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Abstract 

Background Collection of intensive longitudinal health outcomes allows joint modeling of their mean (location) 
and variability (scale). Focusing on the location of the outcome, measures to detect influential subjects in longitudi-
nal data using standard mixed-effects regression models (MRMs) have been widely discussed. However, no existing 
approach enables the detection of subjects that heavily influence the scale of the outcome.

Methods We propose applying mixed-effects location scale (MELS) modeling combined with commonly used 
influence measures such as Cook’s distance and DFBETAS to fill this gap. In this paper, we provide a framework 
for researchers to follow when trying to detect influential subjects for both the scale and location of the outcome. The 
framework allows detailed examination of each subject’s influence on model fit as well as point estimates and preci-
sion of coefficients in different components of a MELS model.

Results We simulated two common scenarios in longitudinal healthcare studies and found that influence meas-
ures in our framework successfully capture influential subjects over 99% of the time. We also re-analyzed data 
from a health behavior study and found 4 particularly influential subjects, among which two cannot be detected 
by influence analyses via regular MRMs.

Conclusion The proposed framework can help researchers detect influential subject(s) that will be otherwise over-
looked by influential analysis using regular MRMs and analyze all data in one model despite influential subjects.

Keywords Cook’s distance, Influential data, Intensive longitudinal data, Mixed-effects location scale model, Variance 
modeling

Background
In the past decades, intra-individual variability, also 
called within-subject (WS) heterogeneity or level-1 heter-
ogeneity, of health behaviors and conditions has received 
increased attention [1–3]. Accordingly, new develop-
ments in statistical modeling, including mixed-effects 

location scale (MELS) models proposed by Hedeker et al. 
[4] and Nordgren et  al. [5], allow researchers to model 
the mean, or location, and variability, or (square of the) 
scale of responses simultaneously.

Although these models can accommodate between-
subject (BS) heterogeneity, also called level-2 heteroge-
neity, through random subject effects, there often exist 
subjects who are so different from the others that they 
need additional analyses and/or may affect model estima-
tion. For example, in ecological momentary assessments 
(EMA) studies, a typical type of careless responses is that 
subjects give many consecutive items the same answer 
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[6]. In this case, even if the data from these subjects do 
not deviate from any pattern in mean responses that 
subjects correctly responding to questions may show, 
they exhibit exceptionally low variability. Such abnormal 
behavior can distort the parameter estimates, especially 
the estimated variance of random scale effects. On the 
other hand, subjects who display exceptional consist-
ency during behavioral studies, such as a study that aims 
at increasing subjects’ physical activities, might be of 
interest as such a pattern may indicate good adherence 
to the study protocol. Being able to identify such subjects 
is important in terms of informing personalized health-
care. Especially, there have been discussions about using 
mixed-effects regression models (MRMs) to find individ-
uals who behave differently from others regarding their 
health conditions and outcomes [7, 8]. Since MELS mod-
els are an extension of standard MRMs, they can also 
perform similar functions and offer additional informa-
tion about WS variability.

While there has been extensive literature discussing 
influential subjects and observations in MRMs [7, 9, 10] 
and software developed to implement these methods [11], 
to the best of our knowledge, there lack similar methods 
for the scale model of the response. As we will show in 
later sections, not considering WS variability in influence 
analysis can leave subject(s) with abnormal WS variabil-
ity undetected. Hence, in the topic of influence analysis, 
WS variability deserves equal attention as the mean of the 
outcomes.

Therefore, we propose a framework for detecting influ-
ential subjects using MELS models. We examine each 
subject’s influence on model fit as well as point estimates 
of parameters and their efficiency. The proposed method 
enables researchers to identify subjects who exhibit dubi-
ous patterns in their WS variability and/or mean, thus 
facilitating research on intra-individual variability. Unlike 
the traditional case-deletion approach of influential data 
detection, we adopt the method proposed by Langford 
and Lewis [9]. If a subject is being examined for its influ-
ence, it is removed from the estimation of level-2 effects 
and given subject-specific fixed effects. We will demon-
strate how the estimation of the leave-one-out models 
can be carried out in SAS and R. Also, a health behav-
ior study will be used as an example to illustrate the 
proposed methodology. Finally, we will assess the perfor-
mance of our method and demonstrate its benefits over 
influence analysis using MRMs via simulated examples.

