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Summary
As a result of advances in data collection technology and study design, modern
longitudinal datasets can be much larger than they historically have been. Such
“intensive" longitudinal datasets are rich enough to allow for detailed modeling
of the variance of a response as well as the mean, and a flexible class of mod-
els called mixed-effects location-scale (MELS) regression models are commonly
used to do so. However, fitting MELS models can pose computational challenges
related to the numerical evaluation of multi-dimensional integrals; the slow
runtime of current methods is inconvenient for data analysis and makes boot-
strap inference impractical. In this paper, we introduce a new fitting technique,
called FastRegLS, that is considerably faster than existing techniques while still
providing consistent estimators for the model parameters.
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1 INTRODUCTION

As a result of advances in data collection technology and study design, modern longitudinal datasets can be much larger
than they historically have been. In particular, studies involving smartphone-based data collection, wearable sensors,
or Ecological Momentary Assessment (EMA) methodology can result in datasets with a very large number of observa-
tions (eg, 30+) per subject.1–3 For example, in longitudinal psychology studies, subjects may be asked to self-report their
mood via smartphone or handheld computer many times in a short observation window.4 In studies of physical activity,
researchers may have access to exercise volume data from wearable sensors at regular and frequent intervals,5–7 poten-
tially resulting in hundreds or thousands of observations per participant. Datasets resulting from studies like these are
often called “intensive" longitudinal datasets.5,6,8

Intensive longitudinal data are rich enough to allow for detailed modeling of the variance of a response as well as the
mean, and there is often scientific interest in doing so.9,10 In longitudinal studies of mood, for example, a researcher might
wish to know if a certain covariate is associated with a more stable (ie, lower variance) mood. Such questions cannot be
answered by the traditional models used for longitudinal data, such as the mixed-effects model, which has only a single
parameter to model the residual variance. This is not a huge limitation when analyzing smaller datasets, where it would
not generally be feasible to estimate additional variance parameters with meaningful precision. However, for intensive
longitudinal data, more general models are needed.
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The mixed-effects location-scale (MELS) regression model was developed to address this shortcoming of the tradi-
tional methods, and is now a common technique for analyzing intensive longitudinal data.11–14 It has also been used
to analyze other types of clustered data, such as survey data15 and data from education research.16 The model allows
fixed effects and subject-level random effects to influence the mean of a response as well as the variation around that
mean. The fixed effects used to model the variance allow researchers to investigate the association between covariates
and response stability, while the random effects used to model the variance capture subject-level variability in response
stability not captured by the fixed-effects. In a mood study, say, even after controlling for covariates, some subjects might
have more, and some others less, stable moods than others, and it is exactly this sort of difference that the random
effects capture.

A limitation of the MELS model is that it is difficult to fit computationally. Current techniques compute and maxi-
mize the marginal likelihood using Gaussian quadrature to integrate out the random effects, but this can be very slow,
especially as the number of random effects increases. It can therefore be inconvenient in settings where many slightly dif-
ferent models are fit and examined, such as exploratory data analysis and model building and checking. Moreover, due to
the computational cost, using resampling methods like the bootstrap for inference on the model parameters is not practi-
cal, leaving researchers without a robust way to estimate standard errors or determine significance of model parameters.
Researchers have also used Bayesian methods to fit the MELS model.17–20 These techniques are natural given the hierar-
chical structure of the MELS model, but they are not meant to reduce computational burden. We will restrict ourselves
to the frequentist interpretation of the model.

In this paper, we introduce a new fitting technique for the MELS model, called FastRegLS, that is a great deal faster
(as much as 100× for some datasets) and more numerically stable than quadrature-based maximum likelihood, while
still providing consistent parameter estimates. Because it is so much faster, FastRegLS has the added benefit of enabling
bootstrap inference for the MELS model parameters, and can considerably speed up exploratory data analysis and model
diagnostics. Such procedures have always been computationally intensive for MELS models, but they are feasible using
FastRegLS. We note also that FastRegLS can be used in tandem with existing techniques. For example, one could check
how reasonable model-based maximum likelihood Wald intervals are by computing the FastRegLS bootstrap intervals
and comparing - a difference could be evidence of deviation from the specified model. In addition, FastRegLS could be
used to provide starting values for a maximum likelihood algorithm.

Our method is implemented in an R package, FastRegLS, which is included in the supplemental mate-
rial. However, an additional advantage of FastRegLS is that it can be easily implemented using any software
that can fit linear mixed-effects models; unlike quadrature-based methods, sophisticated numerical computing is
not required.

The organization of this paper is as follows. In section 2, we give additional background and a formal statement of the
MELS model. In section 3, current maximum likelihood-based fitting methods are described. In section 4, we describe
our new method, FastRegLS. In section 5, we present empirical verification of the theoretical properties of FastRegLS,
and compare FastRegLS with maximum likelihood on both real and simulated data. We conclude in section 6 with a
discussion.

