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Chapter 1

Multivariate and Shared
Parameter Mixed-Effects Models
for Intensive Longitudinal Data

ABSTRACT
Intensive longitudinal data are increasingly common in many research areas. Such data are
often collected using Ecological Momentary Assessment (EMA), Experience Sampling
Methods (ESM), internet studies, wearable devices, and diary methods. In such studies,
typically there are a large number of repeated observations per subject, and often many
variables are measured. In this chapter, we first describe a multivariate mixed-effects
model that simultaneously considers several dependent variables as joint outcomes. This
model includes several random subject effects for each outcome, and considers these
random effects to be correlated. In this way, one can assess the correlation of the outcomes
conditionally adjusting for model covariates. Furthermore, the multivariate model allows
one to test if covariates have the same or different effects on the outcomes. We then
describe how the covariance parameters of the random effects can be reformulated as
regression effects, leading to a shared parameter modeling of the joint outcomes. This
then allows one to consider interactions with the regression versions of the covariance
parameters. For example, one can examine whether the association of the outcomes
varies by other model covariates (e.g., subject sex or age). Furthermore, these association
parameters can interact with each other (e.g., does the association of two outcomes vary
as a function of another outcome). This flexibility of the shared parameter approach is
highlighted and offers data analysts the possibility of considering novel research questions
for intensive longitudinal data. To illustrate these approaches, we use a study investigating
weight loss, in which subjects provided daily weight measurements over a treatment
intervention period of 3 months and a follow-up period of 9 months. Since subjects have
varying numbers of weight measurements in both the treatment and follow-up periods, the
use of the mixed model, which does not assume complete data across time, is attractive. In
supplemental materials, we present syntax for both frequentist and Bayesian approaches
to estimate the parameters of such models using standard statistical software packages.

KEYWORDS
random effects, joint models, irregular measurement

1.1 INTRODUCTION
Modern data collection procedures, such as ecological momentary assessments
(EMA) (Stone & Shiffman 1994, Smyth & Stone 2003, Shiffman et al. 2008),
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experience sampling (de Vries 1992, Scollon et al. 2003, Feldman Barrett &
Barrett 2001), and diary methods (Bolger et al. 2003), have been developed to
record the momentary events and experiences of subjects in daily life. These pro-
cedures yield relatively large numbers of subjects and observations per subject,
and data from these designs are sometimes referred to as intensive longitudinal
data (Walls & Schafer 2006). Often, these studies include many variables mea-
sured over time and there is interest in modeling several variables jointly. In
this chapter, we describe a multivariate mixed-effects model that simultaneously
considers several dependent variables as joint outcomes. This model includes
several random subject effects for each outcome, and considers these random
effects to be correlated. We also consider a shared parameter model for the
multivariate outcomes that allows further examination of the correlations of the
outcomes, by moving the random effect covariance parameters to be regression
coefficients in the multivariate model. This allows one to examine interactions
with the random effects, including interactions of the random effects with each
other.

1.2 MULTIVARIATE MIXED-EFFECTS MODELS
Here, we present a description of a bivariate model, as the methods extend in
a logical way for more than two outcomes. For this, Thiébaut et al. (2002)
described a practical way of using mixed model software for bivariate outcomes,
which we will follow. Specifically, define the dependent variable vector of the
two outcomes (considered jointly), 𝒚 (1)

𝑖
(with 𝑛

(1)
𝑖

observations) and 𝒚 (2)
𝑖

(with
𝑛
(2)
𝑖

observations), for subject 𝑖 (𝑖 = 1, 2, . . . , 𝑁 subjects) as:

𝒚𝑖 =

[
𝒚 (1)
𝑖

𝒚 (2)
𝑖

]
. (1.1)

Here, if the two outcomes are measured at the same timepoints, then 𝑛(1)
𝑖

= 𝑛
(2)
𝑖

=
𝑛𝑖 , however this is not required. Thus, subjects can provide more/less numbers of
observations on these two outcomes. Notice that the dependent variable vector
𝒚𝑖 , which stacks the two outcome vectors 𝒚 (1)

𝑖
and 𝒚 (2)

𝑖
on top of each other, is

of size (𝑛(1)
𝑖

+ 𝑛
(2)
𝑖

) × 1.
Similarly, define the covariate matrix for the two outcomes of subject 𝑖 as:

𝑿𝑖 =

[
𝑿 (1)
𝑖

0
0 𝑿 (2)