Methods
Leave‑one‑out MELS model
In this section, we first briefly review MELS models 
developed by Hedeker et al. [4]. For simplicity, only ran-
dom intercepts with scalar variances are included in both 

the location and the scale models described below. Nev-
ertheless, more complicated models that include random 
slopes of time-varying covariates and/or have covariates 
influence the variances of the random effects are possible.

Suppose that subject i ( i = 1, 2, . . . ,N  ) is measured at 
visit j ( j = 1, 2, . . . , ni ). The model for the response yij can 
be expressed as:

where xij is a p× 1 vector of time-varying covariates 
influencing the mean of yij , and νi is subject i’s random 
intercept, indicating subject i’s deviation from the fixed 
part of the model. β0 is the fixed intercept, i.e. average 
response when all covariates equal 0, and β ′ is a p× 1 
vector of coefficients corresponding to xij . ǫij is the level-1 
residual and follows a normal distribution with a mean of 
0 and a variance of σ 2

ǫij
 . Later on, the notation β in influ-

ence measures represents a vector of which the first entry 
is β0 and the remaining entries come from β ′.

In the MELS model, a log-linear sub-model is applied 
to the WS variance of the response to ensure a positive 
value:

where wij is an r × 1 vector of time-varying covariates 
influencing the scale of yij , and ωi is the ith subject’s devi-
ation from the average log WS variance of yij . τ0 is the 
average log WS variance when every covariate in wij is 0, 
and τ ′ is an r × 1 vector of coefficients of wij . Likewise, τ 
in influence measures refers to a vector of which the first 
entry is τ0 , and the remaining entries come from τ ′.

The random location and scale effects can correlate 
with each other, and they are assumed to follow a bivari-
ate normal distribution:

Given our focus on influence analysis at the subject 
level, also known as level 2 in longitudinal models, it’s 
important to pause here and clarify that level-2 effects 
in MELS models comprise fixed effects of time-invariant 
covariates (including the fixed intercepts) and all random 
effects. This distinction lays the foundation for our forth-
coming exploration of influence analysis using MELS 
models. The following paragraphs present how the leave-
one-out MELS models are formed, i.e., how each subject 
is separated from the random effects and subject-level 
fixed effects and given subject-specific fixed effects, for 
subsequent influence analyses.

As suggested by Langford and Lewis [9], in order to 
separate the subject under evaluation, denoted as i∗ 

(1)yij = β0 + νi + xTij β
′ + ǫij ,

(2)σ 2
ǫij

= exp τ0 + ωi + wT
ij τ

′ ,

(3)
(

νi
ωi

)

∼ N

((

0
0

)

,

(

σ 2
ν σνω

σνω σ 2
ω

))

.
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(i∗ ∈ 1, 2, . . . ,N  ), from level 2 of the location model, 
we exclude subject i∗ from the estimation of the ran-
dom effects and level-2 fixed effects. In this case, the 
only level-2 fixed effect is β0 . Then, subject i∗ is given a 
subject-specific fixed effect denoted as ci∗ . Namely, the 
location model becomes

where 1(i = i∗) equals 1 for subject i∗ and 0 for all other 
subjects, and 1(i  = i∗) equals 0 for subject i∗ and 1 for all 
other subjects.

Note that for simplicity in illustrating leave-one-
out MELS models, we assume that every covariate in 
xij and wij is time-varying. When some time-invariant 
covariates are also present, subject i∗ should be sepa-
rated from the estimation of their associated coeffi-
cients as well.

To also separate subject i∗ from level 2 of the scale 
model described in Eq.  2, the leave-one-out scale 
model is as follows:

Here, di∗ is the i∗th subject’s subject-specific fixed 
scale effect, and the variances of random location 
effects and random scale effects become σ 2

ν(−i∗) and 
σ 2
ω(−i∗) while their covariance is σνω(−i∗) without sub-

ject i∗ . Note that the subscript (−i∗) here as well as in 
Eqs.  4 and  5 does not mean that subject i∗ is entirely 
removed from modeling but instead only removed 
from the estimation of level-2 effects.

