

1√
r1ir1j

+N.1
1√

r2ir2j

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦
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If the retention rates are equal for the two groups across time
r1i = r2i = ri, then

V (Ψ̂c) =
N.1 + 1

N11

⎡
⎢⎢⎢⎢⎢⎣
n∑
i=1

c2iσ
2
i

ri
+ 2

n∑
i<j

cicjσij√
rirj

⎤
⎥⎥⎥⎥⎥⎦

=
N.1 + 1

N11
σ2rc

where σ2rc extends σ
2
c given earlier, namely

σ2c =
n∑
i=1

c2iσ
2
i + 2

n∑
i<j

cicjσij

for the case where sample sizes vary across timepoints (although
group retention rates are assumed equal)
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To calculate power for any of the above variance formulations of
the sample contrast,

zβ =

√√√√√√√√√
Ψ2
c

V (Ψ̂c)
− zα

In particular, for the case of common retention rates across time

zβ =

√√√√√√√√√

⎛
⎜⎜⎜⎝

N11

N.1 + 1

⎞
⎟⎟⎟⎠
Ψ2
c

σ2rc
− zα

where N.1 is the sample size ratio between groups
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Re-expressing, the number of subjects needed in the first group
at the first timepoint equals:

N11 =
(N.1 + 1)(zα + zβ)

2σ2rc
Ψ2
c

Based on

• sample size ratio between groups N.1 at the first timepoint

• equal retention rates ri across time

⇒ required sample size at each timepoint for both groups can be
calculated in a relatively simple way
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RMASS2: Repeated Measures with Attrition: Sample Sizes for 2 Groups

Donald Hedeker and Suna Barlas

• Calculates sample size for a 2-group repeated measures design

• Allows for attrition and a variety of variance-covariance
structures for the repeated measures

• Details on the methods can be found in Hedeker, Gibbons,
and Waternaux (1999, Journal of Educational and
Behavioral Statistics, 24:70-93)

• Program runs at the “Command Prompt” and the user is
queried for program parameters

• For each query, the default parameter value is given in [ ];
hitting a carriage return sets the parameter to the default

• download RMASS2.EXE and RMASS2.PDF at
https://hedeker-sites.uchicago.edu/page/methodological-publications-1987-1999
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Program Parameters

fout - output file name

n - number of timepoints (maximum is 20)

alpha - alpha level for statistical test (possible values = .01, .05, .10)

nside - sided test (1 or 2)

beta - level of power (from .5 to .95 in multiples of .05)

ratio - ratio of sample sizes (group 1 to group 2)

attrit - attrition across time (1=yes, 2=no)

• if attrit=1 - attrition rates between adjacent timepoints
(assumed equal for both groups)

mtype - type of expected group differences (0=means, 1=effect sizes)

• if mtype=0 - expected difference in group means at each timepoint

• if mtype=1 - estype - effect size type
(0=constant, 1=linear trend, 2=user-defined)

– if estype=0 - expected effect size (equal across time)

– if estype=1 - expected effect size at last timepoint

– if estype=2 - expected effect size at each timepoint
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vtype - variance-covariance structure of repeated measures

• if vtype=0 (no random effects) Σy = σ2
jR, j = 1, ...n timepoints

– standard deviation at each timepoint σj
– correlation structure of repeated measures (R: 1=AR1; 2=toeplitz
or banded matrix; 3=all correlations equal)

• if vtype=1 (random-effects structure) Σy = XΣυX
′ + σ2Ω

– nr = number of random effects (maximum is 4)

– random-effects variance-covariance matrix Συ

– random-effects design matrix X (n × nr elements)

– error variance σ2 and autocorrelated error structure Ω

contrast - type of time-related contrast for statistical test
(0=average across time, 1=linear trend, 2=user-defined)

• if contrast=2 - contrast coefficient at each timepoint

• this selection should generally match the effect size type selected
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Example

• zα = 1.96 2-tailed .05 hypothesis test

• zβ = .842 power = .8

• n = 2 timepoints, retention rates r1 = 1 and r2 = .8

• sample size ratio N.1 = 1

• variance-covariance of repeated measures

V (y) =

⎡
⎢⎢⎢⎢⎣
1 .6
.6 1

⎤
⎥⎥⎥⎥⎦
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I. Average group difference over time