2 THE MELS MODEL

Suppose we have longitudinal data y collected from N total subjects, with ni observations per subject, i = 1, … ,N, for a
total of T =

∑N
i=1ni data points. Consider first the basic mixed-effects model commonly fit to such data:

yij = x⊺ij𝛽 + 𝜈i + 𝜖ij. (1)

𝜈i ∼ N(0, 𝜎2
𝜈
) (2)

𝜖ij ∼ N(0, 𝜎2) (3)

Here yij is the jth observation from subject i, i = 1, … ,N, which we assume is a Gaussian response variable. The index
j runs from 1 to ni. The vector xij ∈ Rk is a covariate vector corresponding to the single observation yij, a single row of
a larger design matrix X ∈ RT×k, and 𝛽 ∈ Rk is the vector of regression coefficients. The subject-level random effect 𝜈i
follows a N(0, 𝜎2

𝜈

) distribution, and the residual error 𝜖ij follows a N(0, 𝜎2) distribution. The random effect variance 𝜎2
𝜈

is
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1432 GILL and HEDEKER

also called the between-subjects (BS) variance, since it characterizes how much subjects differ from the global baseline
mean determined by 𝛽. The residual variance 𝜎2 is also called the within-subjects (WS) variance, since it characterizes how
much the observations yij differ from the mean value x⊺ij𝛽 + 𝜈i. Since 𝜎2 is a constant, the WS variance is not dependent on
subject identity or covariates. The MELS model extends this model by replacing the residual error distribution (3) with
the following:

𝜖ij ∼ N(0, 𝜎2
ij) (4)

𝜎

2
ij = exp(w⊺

ij𝜏 + 𝜏l𝜈i + 𝜔i) (5)

𝜔i ∼ N(0, 𝜎2
𝜔
). (6)

The WS variance is now the exponential (because the variance must be positive) of a linear predictor. It is dependent on
covariates W ∈ RT×p, of which the w⊺

ij are rows, with a corresponding regression vector 𝜏 ∈ Rp. Throughout this paper,
we will assume that the WS variance model has an intercept term, that is, that the first column of W is a vector of ones.
The third term on the right-hand side of (5) is an additional subject-level random effect 𝜔i, which also follows a normal
distribution. Just as 𝜈i captures subject-level variation in the mean of y above and beyond the specified covariates xij, so𝜔i
captures subject-level variation in the variance of y above an beyond the covariates wij. From now on, 𝜈i will be referred
to as the random location effect, and 𝜔i as the random scale effect (giving the MELS model its name). The second term
in (5) represents the association between the random location effect and the random scale effect. A similar effect can be
achieved by allowing 𝜈i and 𝜔i to be correlated, but we prefer this regression-like association for its modeling flexibility.14

Throughout this paper, the term “MELS model" will refer to the model defined by (1), (2), (4)–(6), and its parameters will
be denoted byΘ = (𝛽, 𝜏, 𝜏l, 𝜎

2
𝜈

, 𝜎

2
𝜔

). We note that although we have chosen a longitudinal data setting to explain the MELS
model, and will continue to refer to the groupings of correlated observations as “subjects," the same model can be used
for clustered data more generally, in which the “subjects" might be geographical locations, schools, and so forth.

3 MAXIMUM LIKELIHOOD ESTIMATION

Maximum likelihood (ML) estimation remains the most common way to fit the MELS model. It is implemented, for
example, in software like MixRegLS,14 Merlin,21 and the PROC NLMIXED procedure in SAS.22,23 The random location
and scale effects are replaced by their standardized versions, and Gaussian quadrature is used to compute the necessary
integrals. Specifically, if we let 𝜃l

i =
𝜈i
𝜎
𝜈

and 𝜃s
i =

𝜔i
𝜎
𝜔

, then 𝜃l
i and 𝜃s

i are independent N(0, 1) random variables, and

yij|𝜃
l
i , 𝜃

s
i ∼ N

(
x⊺ij𝛽 + 𝜎𝜈𝜃

l
i , exp(w⊺

ij𝜏 + 𝜏l𝜎𝜈𝜃
l
i + 𝜎𝜔𝜃

s
i )
)
. (7)

Letting f (yij|𝜃
l
i , 𝜃

s
i ) denote the Gaussian likelihood corresponding to (7), the full likelihood conditional on

Θl =
(
𝜃

l
1, 𝜃

l
2, … , 𝜃

l
N
)

and Θs =
(
𝜃

s
1, 𝜃

s
2, … , 𝜃

s
N
)

is given by

f
(
y|Θl

,Θs) = Πi,jf
(

yij|𝜃
l
i , 𝜃

s
i
)
.

The full unconditional likelihood L(y) is then obtained by integrating out Θl and Θs,

L(y) = ∫ f
(
y|Θl

,Θs)g(Θl)g(Θs)dΘldΘs
, (8)

where g(⋅) is the density of a standard normal random vector in RN .
No closed form expression exists for (8), so when maximizing L(y), (8) and its derivatives are approximated using

Gaussian quadrature: the integral is replaced by a sum in which the integrand is evaluated at a pre-specified grid of points.
If there are Q points per dimension, every integral requires Q2 integrand evaluations per optimization iteration. As the
data examples in the Results section demonstrate, this procedure can be time intensive. In addition to being inconve-
nient for routine data analysis and model building, it makes resampling methods like the bootstrap infeasible. The option
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GILL and HEDEKER 1433

to bootstrap is particularly important for the MELS model and other mixed-effects models, since the variances based on
the Fisher information at convergence (eg, as computed in Reference 24) do not always work well for variance compo-
nents.25 In the next section, we present FastRegLS, a new technique that provides consistent estimators at a fraction of
the computation time of the current methods.

4 METHODS

4.1 Illustration on a simpler model

FastRegLS is an extension of an approach of Harvey26 for estimating the parameters of the simpler heteroskedastic
regression model

yi = x⊺i 𝛽 + 𝜖i

𝜖i ∼ N(0, 𝜎2
i )

𝜎

2
i = exp(w⊺

i 𝜏),

where wi1 = 1 for all i (ie, the variance model contains an intercept), in which the model is fit in two steps. First, 𝛽 is
estimated using least squares,

̂
𝛽 = (X⊺X)−1X⊺y.