Overall, the algorithm to estimate a leave-one-out 
MELS model includes the following steps: (1) create an 
indicator variable that equals 1 for subject i∗ and 0 oth-
erwise; (2) use the opposite of the indicator variable in 
(1) as the covariate for the random intercepts; (3) fol-
lowing step (2), subject i∗ will not be included in the 
random effect estimation, and the fixed location effect 
for the indicator variable would be ci∗ while the fixed 
scale effect is di∗ . Our programming specifics and per-
tinent material will be explained in Section “Results”.

A separate leave-one-out model is estimated for 
every subject and compared with the model in which 
all subjects are treated the same. Besides allowing the 
detection of highly influential subjects, this leave-one-
out structure can be viewed as a way to keep all sub-
jects in the model despite influential subject(s). Using 
all available data to estimate the level-1 fixed effects 
has the benefit of increasing statistical power.

(4)
yij = 1(i �= i∗)× (β0(−i∗) + νi)+ xTij β

′
(−i∗)

+ 1(i = i∗)× ci∗ + ǫij ,

(5)
σ 2
ǫij

= exp(1(i �= i∗)× (τ0(−i∗) + ωi)

+ wT
ij τ

′
(−i∗) + 1(i = i∗)× di∗).

Influence analysis
Influence on model fit
Given that the model described in Eqs.  1 and  2 are 
nested in the leave-one-out model described in Eqs.  4 
and 5, likelihood-ratio test was used to examine subject 
i∗ ’s influence on the model fit. The test statistic, differ-
ence in deviance, denoted as LRi∗ for subject i∗ , can be 
calculated as follows:

where L(−i∗) represents the likelihood of the MELS 
model in which subject i∗ is separated, and L represents 
the likelihood of the naive MELS model. Since N tests are 
conducted simultaneously, the false discovery rate (FDR) 
procedure [12] is applied to adjust for multiple compari-
sons. This specific multiple testing correction method is 
chosen because of its ability to control for both Type I 
and Type II errors [13].

Influence on parameter estimates
Cook’s distance [14] is a well-known measure for the 
influence of data on the point estimates of a group of 
parameter estimates. Based on the structure of MELS 
models, we calculate the Cook’s distances for three 
groups of parameters, namely, fixed location effects ( β ), 
fixed scale effects ( τ ), and variances and covariance of 
random effects, denoted as η ( η = [σ 2

ν , σ
2
ω, σνω] ). Fol-

lowing the formula of Cook’s distance for multilevel 
models described by Snijder and Bosker [15], Cook’s 
distance can be calculated as

where γ can be β , τ , or η . Here, rγ is the number of 
parameters being examined, and �γ̂ (−i∗) is the variance-
covariance matrix of γ̂ after subject i∗ is separated from 
the random effect estimation. A large Cook’s distance 
indicates a heavy influence on a specific group of param-
eter estimates.

Once a subject is determined to be influential on a par-
ticular group of parameter estimates, it is often of inter-
est to investigate this subject’s influence on each specific 
parameter estimate within this group. In this case, DFBE-
TAS can be used. DFBETAS is the difference between the 
estimate of a parameter obtained when all subjects are 
kept in the random effect and level-2 effect estimation 
and the parameter estimate when a subject is separated, 
divided by the standard error of the parameter estimate 
[16]. Its mathematical representation is as follows:

(6)LRi∗ = 2 ln

(

L(−i∗)

L

)

,

(7)C
γ
i∗ =

1

rγ

(

γ̂ − γ̂(−i∗)
)T

�̂−1
γ̂ (−i∗)

(

γ̂ − γ̂(−i∗)
)

,
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where θ can be any single parameter in the model. DFBE-
TAS can have both positive and negative values. A highly 
positive value indicates that the inclusion of the influen-
tial subject creates a positive bias for θ̂ , and vice versa.

Influence on the precision of parameter estimates
Influential subjects can also affect the variances of 
parameter estimates besides their point estimates. COV-
TRACE proposed by Christensen et  al. [10] and COV-
RATIO described by Belsley et al. [17] are often used to 
measure such changes.
COVTRACE

γ
i∗ is calculated as the absolute value of 

the difference between the trace of the inverse ratio of 
variance-covariance matrix estimates with and without 
subject i∗ in level-2 model and the number of parameters 
under investigation:

The larger the COVTRACE value, the greater the influ-
ence of subject i∗ on the precision of γ̂.