• mean difference μ1 − μ2 = .5 at both t1 and t2

• time-related contrasts: c1 = c2 = 1/2

Ψc =
1

2
(.5) +

1

2
(.5) = .5

σ2rc =

⎛
⎜⎜⎜⎝
1

2

⎞
⎟⎟⎟⎠
2
+
(1/2)2

.8
+ 2

⎛
⎜⎜⎜⎝
1

2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
1

2

⎞
⎟⎟⎟⎠ (.6)/

√
.8 = .9

contrast effect size δ = Ψc/σrc = .5/
√
.9 = .53

N11 =
2(1.96 + .842)2

(.53)2
= 56.4

Note:if r2 = 1 then N11 = 50
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II. Group difference across time

• mean difference μ1 − μ2 = 0 at t1 and .5 at t2

• time-related contrasts: c1 = −1 and c2 = 1

Ψc = −1(0) + 1(.5) = .5

σ2rc = (−1)2(1)2 +
(1)2(1)2

.8
+ 2(−1)(1)(.6)/

√
.8 = .91

contrast effect size δ = Ψc/σrc = .5/
√
.91 = .525

N11 =
2(1.96 + .842)2

(.525)2
= 57.1

Note:if r2 = 1 then N11 = 50
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Dichotomous outcomes

Comparison of two groups at a single timepoint

Number of subjects (N) in each of two groups (Fleiss, 1981):

N =

⎡
⎣zα(2p̄q̄)1/2 + zβ(p1q1 + p2q2)

1/2
⎤
⎦2

(p1 − p2)2

• p1 = response proportion in group 1 (q1 = 1− p1)

• p2 = response proportion in group 2 (q2 = 1− p2)

• p̄ = (p1 + p2)/2

• q̄ = 1− p̄
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Example

• zα = 1.96 2-tailed .05 hypothesis test

• zβ = .842 power = .8

• p1 = .5 and p2 = .7

N =

⎡
⎣1.96(2× .6× .4)1/2 + .842(.5× .5 + .7× .3)1/2

⎤
⎦2

(.5− .7)2

= 93.03
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Dichotomous outcomes - longitudinal case

The number of subjects (N) in each of two groups for a
consistent difference in proportions p1 − p2 between two groups
across n timepoints (Diggle et al., (2002):

N =

⎡
⎢⎣zα(2p̄q̄)

1
2 + zβ(p1q1 + p2q2)

1
2

⎤
⎥⎦
2
(1 + (n− 1)ρ)

n(p1 − p2)2

• p1 = response proportion in group 1 (q1 = 1− p1)

• p2 = response proportion in group 2 (q2 = 1− p2)

• p̄ = (p1 + p2)/2

• q̄ = 1− p̄

• ρ is the common correlation across the n observations
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Example

• zα = 1.96 2-tailed .05 hypothesis test

• zβ = .842 power = .8

• n = 2 timepoints

• correlation of repeated outcomes = .6

• p1 = .5 and p2 = .7

N =

⎡
⎢⎣1.96(2× .6× .4)

1
2 + .842(.5× .5 + .7× .3)

1
2

⎤
⎥⎦
2
(1 + (2− 1).6)

2(.5− .7)2

= 74.42

if ρ = 0 then N = 46.51 (cross-sectional)
if ρ = 1 then N = 93.03 (one-timepoint)
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Stata code: longp.do

/* longitudinal difference in proportions test: longp.do

determines number of subjects per group

power = .8 for a 2-tailed .05 test

in the ’args’ statement below:

n = number of repeated observations per subject

icc = intraclass correlation

p1 = proportion for group 1

p2 = proportion for group 2

*/

args n icc p1 p2

drop _all

set obs 1

gen za = invnormal(.975)

gen zb = invnormal(.80)

gen q1 = 1-‘p1’

gen q2 = 1-‘p2’

gen pbar = (‘p1’+‘p2’)/2

gen qbar = (q1+q2)/2

gen num = ((za*sqrt(2*pbar*qbar) + zb*sqrt(‘p1’*q1 + ‘p2’*q2))^2)*(1 + (‘n’-1)*‘icc’)

gen den = ‘n’*((‘p1’-‘p2’)^2)

gen npergrp = num/den

noisily display "number of subjects per group is " %8.2f npergrp

exit
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. cd "U:\Stata_long"