The residuals 𝜖i = yi − x⊺i ̂𝛽 are then formed, and Harvey26 observes that asymptotically,

log 𝜖2
i = w⊺

i 𝜏 + 𝜓i,

where 𝜓i ∼ log𝜒2
1 . The variance regression parameter 𝜏 is then estimated using

𝜏 = (W⊺W)−1W⊺ log 𝜖2 + E log𝜒2
1 e1, (9)

where log 𝜖 denotes the vector whose ith component is log 𝜖i, e1 denotes the unit vector with 1 in the first position, that
is, e1 = (1, 0, … , 0)⊺, and E log𝜒2

1 = 1.27. It can be shown that (9) is asymptotically unbiased, and has variance

Var(𝜏) = Var(log𝜒2
1 )(W

⊺W)−1
,

where Var(log𝜒2
1 ) = 4.93. The estimator (9) is less efficient than the ML estimator, which has variance 2(W⊺W)−1. How-

ever, the ML estimator must be obtained through an iterative optimization algorithm, whereas (9) can be computed in
closed form and is much faster.

We now extend this approach to estimate the parameters of the MELS model. The FastRegLS algorithm consists of
a parameter update and an initialization. We will describe the updates first, and then describe the initialization. See
Algorithm 1 for a full summary of the algorithm. Notice the computational simplicity of the steps, which are either
closed-form or can be solved using existing fast algorithms (such as lme427 for the random effects models). Note also the
mix of EM-like updates and direct likelihood maximizations. For example, the inner-loop updates of ̂𝛽 and the random
intercepts 𝜈̂i coincide with their EM analogues. On the other hand, the WS variance parameters and the final out-of-loop
̂
𝛽 estimator rely on full likelihood fits of submodels chosen to guarantee good statistical properties (see the Properties
section).

4.2 Parameter updates

Assume that we have estimates ̂Θk =
(
̂
𝛽k, 𝜏k, 𝜏 l,k, 𝜎̂

2
𝜈,k, 𝜎̂

2
𝜔,k

)
from a previous iteration of the algorithm, as well as estimates

of the random location and scale effects themselves, 𝜈̂i,k and 𝜔̂i,k for i = 1, … ,N. Let 𝜎̂2
ij,k+1 be the plug-in estimate of the
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1434 GILL and HEDEKER

Algorithm 1. FastRegLS

1: Fit by maximum likelihood the model
yij = x⊺ijb0 + 𝜈i,0 + 𝜖ij,0

𝜈i,0 ∼ N(0, g2
0)

𝜖ij,0 ∼ N(0, 𝜎2
0 )

2: ̂
𝛽0 ← ̂b0

3: 𝜎̂2
𝜈,0 ← ĝ2

0

4: 𝜈̂i,0 ←
(

1
ĝ2

0
+ ni

𝜎̂

2
0

)−1 ∑ni
j=1

yij−x⊺ij
̂b0

𝜎̂

2
0

5: 𝛿ij,0 ← log(yij − x⊺ij ̂𝛽0 − 𝜈̂i,0)2
6: Fit by maximum likelihood the model
7:

𝛿ij,0 = w⊺
ijt0 + tl,0𝜈̂i,0 + 𝜔i,0 + 𝜓ij,0

𝜔i,0 ∼ N(0, s2
0)

𝜓ij,0 ∼ N(0, 𝜅2
0 )

8: 𝜏0 ← ̂t0 +E log𝜒2
1

9: 𝜏l,0 ← ̂tl,0
10: 𝜎̂2

𝜔,0 ← ŝ2
0

11: 𝜔̂i,0 ←
(

1
ŝ2
0
+ ni

𝜅̂

2
0

)−1 ∑ni
j=1

𝛿ij,0−w⊺
ij
̂t0−̂tl,0 𝜈̂i,0

𝜅̂

2
0

12: for k = 0, 1, 2… do
13: 𝜎̂

2
ij,k+1 ← exp(w⊺

ij𝜏k + 𝜏l,k𝜈̂i,k + 𝜔̂i,k)

14: 𝜈̂i,k+1 ←
(

1
𝜎̂

2
𝜈,k
+
∑ni

j=1
1

𝜎̂

2
ij,k+1

)−1 ∑ni
j=1

yij−x⊺ij
̂
𝛽k

𝜎̂

2
ij,k+1

15: Vk+1 ← (𝜈̂1,k+1,… , 𝜈̂1,k+1
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

n1 times

, 𝜈̂2,k+1,… , 𝜈̂2,k+1
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

n2 times

,… , 𝜈̂N,k+1,… , 𝜈̂N,k+1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

nN times

)⊺

16: Wk+1 ← the diagonal matrix whose diagonal is the vector

(𝜎̂−2
11,k+1,… , 𝜎̂

−2
1n1 ,k+1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

n1 entries

, 𝜎̂

−2
21,k+1,… , 𝜎̂

−2
2n2 ,k+1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

n2 entries

,… , 𝜎̂

−2
N1,k+1,… , 𝜎̂

−2
NnN ,k+1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

nN entries

)⊺

17: ̂
𝛽k+1 ←

(
X⊺Wk+1X

)−1X⊺Wk+1(y − Vk+1)
18: 𝛿ij,k+1 ← log(yij − x⊺ij ̂𝛽k+1 − 𝜈̂i,k+1)2
19: Fit by maximum likelihood the model

𝛿ij,k+1 = w⊺
ijtk+1 + tl,k+1𝜈̂i,k+1 + 𝜔i,k+1 + 𝜓ij,k+1

𝜔i,k+1 ∼ N(0, s2
k+1)