(8)DFBETASθi∗ =
θ̂ − θ̂(−i∗)

SE
(

θ̂(−i∗)

) ,

(9)COVTRACE
γ
i∗ =

∣

∣

∣
Tr

(

�̂−1
γ̂

�̂γ̂ (−i∗)

)

− rγ

∣

∣

∣
.

Meanwhile, COVRATIO
γ
i∗ is the inverse ratio of the 

determinant of the estimated variance-covariance matrix 
of γ with and without subject i∗ in level-2 model:

Again, γ is one of β , τ , and η . The determinant of a 
variance-covariance matrix is also known as the gener-
alized variance, a measure of multidimensional scatter 
[18]. The examples in the next two sections will focus on 
COVRATIO because it provides information on both the 
magnitude and the direction of the influence. A value of 
COVRATIO above 1 indicates a loss in precision when 
separating subject i∗ , and on the contrary, a value below 1 
indicates a gain in precision.

All the procedures of influence analysis described in 
Section “Influence analysis” are summarized in Table 1.

Results
Application to health behavior study example
Data collected by Flueckiger et al. [19] for a study on the 
association between health behaviors and learning goal 

(10)COVRATIO
γ
i∗ =

det
(

�̂γ̂ (−i∗)

)

det(�̂γ̂ )
.

Table 1 Influence analysis framework for MELS models

Influence measure Influence sub‑category Formula

Influence on model fit

Difference in deviance
LRi∗ = 2 ln

(

L(−i∗)
L

)

  

Influence on point estimates of a group of parameters

Cook’s distance Fixed location effect estimates
C
β
i∗ = 1

rβ

(

β̂ − β̂(−i∗)

)T

�̂−1

β̂(−i∗)

(

β̂ − β̂(−i∗)

)

  

Fixed scale effect estimates C
τ
i∗ = 1

rτ

(

τ̂ − τ̂(−i∗)
)T
�̂−1

τ̂ (−i∗)

(

τ̂ − τ̂(−i∗)
)

  

Variances and covariances of random effects C
η
i∗ = 1

rη

(

η̂ − η̂(−i∗)
)T
�̂−1

η̂(−i∗)

(

η̂ − η̂(−i∗)
)

  

Influence on point estimate of a single parameter

DFBETAS
DFBETAS

θ
i∗ = θ̂−θ̂(−i∗)

SE

(

θ̂(−i∗)
)

  

Influence on variances and covariances of a group of parameters

COVTRACE Fixed location effect estimates
COVTRACE

β
i∗ =

∣

∣

∣
Tr

(

�̂−1

β̂
�̂

β̂(−i∗)

)

− rβ

∣

∣

∣
  

Fixed scale effect estimates
COVTRACE

τ
i∗ =

∣

∣

∣
Tr

(

�̂−1

τ̂
�̂τ̂ (−i∗)

)

− rτ

∣

∣

∣
  

Variances and covariances of random effects
COVTRACE

η
i∗ =

∣

∣

∣
Tr

(

�̂−1

η̂
�̂η̂(−i∗)

)

− rη

∣

∣

∣
  

COVRATIO Fixed location effect estimates
COVRATIO

β
i∗ =

det

(

�̂
β̂(−i∗)

)

det

(

�̂
β̂

)

  

Fixed scale effect estimates
COVRATIO

τ
i∗ =

det

(

�̂τ̂ (−i∗)
)

det

(

�̂τ̂

)

  

Variances and covariances of random effects
COVRATIO

η
i∗ =

det

(

�̂η̂(−i∗)
)

det

(

�̂η̂

)
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achievements are used as an example to illustrate the 
proposed method.

During the 32-day span of the study, 72 students 
answered questions about their sleep quality (SQ), physi-
cal activity, positive and negative affect, learning goal 
achievement (LGA), and examination grades. The follow-
ing analysis focuses on complete observations with values 
for all variables, so our analysis includes 1788 observa-
tions from 62 subjects. One of the major findings from 
the original study is that better SQ is positively associated 
with LGA. Hence, we chose SQ as the covariate for both 
the mean and the scale models. Namely, the location 
model for the example can be expressed as

and the scale model, in which the variance of ǫij is being 
modeled, is

where SQ was measured on a 4-point Likert scale in 
which 1 means very bad, and 4 means very good. LGA 
was measured on a 5-point Likert scale in which 0 rep-
resents having not achieved the goals at all and 4 repre-
sents having achieved the goals completely. We treated 
LGA and SQ as continuous, consistent with the approach 
taken in the original study. The approximate normal dis-
tribution of LGA has been validated through our explora-
tory analysis. Nevertheless, it is important for the readers 
to exercise caution when generalizing the results beyond 
the original LGA range.