U:\Stata_long

. run longp 4 .4 .1 .2

number of subjects per group is 109.43

. run longp 4 .5 .1 .2

number of subjects per group is 124.35

. run longp 4 .6 .1 .2

number of subjects per group is 139.27
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SAS code

* determines number per group;

* 5 timepoints (ICC=.4);

* difference in proportions of .5 and .67 (OR=2);

* power = .8 for a 2-tailed .05 test;

DATA one;

za = PROBIT(.975);

zb = PROBIT(.8);

n = 5;

p1 = .5; p2 = 2/3;

q1 = 1-p1; q2 = 1-p2;

pbar = (p1+p2)/2;

qbar = (q1+q2)/2;

rho = .4;

num = ((za*SQRT(2*pbar*qbar) + zb*SQRT(p1*q1 + p2*q2))**2)

*(1 + (n-1)*rho);

den = n*((p1-p2)**2);

npergrp = num/den;

PROC PRINT;VAR npergrp;

RUN;
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Calculate Power via Simulation

• Randomly generate large number of datasets (NumDat) with
assumed parameter values

– NumDat = 5,000 and N per group = 63

– Observations are normally distributed with μ1 = 0,
μ2 = .5, σ = 1 (e.g., effect size of .5)

• Analyze each dataset (5,000 t-tests) and count the number of
times H0 : μ1 = μ2 is rejected (NumRej)

• Power = NumRej / NumDat

⇒ with above specifications, power = .8018 via simulation
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Why simulate to get power?

• For simple situations where formulas exist, no real advantage
to simulation approach

• However, for not-so-simple situations, simulation comes to the
rescue

– more complicated models (can easily include covariates and
interactions)

– different kinds of outcomes (binary, ordinal, counts)

– can deal with longitudinal and/or clustered data
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Comparison of Pre Post models

Xi = pre, Yi = post, Gi = group (0=control, 1=test)

Post t-test

Yi = β0 + β1Gi + εi

Change score t-test

(Yi −Xi) = β0 + β1Gi + εi

ANCOVA

Yi = β0 + β1Gi + β2Xi + εi

H0 : β1 = 0 is test of interest in all cases
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Simulation results: tests of H0 : β1 = 0

• 10000 datasets with 100 subjects in each of 2 groups

• mean difference of 0 at pre, .4 at post

• variance = 1 at both timepoints for both groups

• correlation = .4, .45, .5, .55, .6 between pre and post measurements

correlation model rejection rate

0.400 ttest 0.81
0.400 change 0.73
0.400 ancova 0.87

0.450 ttest 0.81
0.450 change 0.77
0.450 ancova 0.89

0.500 ttest 0.81
0.500 change 0.81
0.500 ancova 0.91

0.550 ttest 0.81
0.550 change 0.85
0.550 ancova 0.92

0.600 ttest 0.81
0.600 change 0.88
0.600 ancova 0.94
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Stata simulation program: 2 sample t-test

/* ttestpow.do - does power estimation for 2 group t-test

based on poispow.do from

http://www.stata.com/support/faqs/statistics/power-by-simulation/

model: mu = b0 + b1*x where x is a dummy variable

y ~ Normal(mu,sd)

Specifically, power is estimated for testing the hypothesis b1 = 0, against a

user-specified alternative for a user-specified sample size. Without loss of

generality, we can assume the true value of b0 is 0 and sd is 1

In the ‘args’ statement below:

N is number of simulated datasets

nobs is the number of observations in each of the two groups

b1 is the "true" value of b1 (the alternative hypothesis)

*/

args N nobs b1

drop _all

set obs 2

generate x=0 in 1

replace x=1 in 2

expand ‘nobs’
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sort x

generate mu=‘b1’*x

save tempx, replace

/* Note: Here, I generated my "x" and mu-values and stored them in a dataset

-tempx- so that the same values could be used throughout the simulation */

/* set up a dataset with N observations which will eventually contain N

"p"-values obtained by testing b1=0. */

drop _all

set obs ‘N’

generate pv = .