𝜓ij,k+1 ∼ N(0, 𝜅2
k+1)

20: 𝜏k+1 ← ̂tk+1 +E log𝜒2
1 e1

21: 𝜏l,k+1 ← ̂tl,k+1
22: 𝜎̂

2
𝜔,k+1 ← ŝ2

k+1

23: 𝜔̂i,k+1 ←
(

1
ŝ2
k+1

+ ni
𝜅̂

2
k+1

)−1 ∑ni
j=1

𝛿ij,k+1−w⊺
ij
̂tk+1−̂tl,k+1 𝜈̂i,k+1

𝜅̂

2
k+1

24: 𝜎̂

2
𝜈,k+1 ←

1
N

∑N
i=1 𝜈̂

2
i,k+1

25: end for
26: Fit by maximum likelihood the model

yij = x⊺ijbkmax + 𝜈i,kmax + 𝜖ij,kmax

𝜈i,kmax ∼ N(0, g2
kmax

)

𝜖ij,kmax ∼ N(0, exp(w⊺
ij𝜏kmax + 𝜏l,kmax 𝜈̂i,kmax + 𝜔̂i,kmax ))

27: ̂
𝛽kmax ←

̂bkmax
28: 𝜎̂2

𝜈,kmax
← ĝ2

kmax
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GILL and HEDEKER 1435

WS variance based on ̂Θk:

𝜎̂

2
ij,k+1 = exp

(
w⊺

ij𝜏k + 𝜏 l,k𝜈̂i,k + 𝜔̂i,k
)
.

We update the estimates of the random location effects by computing their expected value conditional on the observed
data y and the current parameter estimates:

𝜈̂i,k+1 = E(𝜈i|y, ̂Θk, 𝜔̂i,k)

=

(
1
𝜎̂

2
𝜈,k

+
ni∑

j=1

1
𝜎̂

2
ij,k+1

)−1 ni∑

j=1

yij − x⊺ij ̂𝛽k

𝜎̂

2
ij,k+1

. (10)

Note that this is essentially an empirical Bayes procedure, where the hyperparameter of the prior (2) is determined using
the data.

Next, we update our estimate of 𝛽 using weighted least squares: yij − 𝜈̂i,k+1 is regressed on X, using the 𝜎̂2
ij,k+1 as

weights, and ̂
𝛽k+1 is the resulting regression vector. More precisely, let Vk+1 ∈ RT be the vector containing each 𝜈̂i,k+1

repeated ni times,

Vk+1 =
(
𝜈̂1,k+1, … , 𝜈̂1,k+1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

n1 times

, 𝜈̂2,k+1, … , 𝜈̂2,k+1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

n2 times

, … , 𝜈̂N,k+1, … , 𝜈̂N,k+1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

nN times

)⊺
,

and let Wk+1 ∈ RT×T be the diagonal matrix whose diagonal is the vector
(
𝜎̂

−2
11,k+1, … , 𝜎̂

−2
1n1,k+1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

n1 entries

, 𝜎̂

−2
21,k+1, … , 𝜎̂

−2
2n2,k+1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

n2 entries

, … , 𝜎̂

−2
N1,k+1, … , 𝜎̂

−2
NnN ,k+1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

nN entries

)⊺
.

The updated 𝛽 is then given by

̂
𝛽k+1 = (X⊺Wk+1X)−1X⊺Wk+1(y − Vk+1).

We update 𝛽 in this way to avoid fitting a second (see below for the first) mixed-effects model within the loop, which
would slow down the computation time. However, we do update 𝛽 a final time out of the loop using a mixed-effects
model, see below.

Next, following Harvey26 to update the WS variance parameters, we form the residuals

𝜖ij,k+1 = yij − x⊺ij ̂𝛽k+1 − 𝜈̂i,k+1,

and, letting 𝛿ij,k+1 = log 𝜖2
ij,k+1, fit the mixed-effects model

𝛿ij,k+1 = w⊺
ijtk+1 + tl,k+1𝜈̂i,k+1 + 𝜔i,k+1 + 𝜓ij,k+1

𝜔i,k+1 ∼ N(0, s2
k+1)

𝜓ij,k+1 ∼ N(0, 𝜅2
k+1)

using ML, obtaining parameter estimates ̂tk+1, ̂tl,k+1, ŝ2
k+1, and 𝜅̂2

k+1. We then set

𝜏k+1 = ̂tk+1 + E log𝜒2
1 e1

𝜏 l,k+1 = ̂tl,k+1

𝜎̂

2
𝜔,k+1 = ŝ2

k+1

𝜔̂i,k+1 =

(
1

ŝ2
k+1

+ ni

𝜅̂

2
k+1

)−1 ni∑

j=1

𝛿ij,k+1 −w⊺
ij
̂tk+1 − ̂tl,k+1𝜈̂i,k+1

𝜅̂

2
k+1

, (11)
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1436 GILL and HEDEKER

where (11) is analogous to (10), the earlier update of the random location effects. Finally, we update 𝜎2
𝜈

using the sample
variance of the 𝜈̂i,k+1,

𝜎̂

2
𝜈,k+1 =

1
N

N∑

i=1
𝜈̂

2
i,k+1.

Finally, once we have finished iterating in this way for kmax iterations, we obtain final estimates of 𝛽 and 𝜎2
𝜈

by fitting the
mixed-effects model,

yij = x⊺ijbkmax + 𝜈i,kmax + 𝜖ij,kmax

𝜈i,kmax ∼ N
(
0, g2

kmax

)

𝜖ij,kmax ∼ N
(
0, 𝜎̂2

ij,kmax

)
.