The Cook’s distances and COVRATIOs of all subjects 
are visualized in Fig.  1. After applying the FDR proce-
dure, subjects 7, 12, 49, and 69 are determined to have 
a statistically significant influence on the model fit based 
on likelihood-ratio tests. Influence analysis results of 
these four subjects are summarized in Table  2. Accord-
ing to the Cook’s distances, we can see that subjects 7 and 
12 have high influence on the fixed scale effects, subject 
69 has high influence on the fixed location effects, while 
subject 49 has high influence on both. In particular, sub-
ject 7 has a large DFBETAS for τSQ , subject 49 has the 
largest DFBETAS for β0 and the smallest DFBETAS for 
τ0 , and subject 69 has the smallest DFBETAS for β0 and 
the 2nd largest DFBETAS for βSQ . All four subjects have 
high influence on the point estimates of the variances 
and covariance of the random effects. Specifically, sepa-
ration of subjects 7, 12, and 49 shrinks σ̂ 2

ω ; separation of 
subjects 49 and 69 shrinks σ̂ 2

ν  ; separation of subject 7 and 
69 decreases σ̂νω while separation of subject 12 and 49 
increases σ̂νω . Moreover, excluding each of these subjects 

(11)LGAij = β0 + νi + βSQSQij + ǫij ,

(12)σ 2
ǫij

= exp(τ0 + ωi + τSQSQij),

from the random effect estimation also shrinks the cor-
responding generalized variances of the groups of param-
eters that they have influence on the point estimates, 
suggesting that these four subjects have caused a loss in 
model precision in the original model.

We visualize the SQ and LGA of these four subjects in 
Fig. 2 to see how the data correspond with the influence 
analysis findings. While all except two of subject 7’s self-
reported SQ ratings have a value of 4, the LGA of this 
subject was highly variable when SQ equaled 4. This is 
consistent with the influence analysis result that giving 
subject 7 subject-specific fixed effects shrinks τ̂SQ and 
σ̂ 2
ω . While subject 49 had consistently high LGA, subject 

69 had all low LGA values at 0 and 1. Such patterns in 
the data correspond to subject 49’s large DFBETASβ0 and 
subject 69’s small DFBETASβ0 . Given subject 12, 49, and 
69 have such great influence on different components of 
the model and the fact that they have the lowest varia-
bility in LGA across all subjects, it could be worthwhile 
to investigate whether the similar answers for LGA is a 
result of careless responses or simply outstanding con-
sistency in actual LGA.

Sensitivity analyses were conducted by excluding the 
scale model, i.e., using standard MRMs. The sensitivity 
analysis results still acknowledge the strong influence 
of subjects 49 and 69 on the location model but do not 
reveal significant influence from subjects 7 and 12. These 
findings are consistent with results in Section  “Simula-
tion study”, that is, subjects with influential data in terms 
of scale can often be neglected if influence analyses are 
conducted via MRMs only.

PROC NLMIXED in SAS OnDemand for Academics 
(SAS Institute Inc.) was used to estimate both the origi-
nal and the leave-one-out MELS models. All the influ-
ence analyses using the results from SAS were carried 
out in R version 4.2.0 (R Core Team). Both the SAS codes 
and the R codes we used are included in the supporting 
information.

Simulation study
To further illustrate the advantages of conducting influ-
ence analyses using MELS models compared to analyses 
using MRMs with no scale components, we generated 
simulated examples in two different scenarios, with 500 
datasets created for each scenario. Every dataset contains 
50 subjects that follow the structure described in Eqs. 1 
and 2 before designating some subject(s) to be influential. 
Both scenarios’ responses resemble daily physical activity 
time in minutes, so negative values were removed. Exam-
ples of one regular subject and one artificially influential 
subject simulated in each scenario are illustrated in Fig. 3.
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The proposed method requires fitting a MELS 
model, for which estimation can be time-consuming, 
for every subject in the dataset. Hence, all the MELS 
models involved in the simulation study were esti-
mated using a fast estimation algorithm for MELS 
models, FastRegLS, developed by Gill and Hedeker 
[20]. The supporting information contains codes that 

utilize FastRegLS to carry out the influence analysis. 
One or more of the models failed to converge properly 
for 1 to 18 datasets (mean = 7.67) in the six simula-
tion studies, and these datasets are not included in the 
result summary. One drawback of the FastRegLS algo-
rithm is that it doesn’t offer log-likelihoods. Hence, 
the simulation studies primarily concentrate on point 