/* Loop through the simulations */

local i 0

while ‘i’ < ‘N’ {

local i=‘i’+1

preserve

use tempx,clear /* get the n = 2*nobs observations of x

and the mean mu into memory */

gen xn = rnormal(mu,1) /* generate n obs. of a Std Normal(mu)random

variable in variable -xn- */

quietly regress xn x /* do the regression */

matrix V=e(V) /* get the standard-error matrix */

matrix b=e(b) /* get the vector of estimated coefficients */
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scalar tv=b[1,1]/sqrt(V[1,1]) /* the "t"-ratio */

scalar pv = 2*(1-normal(abs(tv))) /* the p-value */

restore /* get back original dataset with N observations */

quietly replace pv=scalar(pv) in ‘i’ /* set pv to the p-value for

the ith simulation */

_dots ‘i’ 0

}

/*The dataset in memory now contains N simulated p-values. To get an

estimate of the power, say for alpha=.05, just calculate the proportion

of pv’s that are less than 0.05: */

count if pv<.05

scalar power=r(N)/‘N’

scalar n=2*‘nobs’

noisily display "Power is " %8.4f scalar(power) " for a sample size of " /*

*/ scalar(n) " and alpha = .05"

exit
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. cd "u:\Stata_Examples"

u:\Stata_Examples

. run ttestpow 1000 99 0.5

Power is 0.9470 for a sample size of 198 and alpha = .05

. run ttestpow 1000 99 0.4

Power is 0.7930 for a sample size of 198 and alpha = .05

. . run ttestpow 5000 99 .4

Power is 0.8010 for a sample size of 198 and alpha = .05

. run ttestpow 5000 63 .5

Power is 0.8052 for a sample size of 126 and alpha = .05

. run ttestpow 5000 45 .6

Power is 0.8064 for a sample size of 90 and alpha = .05

⇒ similar SAS program is Ttest power N=63.sas
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Stata simulation: logistic regression with 2 groups

/* lregpow.do - does power estimation for 2 group logistic regression

based on poispow.do from http://www.stata.com/support/faqs/statistics/power-by-simulation/

model: mu = b0 + b1*x where x is a dummy variable

y ~ Logistic(mu,pi^2/3)

Specifically, power is estimated for testing the hypothesis b1 = 0, against a

user-specified alternative for a user-specified sample size. Without loss of

generality, we can assume the true value of b0 is 0

In the ‘args’ statement below:

N is number of simulated datasets

nobs is the number of observations in each of the two groups

oddsratio is the "true" value of exp(b1) (the alternative hypothesis)

*/

args N nobs oddsratio

drop _all

set obs 2

generate x=0 in 1

replace x=1 in 2

expand ‘nobs’

sort x
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generate mu=log(‘oddsratio’)*x

save tempx, replace

/* Note: Here, I generated my "x" and mu-values and stored them in a dataset

-tempx- so that the same values could be used throughout the simulation */

/* set up a dataset with N observations which will eventually contain N

"p"-values obtained by testing b1=0. */

drop _all

set obs ‘N’

generate pv = .

/* Loop through the simulations */

local i 0

while ‘i’ < ‘N’ {

local i=‘i’+1

preserve

use tempx,clear /* get the n = 2*nobs observations of x

and the mean mu into memory */

gen ystar = mu - log(1/uniform() - 1) /* generate n obs. of a Std Logistic random

variable in variable -xn- */

egen y = cut(ystar), at(-10000,0,10000)

quietly logit y x /* do the logistic regression */

matrix V=e(V) /* get the standard-error matrix */

matrix b=e(b) /* get the vector of estimated coefficients */
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scalar tv=b[1,1]/sqrt(V[1,1]) /* the "t"-ratio */

scalar pv = 2*(1-normal(abs(tv))) /* the p-value */

restore /* get back original dataset with N observations */

quietly replace pv=scalar(pv) in ‘i’ /* set pv to the p-value for

the ith simulation */

_dots ‘i’ 0

}

/*The dataset in memory now contains N simulated p-values. To get an

estimate of the power, say for alpha=.05, just calculate the proportion

of pv’s that are less than 0.05: */

count if pv<.05

scalar power=r(N)/‘N’