Our final parameter estimates are then ̂
𝛽 = ̂bkmax , 𝜏 = 𝜏kmax , 𝜏 l = 𝜏 l,kmax , 𝜎̂2

𝜈
= ĝ2

kmax
, and 𝜎̂2

𝜔
= 𝜎̂2

𝜔,kmax
, collectively denoted

̂Θ = ( ̂𝛽, 𝜏, 𝜏 l, 𝜎̂
2
𝜈
, 𝜎̂

2
𝜔
).

4.3 Initialization

The initialization is similar to the in-loop updates. We begin by fitting the homoskedastic mixed-effects model

yij = x⊺ijb0 + 𝜈i,0 + 𝜖ij,0 (12)

𝜈i,0 ∼ N
(
0, g2

0
)

𝜖ij,0 ∼ N
(
0, 𝜎2

0
)

(13)

using ML, and set ̂
𝛽0 = ̂b0 and 𝜎̂2

𝜈,0 = ĝ2
0. As in the in-loop updates, we initialize the random location effects by their

expected values under (12)–(13) conditional on the observed data y and our parameter estimates:

𝜈̂i,0 = E(𝜈i|y, ̂b0, ĝ2
0, 𝜎̂

2
0)

=

(
1
ĝ2

0
+ ni

𝜎̂

2
0

)−1 ni∑

j=1

yij − x⊺ij ̂b0

𝜎̂

2
0

.

To initialize the WS variance parameters, letting

𝛿ij,0 = log
(

yij − x⊺ij ̂𝛽0 − 𝜈̂i,0
)2
,

we fit the model

𝛿ij,0 = w⊺
ijt0 + tl,0𝜈̂i,0 + 𝜔i,0 + 𝜓ij,0

𝜔i,0 ∼ N(0, s2
0)

𝜓ij,0 ∼ N(0, 𝜅2
0 )

using ML, and set 𝜏0 = ̂t0 + E log𝜒2
1 , 𝜏 l,0 = ̂tl,0, and 𝜎̂2

𝜔,0 = ŝ2
0. Finally, we initialize the random scale effects following (11):

𝜔̂i,0 =

(
1
ŝ2

0
+ ni

𝜅̂

2
0

)−1 ni∑

j=1

𝛿ij,0 −w⊺
ij
̂t0 − ̂tl,0𝜈̂i,0

𝜅̂

2
0

.
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GILL and HEDEKER 1437

4.4 Properties

Theorem 1 (Consistency). The FastRegLS estimators are consistent for their respective parameters (regardless of kmax).

The estimators ̂Θ resulting from the FastRegLS algorithm are consistent for their respective parameters (see the
supplementary material for a proof, and the Results section for an empirical demonstration). Importantly, the estimators
remain consistent no matter how many times we execute the inner loop, that is, how large or small kmax is. The results
presented in the Results section are all obtained using kmax = 1, except where noted. As kmax increases, the FastRegLS
estimates tend to "converge" in the sense that the difference between successive estimates grows small, but this is not
necessary for valid estimation. In practice, it is a good idea to verify that kmax is large enough that the change in the esti-
mates from iteration to iteration is small. Such large changes are possible when there are significant deviations from the
specified model in the data used for fitting. For example, one of our simulations compares the performance of bootstrap
to Wald confidence intervals using a dataset with some of the residual errors drawn from an exponential distribution
(Table 3). To ensure that the FastRegLS estimates were stable, we used kmax = 5 for this simulation after observing large
changes in the estimates from the first 2–3 iterations. We note also that increasing kmax does not necessarily produce
estimates that are closer to those obtained using ML, although both converge to the true parameter values, and therefore
get closer to each other, as the sample size increases.

There are two methods available to obtain standard errors for the FastRegLS estimators. The first is a Wald-type inter-
val based on approximations to the asymptotic covariances of the estimators. It is difficult to derive exact formulas for
these, but approximations that work well in practice can be obtained under the assumption that the parameter estimates
used in the intermediate steps are known exactly (eg, treating the 𝜈̂i as fixed, known covariates when estimating the WS
variance parameters). Formulas and details of the derivation are provided in the supplementary material.

Though the Wald intervals are convenient and work well in practice (see the Results section for simulations demon-
strating good coverage rates), they (1) condition on variable quantities and therefore will tend to underestimate the
uncertainties of the estimators. and (2) are model-dependent. The impact of (1) can be seen in Figure 2: although they
still perform well, the intervals for WS variance parameters, which depend most on approximations of this type, tend
to have lower coverage rates than the intervals for the other parameters. The nonparametric bootstrap is an alternative
that accounts for all sources of variation, and is also more robust to model misspecification. The ability to bootstrap is a
major advantage of FastRegLS over existing MELS model fitting techniques, which are not fast enough to perform a large
number of iterations in a practical amount of time.

5 RESULTS

In this section, we present several applications of FastRegLS and compare its performance with that of ML. We also
compare the performance of bootstrap and Wald intervals for FastRegLS. Unless otherwise specified, all results were
obtained using kmax = 1.