Fig. 1 Cook’s distances and COVRATIOs for the health behavior data. Points in red are the four subjects influential on the fit of the MELS model 
of health behavior data
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estimates, along with the variances and covariances of 
parameter estimates.

Simulation scenario 1
In the first scenario, the time-varying covariate, portions 
of fiber intake, is continuous and was simulated based 
on a N (3, 1) distribution, after which absolute values 
were taken to ensure non-negativity. The values of the 
parameters used to generate the simulated datasets are as 

follows: β = [100, 10] ; τ = [7, 0.5] ; η = [20.09, 1, 0.45] . In 
other words, the model used to generate data except for 
the influential one(s) is as follows:

There are 500 observations from each subject, and the 
covariate is standardized for influence analysis to facili-
tate model estimation. This scenario focuses on the case 
of careless responses, so we first designated subject 1 to 
have all responses at 150 and 155 and all covariates at 3 
and 4 before standardization. The percentage of simu-
lations in which each influence measure detects subject 
1 to be the most influential are summarized in the first 
column of Table 3. In summary, subject 1 always has the 
smallest COVRATIOτ and the largest DFBETASσ

2
ω . It 

also almost always has the largest DFBETASτ0 . The sec-
ond column in Table  3 shows the percentage of detec-
tion when we specify the first three subjects to have 
such careless responses, and the three subjects still 
almost always have the smallest COVRATIOτ ’s and the 
largest DFBETASσ

2
ω’s. Note that only all three influen-

tial subjects among the top three are counted as one 
detection.

Simulation scenario 2
For scenario 2, the covariate values were simulated to 
represent discrete time periods with values that range 
from 0 to 7, and each subject had 25 observations from 
each time period before removing negative values. The 
simulated datasets were generated according to the fol-
lowing structure:

The influential subject(s) are subject(s) with excep-
tional consistency throughout the behavioral study and 
are simulated with an intercept of 0 in the scale model. 
In the simulation study with the first subject like this, 
the subject almost always has the largest Cτ , the small-
est COVRATIOτ , the largest DFBETASτ0 , and the larg-
est DFBETASσ

2
ω . The same results remain in terms of 

COVRATIOτ and DFBETASσ
2
ω when the number of arti-

ficial influential subjects increases to three.

(13)

yij = 100+ νi + 10x1ij + ǫij ,

σ 2
ǫij

= exp(7+ ωi + 0.5x1ij),
(

νi
ωi

)

∼ N

((

0
0

)

,

(

20.09 0.45
0.45 1

))

.

(14)

yij = 100+ νi + 15x1ij + ǫij ,

σ 2
ǫij

= exp(3+ ωi + 0.6x1ij),
(

νi
ωi

)

∼ N

((

0
0

)

,

(

20.09 0.22
0.22 0.25

))

.

Table 2 Influence analysis results for health behavior data

Subject Influence measure Results

7 Cook’s distance - Largest Cτ (0.069)

- 2nd largest Cη (0.194)

DFBETAS - 3rd largest DFBETASβSQ (0.055)

- Largest DFBETASτSQ (0.163)

- Largest DFBETASσ
2
ω (0.604)

- Largest DFBETASσνω (0.325)

COVRATIO - Smallest COVRATIOτ (0.905)

- 3rd smallest COVRATIOη (0.743)

12 Cook’s distance - 3rd largest Cτ (0.045)

- 4th largest Cη (0.084)

DFBETAS - 4th largest DFBETASβ0 (0.096)

- 2nd largest DFBETASσ
2
ω (0.392)

- 2nd smallest DFBETASσνω (-0.343)

COVRATIO - 2nd smallest COVRATIOτ (0.948)

- 4th smallest COVRATIOη (0.862)

49 Cook’s distance - Largest Cβ (0.054)

- 4th largest Cτ (0.037)