𝑖

]
, (1.2)

where 𝑿 (1)
𝑖

is a 𝑛
(1)
𝑖

× 𝑝
(1)
𝑖

matrix of covariates for the first outcome, and 𝑿 (2)
𝑖

is a 𝑛(2)
𝑖

× 𝑝
(2)
𝑖

matrix of covariates for the second outcome. The first column of
these two matrices would generally be ones for the intercepts, and the remaining
columns would contain the 𝑝 (1) − 1 and 𝑝 (2) − 1 covariates, respectively. These
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covariates could be time-invariant or time-varying, and include dummy-codes,
contrast variables, polynomials, and interactions, for example. In some cases
these covariate matrices for the two outcomes could be the same, however this
is not required.

Models for longitudinal data generally include multiple random subject
effects (e.g., random intercepts and slopes). For this, define the random effect
design matrix for the two outcomes of subject 𝑖 as:

𝒁𝑖 =

[
𝒁 (1)
𝑖

0
0 𝒁 (2)

𝑖

]
, (1.3)

where 𝒁 (1)
𝑖

is a 𝑛(1)
𝑖

×𝑟 (1)
𝑖

matrix of random effect variables for the first outcome,
and 𝒁 (2)

𝑖
is a 𝑛(2)

𝑖
×𝑟 (2)

𝑖
matrix of random effect variables for the second outcome.

As an example, for a random intercept and time model, the first columns of 𝒁 (1)
𝑖

and 𝒁 (2)
𝑖

would consist of ones, and the second columns would be the values of
time at the 𝑛(1)

𝑖
and 𝑛

(2)
𝑖

timepoints, respectively. If the two dependent variables
were measured at the same timepoints, then generally 𝒁 (1)

𝑖
= 𝒁 (2)

𝑖
, however,

again, this is not required. Also, if time is included as a random effect in these
matrices, it would usually also be a variable in the covariate matrices 𝑿 (1)

𝑖
and

𝑿 (2)
𝑖

. In this way, the random time effects represent subject deviations from the
population trends.

Putting this together, we now have the following bivariate mixed model for
subject 𝑖:

𝒚𝑖 = 𝑿𝑖𝜷 + 𝒁𝑖𝝊𝑖 + 𝝐 𝑖 , (1.4)

where 𝜷 are the (𝑝 (1) + 𝑝 (2) ) × 1 vector of regression coefficients, 𝝊𝑖 are the
(𝑟 (1) + 𝑟 (2) ) × 1 vector of random subject effects, and 𝝐 𝑖 is the (𝑛(1)

𝑖
+ 𝑛

(2)
𝑖

) × 1
error vector. The population distribution of the random effects is assumed to
be a normal distribution with zero mean and variance-covariance matrix 𝚺𝜐 .
The errors 𝝐 𝑖 are also assumed to be normally distributed in the population with
zero mean and variance covariance matrix 𝚺𝜖 , and independent of the random
effects. Here, 𝚺𝜐 represents the between-subject (BS) (co)variance, and 𝚺𝜖 is
the within-subject (WS) (co)variance.

Suppose that each dependent variable had two random effects, an intercept
and a time trend, then the BS (co)variance matrix would be:

𝚺𝜐 =



𝜎2
𝜐
(1)
0

𝜎
𝜐
(1)
0 𝜐

(1)
1

𝜎
𝜐
(1)
0 𝜐

(2)
0

𝜎
𝜐
(1)
0 𝜐

(2)
1

𝜎
𝜐
(1)
0 𝜐

(1)
1

𝜎2
𝜐
(1)
1

𝜎
𝜐
(1)
1 𝜐

(2)
0

𝜎
𝜐
(1)
1 𝜐

(2)
1

𝜎
𝜐
(1)
0 𝜐

(2)
0

𝜎
𝜐
(1)
1 𝜐

(2)
0

𝜎2
𝜐
(2)
0

𝜎
𝜐
(2)
0 𝜐

(2)
1

𝜎
𝜐
(1)
0 𝜐

(2)
1

𝜎
𝜐
(1)
1 𝜐

(2)
1

𝜎
𝜐
(2)
0 𝜐

(2)
1

𝜎2
𝜐
(2)
1


, (1.5)
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where𝜐 (1)
0 and𝜐 (1)

1 denote the (co)variance parameters for the intercepts and time
trends of the first outcome, and 𝜐

(2)
0 and 𝜐

(2)
1 denote the (co)variance parameters

for the intercepts and time trends of the second outcome. Often the covariances
of the two time trends will be of interest. For example, 𝜎

𝜐
(1)
0 𝜐

(2)
0

would represent
the association of the intercepts of the two variables, and 𝜎

𝜐
(1)
1 𝜐

(2)
1

would rep-
resent the association of the time trends of the two variables. These covariance
parameters highlight an advantage of the bivariate model. Namely, it allows one
to assess whether there is a significant association of the time trends of the two
dependent variables.