5.1 Simulations

5.1.1 Consistency

To empirically demonstrate the consistency of the FastRegLS estimators ̂Θ, we simulated data from the MELS model
with 𝛽 ∈ R4, 𝜏 ∈ R4, each randomly generated with N(0, 1) entries, 𝜏l = 0.3, 𝜎2

𝜈

= 1, and 𝜎2
𝜔

= 1, for a variety of sample
sizes. Figure 1 shows the mean squared error (MSE) of ̂Θ as a function of both the number of subjects in the sample N
and the number of observations per subject ni (each subject had the same number of observations). At each combination
of N and ni, 100 datasets were generated using the above parameter values, and the design matrices X and W had ran-
dom N(0, 1) entries (except an intercept column of ones). The plotted point is the average MSE over the 100 runs when
estimating the parameters using FastRegLS, and the the error bars are plus/minus 2 standard deviations of this average.
(Specifically, the MSE for each iteration was calculated as 1

11
||Θ − ̂Θ||22, since 𝜃 ∈ R11 for this simulation, and the plotted

MSE is the average of this quantity over all iterations.) The MSE approaches 0 as the sample size increases, but notice
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1438 GILL and HEDEKER

F I G U R E 1 Mean squared error (MSE) of FastRegLS estimator ̂Θ as a function of both the number of subjects in the sample N and the
number of observations per subject ni (each subject had the same number of observations). At each combination of N and ni, 100 datasets
were generated using the parameter values in Table 2, and the design matrices X and W had random N(0, 1) entries (except an intercept
column of ones). The plotted point is the average MSE over the 100 runs, and the the error bars are plus/minus 2 standard deviations of this
average. The MSE approaches 0 as the sample size increases

T A B L E 1 Comparison of runtimes (in seconds) between FastRegLS and maximum likelihood implemented with the MixRegLS
software. FastRegLS is orders of magnitude faster, and the difference increases as the datasets increase in size.

Method 20 30 40 50 60 70 80 90 100

FastRegLS 0.38 0.46 0.51 0.79 0.64 0.80 0.72 0.81 0.88

MixRegLS 19.78 29.83 40.34 47.62 64.57 73.79 84.61 101.13 106.80

Note: All datasets had N = 200 subjects, with the same parameter values as in Table 2, and ni increasing from 20 to 100.

that we need both N → ∞ and ni →∞. This is because N limits how precisely we can estimate the variance components
𝜎

2
𝜈

and 𝜎2
𝜔

, and thus for fixed N the MSE trajectory plateaus above 0.

5.1.2 Run time

Because it does not require numerical integration in two dimensions, FastRegLS is much faster than existing techniques.
Table 1 compares the run times (in seconds) of FastRegLS with those of MixRegLS14 on a sequence of increasingly large
datasets. All datasets had N = 200 subjects, with the same parameter values as in Table 2, and ni increasing from 20 to
100. FastRegLS is orders of magnitude faster, and the difference increases as the datasets increase in size.

5.1.3 Performance of confidence intervals

In order to test the performance of the Wald and bootstrap FastRegLS confidence intervals, we simulated 100 datasets
from a MELS model with 𝛽 ∈ R4, 𝜏 ∈ R4, each randomly generated with N(0, 1) entries, 𝜏l = 0.3, 𝜎2

𝜈

= 1, 𝜎2
𝜔

= 1, N = 200,
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GILL and HEDEKER 1439

T A B L E 2 For 100 datasets generated using the parameter values indicated in column 2, and 200 subjects with 30 observations per
subject, we fit a MELS model using FastRegLS and constructed both types of 95% confidence intervals, Wald intervals and bootstrap
intervals. The coverage columns shows the proportion of times each type of interval contained the true parameter value, as well as the
average widths of the intervals over the 100 runs. The observed coverage rates are close to the target of 0.95, and widths of the two types of
intervals are similar. Note that since this is simulated data and there is no model misspecification, the Wald intervals tend to slightly
outperform the bootstrap intervals.

Parameter Value Boot. coverage Wald coverage Boot. avg. width Wald avg. width

𝛽0 −0.626 0.97 0.98 0.266 0.285

𝛽1 0.184 0.90 0.91 0.033 0.034

𝛽2 −0.836 0.94 0.93 0.035 0.035

𝛽3 1.595 0.90 0.93 0.036 0.036

𝜏0 0.330 0.97 0.97 0.299 0.306

𝜏1 −0.820 0.88 0.91 0.117 0.116

𝜏2 0.487 0.91 0.94 0.121 0.121

𝜏3 0.738 0.91 0.89 0.119 0.117

𝜏l 0.300 0.90 0.96 0.295 0.316

𝜎

2
𝜈

1.000 0.92 0.96 0.594 0.411

𝜎

2
𝜔

1.000 0.94 0.96 0.438 0.466

T A B L E 3 Comparison of the coverage probabilities of 95 % bootstrap and Wald confidence intervals for a dataset with a fraction of the
residual errors drawn from an exponential distribution (ie, under model misspecification)

Type 𝜷0 𝜷1 𝜷2 𝜷3 𝝉0 𝝉1 𝝉2 𝝉3 𝝉l 𝝈

2
𝝂

𝝈

2
𝝎

Wald 0.96 0.95 0.96 0.95 0.19 0.56 0.85 0.60 0.98 0.94 0.89

Bootstrap 0.93 0.93 0.96 0.92 0.64 0.82 0.96 0.81 0.98 0.95 0.96

Note: The bootstrap intervals outperform the Wald intervals, but would be very time consuming to compute using the traditional ML fitting techniques for
MELS models.

ni = 30 for i = 1, … ,N, and the design matrices X and W with random N(0, 1) entries (except an intercept column of
ones). For each such dataset, we fit the model using FastRegLS and constructed both types of 95% confidence intervals.
Table 2 shows the proportion of times the interval contained the true parameter value, as well as the average widths of
the intervals over the 100 runs. The observed coverage rates are close to the target of 0.95, and the widths of the two types
of intervals are similar.