- Largest Cη (0.323)

DFBETAS - Largest DFBETASβ0 (0.194)

- Smallest DFBETASτ0 (-0.140)

- Largest DFBETASσ
2
ν  (0.553)

- 4th largest DFBETASσ
2
ω (0.325)

- Smallest DFBETASσνω (-0.737)

COVRATIO - Smallest COVRATIOβ (0.925)

- 4th smallest COVRATIOτ (0.959)

- Smallest COVRATIOη (0.694)

69 Cook’s distance - 2nd largest Cβ (0.052)

- 3rd largest Cη (0.102)

DFBETAS - Smallest DFBETASβ0 (-0.281)

- 2nd largest DFBETASβSQ (0.121)

- 2nd largest DFBETASσ
2
ν  (0.422)

- 3rd largest DFBETASσνω (0.269)

COVRATIO - 2nd smallest COVRATIOβ (0.939)

- 2nd smallest COVRATIOη (0.741)
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As shown in the third column of Table 3, using standard 
MRMs, none of the influence measures recognize the influ-
ences of the designated influential subjects by more than 

half of the time in either scenario. Therefore, in order to 
successfully identify an influential subject in these scenar-
ios, it is essential to take the scale model into consideration.

Fig. 2 Data from subjects influential on the fit of the MELS model of health behavior data
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Discussion
In this paper, we have discussed procedures to detect 
subject(s) influential in model fit and parameter esti-
mates in MELS models. This approach allows research-
ers to identify subjects influential on the scale structure 
of the outcome being modeled in addition to the loca-
tion structure. We hope that our method is able to help 
researchers, especially researchers interested in study-
ing intra-individual variability, better identify interest-
ing or troublesome subjects that they want to study 
further in an EMA study or a large-scale longitudinal 
clinical trial. After determining which subjects are con-
sidered influential, researchers can keep these subjects 
in the analysis using our leave-one-out MELS model 
described in Section “Influence analysis”, and a sum-
mary of other common ways of dealing with influential 
data can be found in a recent work by Aguinis et al. [21]. 
The proposed method can also benefit analyses not car-
ried out in MELS models by providing researchers with 
a better understanding of both the location and the scale 
structures of their data during exploratory analyses.

Our study has focused on subject-level influence analy-
ses, so one possible extension is the detection of influen-
tial observations in MELS model. Given that there could 
be influential observation(s) within a non-influential 
subject, estimating a separate model for each observa-
tion might be required. Because of the enormous num-
ber of observations in intensive longitudinal data, such 
methods can be extremely computationally intensive. 

This article has also focused on maximum likelihood esti-
mates of 2-level MELS models for normally distributed 
continuous outcomes. Further development can extend 
the proposed framework to accommodate models with 3 
or more levels [22, 23], models on outcomes with more 
complicated structures [24], and Bayesian estimation 
approaches [25]. Future work will also extend to ordinal 
MELS models [26].

To plan for further data analysis based on the influence 
analysis results, we recommend readers go through all 
the results from our framework and use their domain 
knowledge to decide whether specific subject(s) are con-
sidered influential and need further analysis. However, 
we understand that one might want cutoffs to guide their 
judgment. Rule-of-thumb cut-off values are 4N  for Cook’s 
distances, 1± 3(

rγ
N ) for COVRATIO, and 2√

N
 for DFBE-

TAS [17]. Also, a possible future direction of this work is 
to improve existing cut-off values to be more suitable for 
MELS models.

The simulation studies have showcased that at least 
some of the influence measures are able to capture all 
influential subjects in the case that multiple of them 
coexist. Nevertheless, not all measures perform the same, 
which might be attributed to the masking effect [27]. 
Therefore, we again recommend readers carefully exam-
ine all influence measures mentioned in the framework, 
and a future step of this study will be improving individ-
ual influence measures to overcome any possible masking 
effect.

Fig. 3 Simulated data examples. Points in black represent data from one regular subject, and points in red represent data from one influential 
subject
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Conclusion
The proposed influence analysis framework using MELS 
models enables detection of influential subjects on the 
scale structure and/or location structure of intensive 
longitudinal data. Thus, it can facilitate modeling that 
accounts for the abnormality of certain subject(s). Such 
benefits of the proposed methods are revealed in both 
the real-life example and the simulated examples.
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