scalar n=2*‘nobs’

noisily display "Power is " %8.4f scalar(power) " for a sample size of " /*

*/ scalar(n) " and alpha = .05"

exit
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. cd "u:\Stata_Examples"

u:\Stata_Examples

. run lregpow 1000 94 2.3333

Power is 0.8070 for a sample size of 188 and alpha = .05

. run lregpow 1000 110 2

Power is 0.7120 for a sample size of 220 and alpha = .05

. run lregpow 1000 120 2

Power is 0.7480 for a sample size of 240 and alpha = .05

. run lregpow 1000 140 2

Power is 0.8210 for a sample size of 280 and alpha = .05

⇒ similar SAS program is LReg power N=137.sas
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Stata simulation: random int model with 2 groups

/* longreg.do - does power estimation for 2 group random-intercept regression

based on poispow.do from http://www.stata.com/support/faqs/statistics/power-by-simulation/

model: mu = b0 + b1*x where x is a dummy variable

y ~ Normal(mu,sd+sdu)

Specifically, power is estimated for testing the hypothesis b1 = 0, against a

user-specified alternative for a user-specified sample size. Without loss of

generality, we can assume the true value of b0 is 0 and sd is 1

In the ‘args’ statement below:

N is number of simulated datasets

nobs is the number of subjects in each of the two groups

b1 is the "true" value of b1 (the alternative hypothesis)

ni is the number of repeated measures per subject

icc is the intracluster correlation

*/

args N nobs b1 ni icc

drop _all

set obs 2

generate x=0 in 1

replace x=1 in 2

expand ‘nobs’

sort x
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generate mu =‘b1’*x

generate varu = ‘icc’

generate vare = 1-‘icc’

save tempx, replace

/* Note: Here, I generated my "x" and mu-values and stored them in a dataset

-tempx- so that the same values could be used throughout the simulation */

/* set up a dataset with N observations which will eventually contain N

"p"-values obtained by testing b1=0. */

drop _all

set obs ‘N’

generate pv = .

/* Loop through the simulations */

local i 0

while ‘i’ < ‘N’ {

local i=‘i’+1

preserve

use tempx,clear /* get the n = 2*nobs*ni observations of x

and the mean mu into memory */

generate u_i = rnormal(0,sqrt(varu))

generate mu_i = mu + u_i

generate subject = _n

expand ‘ni’
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generate e_ij = rnormal(0,sqrt(vare))

generate y_ij = mu_i + e_ij

sort subject

quietly mixed y_ij x || subject:, mle /* do the multilevel regression */

matrix V=e(V) /* get the standard-error matrix */

matrix b=e(b) /* get the vector of estimated coefficients */

scalar tv=b[1,1]/sqrt(V[1,1]) /* the "t"-ratio */

scalar pv = 2*(1-normal(abs(tv))) /* the p-value */

restore /* get back original dataset with N observations */

quietly replace pv=scalar(pv) in ‘i’ /* set pv to the p-value for

the ith simulation */

_dots ‘i’ 0

}

/*The dataset in memory now contains N simulated p-values. To get an

estimate of the power, say for alpha=.05, just calculate the proportion

of pv’s that are less than 0.05: */

count if pv<.05

scalar power=r(N)/‘N’

scalar n=2*‘nobs’

scalar nrep=‘ni’

scalar r=‘icc’

scalar eff=‘b1’

noisily display "Power is " %8.4f scalar(power) " for a sample size of " /*

*/ scalar(n) " with " scalar(nrep) " repeated obs, effect size = " scalar(eff) , " icc = " /*

*/ scalar(r) ", and alpha = .05"

exit
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. run longreg 1000 50 .5 5 .4

Power is 0.9340 for a sample size of 100 with 5 repeated obs,

effect size = .5 icc = .4, and alpha = .05

• works, but slow to run in Stata

• similar programs in SAS are much faster
RandInt power N=33.sas (random intercept model)
LR RandInt power N=70.sas (random int logistic model)

• maybe due to my lack of Stata knowledge
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