To demonstrate the need for the bootstrap when we suspect model deviations, we repeated the coverage probability
simulation with a mixture of exponential and Gaussian residual error terms. With probability 0.8, the residual error term
was drawn from the usual N(0, 𝜎2

ij) distribution, but with probability 0.2, the residual error was drawn from 𝜎ij(Exp(1) − 1),
an exponential distribution shifted to have mean 0 and scaled to have variance 𝜎2

ij. Table 3 compares the coverage rates
of the 95% Wald and bootstrap intervals in this setting. Because the model deviations produced large changes in the
FastRegLS estimates for the first few iterations, we used kmax = 5 for this table. The Wald intervals perform poorly on the
WS variance parameters, but we can obtain more reasonable coverage rates using the bootstrap (note, however, that both
perform poorly for 𝜏0). The bootstrap intervals also perform better for 𝜎2

𝜔

. Without FastRegLS, such intervals could not be
computed in a practical amount of time.

We also tested the Wald interval coverage rates on datasets of varying sizes. As in the consistency simulation, we fixed
the number of subjects at N = 200, and increased the number of observations per subject from 20 to 100. For each sample
size, we simulated 500 datasets using the same parameter values as in Table 2, fit a MELS model to each dataset using
FastRegLS, and for each parameter, determined the proportion of times the 95% Wald confidence interval contained the
true value. The results are shown in Figure 2. For all parameters and for all sample sizes, the coverage rates stay close to
the target of 0.95.
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1440 GILL and HEDEKER

F I G U R E 2 Additional coverage rate simulations for the Wald confidence intervals with N = 200 subjects and varying number of
observations per subject (x-axis). Each plotted point is the coverage rate for a particular MELS model parameter. The points are colored based
on parameter grouping for visualization purposes. For all parameters and sample sizes, the coverage rates stay close to the target of 0.95

5.1.4 Comparison with ML on simulated data

To directly compare the performance of FastRegLS with ML, we simulated data from a MELS model using the parameter
values in Table 4, and then used both FastRegLS and ML (run using MixRegLS) to obtain parameter estimates and confi-
dence intervals. The results are shown in Table 4. For each method, the point estimates are close to the true values, and
both types of 95% confidence interval (bootstrap and Wald) contain the true value, but FastRegLS obtains these results at
a fraction of the computation time (Table 1).

5.2 Real data

5.2.1 Comparison with ML on real data

We also compared the performance of FastRegLS and ML on real data from an intensive longitudinal study of first-year
university students.28 The study followed 82 first-year university students for 46 days, during which time the students took
their final exams. Data was collected using daily online surveys designed to capture various aspects of lifestyle, including
mood, physical activity, sleep patterns, and so forth. Only data from the first 32 days of the study are publicly available,
and this is the dataset we analyze. There were 2111 total responses, with 29.3 responses per student on average (and a
range of 8 to 23).

We will focus on positive affect (PA), an average of the extent to which participants felt several emotions (happy,
content, cheerful, sad, downhearted, frustrated) on a given day, measured using a 1–7 Likert scale. Psychology researchers
are often interested in the variability of a measure in addition to its mean value, and because of this PA data is often
analyzed using MELS models.12,13,17 We can confirm that this is reasonable if we examine plots of the PA trajectories
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GILL and HEDEKER 1441

T A B L E 4 Comparison of parameter estimates and confidence intervals from FastRegLS and from maximum likelihood (run using
MixRegLS) on simulated data

Parameter Value FastReg FastReg Wald FastReg Boot. ML ML wald ML Boot.

𝛽0 −0.62 −0.63 (−0.77,−0.49) (−0.78,−0.49) −0.60 (−0.74,−0.45) (−0.75,−0.46)

𝛽1 0.18 0.18 (0.16, 0.20) (0.16, 0.20) 0.19 (0.17, 0.20) (0.17, 0.20)

𝛽2 −0.84 −0.83 (−0.85,−0.82) (−0.85,−0.82) −0.83 (−0.87,−0.79) (−0.85,−0.811)

𝛽3 1.60 1.59 (1.57, 1.61) (1.57, 1.61) 1.59 (1.57, 1.61) (1.57, 1.62)

𝜏0 0.33 0.39 (0.23, 0.55) (0.22, 0.57) 0.29 (0.14, 0.44) (0.15, 0.44)

𝜏1 −0.82 −0.87 (−0.93,−0.81) (−0.95,−0.82) −0.83 (−0.85,−0.81) (−0.87,−0.79)

𝜏2 0.49 0.49 (0.44, 0.55) (0.44, 0.56) 0.49 (0.45, 0.53) (0.45, 0.53)

𝜏3 0.74 0.74 (0.68, 0.80) (0.68, 0.81) 0.73 (0.69, 0.77) (0.68, 0.76)

𝜏l 0.30 0.35 (0.18, 0.51) (0.18, 0.53) 0.26 (0.11, 0.41) (0.12, 0.40)

𝜎

2
𝜈

1.00 0.95 (0.75, 1.16) (0.67, 1.39) 1.01 (0.82, 1.24) (0.78, 1.22)

𝜎

2
𝜔

1.00 1.13 (0.87, 1.39) (0.86, 1.46) 0.92 (0.74, 1.13) (0.85, 1.07)

Note: For each method, point estimates are close to the true values, and both types of 95% confidence interval (bootstrap and Wald) contain the true value, but
FastRegLS obtains these results at a fraction of the computation time (Table 1).

of several study subjects (Figure 3). Just by looking, we can see that these trajectories differ greatly in their mean and
variance; by fitting a MELS model, we can determine whether such differences are due to covariates, or to individual-level
heterogeneity captured by random location and scale effects.