The form of the WS (co)variance matrix 𝚺𝜖 depends on what is being
assumed about the correlation of the errors of the two dependent variables. The
simplest assumption would be that these are independent errors, in which case
it would be:

𝚺𝜖 =


𝜎2
𝜖 (1) 𝑰𝑛(1)

𝑖

0

0 𝜎2
𝜖 (2) 𝑰𝑛(2)

𝑖

 , (1.6)

where 𝑰
𝑛
(1)
𝑖

is an identity matrix of size 𝑛(1)
𝑖

×𝑛
(1)
𝑖

, and 𝑰
𝑛
(2)
𝑖

is an identity matrix

of size 𝑛
(2)
𝑖

× 𝑛
(2)
𝑖

. In this case, there are simply two error (co)variance pa-
rameters, one variance for each dependent variable, 𝜎2

𝜖 (1) and 𝜎2
𝜖 (2) . This would

assume that there is no residual association both between and within the repeated
observations of the two variables. This is an assumption of conditional indepen-
dence, meaning that the random effects are accounting for all of the correlation
both within and between the repeated observations of the two variables. This
could be relaxed by allowing for autocorrelated errors for the within-variable
residual correlation, and by allowing for cross-variable association parameters
for the between-variable residual correlation. It is often the case in modeling
a single longitudinal outcome that the assumption of conditional independence
for the residual correlation is made, though not always (Chi & Reinsel 1989,
Hedeker 1989). In terms of the between-variable association, if the two depen-
dent variables are measured at the same timepoints, then this association would
likely be important to include. In other words, there would likely be an associ-
ation of the errors of the two variables at the same timepoints. Alternatively, if
the two dependent variables are not measured at the same timepoints, then the
timing of the two variables does not coincide and so the errors would generally
be treated as independent of each other.

1.3 EXAMPLE
Data for the analyses reported here come from a longitudinal weight loss man-
agement study (Pfammatter et al. 2019), consisting of an active treatment period
of approximately 3 months and a follow-up period of approximately 9 months.
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The outcome that we will focus on is the self-reported daily weight (lbs) of the
subject. Here, we restrict our analyses to those subjects that provided at least
2 daily weight reports during both the active and the follow-up periods. Our
interest is in modeling the weights from both periods in a bivariate model to
examine whether there is an association in the subject random effects from these
two periods, and to examine for possible group, time, and interaction effects. The
primary weight assessments were made at baseline, 3, 6, and 12 months. Here,
we will focus instead on the daily self reported weight data that subjects’ pro-
vided beyond these primary weight assessments. In all, there were 196 subjects
with 12,404 and 8,299 daily observations from the active and follow-up periods,
respectively. Across all of the 20,703 observations, the average weight equaled
203.45lbs (range = 136.47 to 323.20, quartiles = 178.57, 197.76, 226.42).

The timing variable Date represented the number of days past the study
start for a given subject that the measurement was made (range = 0 to 389). We
converted this to the variable Mon (i.e., month) by dividing Date by 30. Thus,
our timing variable will represent weight change per 30 days. Subjects varied
in terms of both the number of weight reports and the timing of their weight
reports in both periods. During the 3-month active period, the average number
of observations per subject was approximately 63 (range = 2 to 85, quartiles
= 56.5, 71, and 77), while in the 9-month follow-up period the average was
approximately 42 (range = 2 to 268, quartiles = 4, 11, and 54). For each subject,
we calculated the average value of the Mon variable for both periods. The average
of these subject averages in the active period was approximately 1.34 (range =
0.08 to 2.47, quartiles = 1.28, 1.37, and 1.42), while in the follow-up period
the average was 5.18 (range = 2.85 to 11.2, quartiles = 3.10, 4.77, and 7.06).
Note that in a more traditional longitudinal study in which the timing of the
measurements is fixed (e.g., baseline, 3, 6, and 12 months), all subjects would
have the same average for the timing variable if all subjects were measured at
all timepoints, and nearly the same average of the timing variable if there are
some missing data. Here, however, there was a fair degree of variation in these
averages across subjects, indicating that subjects varied to some degree in terms
of when their measurements were made in both periods. Figure 1.1 provides
spaghetti plots of the data in the active and follow-up periods, respectively. Here,
a random sample of 10 subjects (i.e., N=10) was selected so that the plots are
not overly crowded.

****************************
Insert Figure 1.1 about here

****************************

As can be seen, there are more data in the active period, and a great deal of
subject heterogeneity in the weight measurements across time in both the active
period and the follow-up period. The duration of the follow-up period also differs
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significantly by subject. In terms of time trends, it is not clear if there are any
significant changes in weight over time.

We created centered versions of our timing variable Mon for each of these two
periods (active and follow-up). In this way, the model intercepts will represent
the grand mean across time. Furthermore, since the average values of our
timing variable Mon varied across subjects, we decomposed the timing effect in
terms of its between-subjects (BS) and within-subjects (WS) parts (Neuhaus &
Kalbfleisch 1998, van de Pol & Wright 2009), and did this separately for each of
the two periods (active and follow-up). Namely, for a time-varying variable 𝑋𝑖 𝑗

(for subject 𝑖 at timepoint 𝑗), we can express the variable as 𝑋𝑖 𝑗 = 𝑋̄𝑖 + (𝑋𝑖 𝑗 − 𝑋̄𝑖).
The first part (𝑋̄𝑖) represents the BS component of the variable, and the second
part (𝑋𝑖 𝑗 − 𝑋̄𝑖) is the WS component of the variable. In terms of our timing
variable Mon, the BS effect would express whether subjects that are measured,
on average, earlier or later in the period have lower/higher average weights in
the period. The WS effect would indicate for a given subject whether there is
weight change across time during the period. In the equations below, the variable
denoted as Mon_bs is the BS version, and Mon_ws is the WS version. Again, this
was done separately for the two periods.

1.3.1 Bivariate Mixed Model

Denoting the active period variables and parameters by the superscript (𝐴) and the
follow-up period variables and parameters by the superscript (𝐹 ) , our bivariate
mixed model (for subject 𝑖 at timepoint 𝑗) is given by:

wt(𝐴)
𝑖 𝑗

= 𝛽
(𝐴)
0 + 𝛽

(𝐴)
1 Mon_ws

(𝐴)
𝑖 𝑗

+ 𝛽
(𝐴)
2 Mon_bs

(𝐴)
𝑖

+ 𝜐
(𝐴)
0𝑖 + 𝜐

(𝐴)
1𝑖 Mon_ws

(𝐴)
𝑖 𝑗

+ 𝜖
(𝐴)
𝑖 𝑗

,

(1.7)

wt(𝐹 )
𝑖 𝑗

= 𝛽
(𝐹 )
0 + 𝛽

(𝐹 )
1 Mon_ws(𝐹 )

𝑖 𝑗
+ 𝛽

(𝐹 )
2 Mon_bs(𝐹 )

𝑖
+ 𝜐

(𝐹 )
0𝑖 + 𝜐

(𝐹 )
1𝑖 Mon_ws

(𝐹 )
𝑖 𝑗

+ 𝜖
(𝐹 )
𝑖 𝑗

.

(1.8)

Here, with our centering of the timing variable, the intercepts (𝛽 (𝐴)
0 and

𝛽
(𝐹 )
0 ) represent the average weights for the two periods (for subjects with average

values of the BS timing variable Mon_bs). Our linear time effects (𝛽 (𝐴)
1 and 𝛽

(𝐹 )
1 )

represent the average weight changes (per month) for the two periods. The BS
effects (𝛽 (𝐴)

2 and 𝛽
(𝐹 )
2 ) express whether the average timing of the measurements

for subjects relates to their average weight during each of the two periods. The
random effects allow heterogeneity across subjects in both of the time trend
parameters (i.e., intercepts and slopes) for both periods. Of particular interest
is whether there are cross-period associations of these random effects. In other
words, is a subject’s weight trajectory during the active period related to their
weight trajectory during the follow-up period. The covariance parameters of the



Multivariate and Shared Parameter Mixed-Effects Models for Intensive Longitudinal Data Chapter | 1 7

random-effects (co)variance matrix 𝚺𝜐 will help us to address this.
It should be noted that we are using a simple linear trend for the effect of

time. One might argue that this is overly simplistic and opt for more extended
time effects like polynomials (e.g., linear, quadratic, cubic, etc.), splines, or
non-linear time effects. However, we are interested here in expressing whether
subjects’ gained, lost, or essentially remained the same in terms of weight across
time. Thus, the objective is not to model weight change across time in a more
precise manner, but to have model coefficients that summarize weight change in
a basic and understandable way.