We fit a MELS model with PA as response, and age and sex of the student as both mean and WS variance covariates.
Specifically, the model fit was

PAij = 𝛽0 + 𝛽ageagei + 𝛽sexsexi + 𝜈i + 𝜖ij

𝜈i ∼ N(0, 𝜎2
𝜈
)

𝜖ij ∼ N(0, 𝜎2
ij)

𝜎

2
ij = exp(𝜏0 + 𝜏ageagei + 𝜏sexsexi + 𝜏l𝜈i + 𝜔i)

𝜔i ∼ N(0, 𝜎2
𝜔
),

where PAij is the positive affect measurement of student i on day j, agei is the age of student i in years, and sexi is the sex
of student i (0 = Female, 1 = Male). Table 5 shows the point estimates and confidence intervals from FastRegLS and ML
(the latter run using MixRegLS). The point estimates of the regression coefficients are very similar for the two methods,
as are both types of confidence intervals. The most interesting difference between the two is the random scale variance,
for which the FastRegLS point estimate is larger than that of ML. However, we note that the confidence intervals do still
overlap. The key point is that the interpretation of the coefficients is the same for each method. For instance, both methods
tell us that males have a much smaller variability in their PA responses (𝜏sex < 0), and that higher average PA responses
(better moods) are associated with smaller PA variability (𝜏l < 0). There is also subject-level variability beyond age and
sex that is captured by the random location and scale effects (𝜎2

𝜈

> 0 and 𝜎2
𝜔

> 0). However, the FastRegLS estimates come
at a fraction of the computation time: 0.19 s, compared to 8.25 s for ML.

6 DISCUSSION

In this paper, we introduced a new fitting technique, called FastRegLS, for the MELS model that is considerably faster
than currently available maximum likelihood-based techniques. The FastRegLS estimators are consistent, and approxima-
tions to their asymptotic variances are available. Because it is so much faster than existing techniques, FastRegLS makes
bootstrap inference practical for the MELS model for the first time. Given the complexity of the MELS model and the chal-
lenges associated with performing inference on variance components, this is a useful addition to the MELS model toolkit.
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1442 GILL and HEDEKER

F I G U R E 3 Positive affect (PA) trajectories for a selection of subjects in our example intensive longitudinal study. The trajectories differ
considerably in mean and variance; by fitting a MELS model, we can determine whether such differences are due to covariates, or to
individual-level heterogeneity captured by random location and scale effects

We emphasize that FastRegLS does not need to replace a full ML solution in order to be useful. Even if a researcher
plans to eventually fit a model using ML, FastRegLS could still be useful by speeding up exploratory data analysis. Or if
one suspects deviations from the specified model, they could check how reasonable ML Wald confidence intervals are by
computing the FastRegLS bootstrap intervals and comparing - if they are similar, then there is more reason to trust the
ML results. FastRegLS could also be used to quickly provide starting values for a full ML algorithm.

Although we only considered a MELS model with a random location intercept and a random scale intercept, recent
work29 has considered additional location and scale random effects, for example random slopes. For these models, the
existing approaches are even more computationally burdensome, since the complexity of the fitting problem increases
exponentially in the number of random effects. The FastRegLS approach of breaking down the full model into submodels
could potentially provide even more substantial speed increases in this setting, since the complexity is limited only by the
size of the largest of these submodels. Future work will extend FastRegLS to allow for more complicated random effects
structures. Additionally, since the models considered in this paper are only appropriate for Gaussian responses, we plan
to extend FastRegLS to models for non-Gaussian response variables.

 10970258, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9679 by U
niversity O

f C
hicago L

ibrary, W
iley O

nline L
ibrary on [24/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



GILL and HEDEKER 1443

T A B L E 5 Comparison of parameter estimates and confidence intervals from FastRegLS and from maximum likelihood (run using
MixRegLS) on real data from a longitudinal study on positive affect

Parameter FastReg FastReg wald FastReg boot ML ML wald ML boot

𝛽0 4.00 (2.79, 5.21) (2.42, 5.24) 3.98 (1.97, 5.02) (1.87, 5.28)

𝛽age 0.01 (−0.04, 0.06) (−0.05, 0.08) 0.01 (−0.04, 0.06) (−0.05, 0.11)

𝛽sex 0.49 (−0.38, 1.35) (−0.42, 1.28) 0.49 (−0.37, 1.35) (−0.42, 1.25)

𝜏0 0.52 (−0.52, 1.55) (−0.42, 2.82) 0.71 (−0.15, 1.58) (−0.17, 2.72)

𝜏age −0.02 (−0.07, 0.02) (−0.13, 0.02) −0.03 (−0.07, 0.01) (−0.13, 0.01)

𝜏sex −0.89 (−1.63,−0.15) (−2.12,−0.04) −0.75 (−1.37,−0.13) (−1.56,−0.02)

𝜏l −0.34 (−0.57,−0.11) (−0.62,−0.09) −0.32 (−0.52,−0.11) (−0.51,−0.04)

𝜎

2
𝜈

1.27 (1.06, 1.47) (0.38, 1.76) 1.26 (0.87, 1.82) (0.82, 1.62)

𝜎

2
𝜔

0.81 (0.62, 1.01) (0.36, 1.17) 0.50 (0.31, 0.73) (0.48, 0.82)

Note: The point estimates and confidence intervals are generally similar for the two methods. However, the FastRegLS runtime is much faster than ML - 0.19 s
versus 8.25 s.
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