Table 1.1 list the results of this bivariate mixed model.

****************************
Insert Table 1.1 about here

****************************

During the active period, the grand mean is estimated as 207.23 pounds, and
is highly significant. The test is that this parameter equals 0, which would be
impossible, so the test for the grand mean is not especially interesting. The
estimated linear trend is -2.85 (𝑝 < .0001), which indicates that the average
weight loss per month was 2.85 pounds during the active period. The BS
timing effect is also significant (𝛽 = 3.43, 𝑝 = .012), indicating that subjects
with average measurements later in the active period had greater average weight
during this period. The effect is estimated to be 3.43 pounds per month. Turning
to the regression effects during the follow-up period, we see that the grand mean
is estimated to be 202.88 pounds, and highly significant (again, this test is not
especially interesting). The linear trend during the follow-up period is estimated
to be -0.22, which suggests weight loss of approximately one-fifth of a pound per
month during the follow-up period, however, this is not statistically significant at
the 0.05 level. Thus, we can conclude that there is significant weight loss during
the active period, but not during the follow-up period.

Turning to the random effect variances, there is considerable subject hetero-
geneity in the trend parameters of both the active and follow-up periods. This
agrees with the visual impression from the spaghetti plots in Figure 1.1. Thus,
subjects vary in their overall weight in both periods, and subjects also vary in
their trends over time in both periods. Table 1.1 expresses the covariances of the
random effects as correlations. In terms of these correlations of the random ef-
fects, the correlation of the intercepts for the two periods is very high (𝑟 = 0.982).
With the centering of our time variable, the intercepts represent grand means,
and so this indicates that subjects’ grand mean from the active period is highly
correlated with subjects’ grand mean from the follow-up period. Additionally,
there is a significant correlation between the active period linear trend and the
follow-up grand mean (𝑟 = 0.187). Thus, if a subject lost less/more weight
during the active period, then they had overall higher/lower weight during the
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follow-up period. The correlation of the linear time trends from the two periods
is also positive (𝑟 = 0.115), however, not statistically significant.

1.3.2 Bivariate Shared Parameter Mixed Model
We now consider a shared parameter model in which the cross-period covariances
are reformulated as regression effects. Specifically, the model for the weight
outcomes in the two periods is:

wt(𝐴)
𝑖 𝑗

= 𝛽
(𝐴)
0 + 𝛽

(𝐴)
1 Mon_ws

(𝐴)
𝑖 𝑗

+ 𝛽
(𝐴)
2 Mon_bs

(𝐴)
𝑖

+ 𝜐
(𝐴)
0𝑖 + 𝜐

(𝐴)
1𝑖 Mon_ws

(𝐴)
𝑖 𝑗

+ 𝜖
(𝐴)
𝑖 𝑗

,

(1.9)

wt(𝐹 )
𝑖 𝑗

= 𝛽
(𝐹 )
0 + 𝛽

(𝐹 )
1 Mon_ws(𝐹 )

𝑖 𝑗
+ 𝛽

(𝐹 )
2 Mon_bs(𝐹 )

𝑖
+ 𝛽

(𝐹 )
3 𝜐

(𝐴)
0𝑖 + 𝛽

(𝐹 )
4 𝜐

(𝐴)
1𝑖

+ 𝛽
(𝐹 )
5 (𝜐 (𝐴)

0𝑖 × Mon_ws(𝐹 )
𝑖 𝑗

) + 𝛽
(𝐹 )
6 (𝜐 (𝐴)

1𝑖 × Mon_ws(𝐹 )
𝑖 𝑗

)

+ 𝜐
(𝐹 )
0𝑖 + 𝜐

(𝐹 )
1𝑖 Mon_ws

(𝐹 )
𝑖 𝑗

+ 𝜖
(𝐹 )
𝑖 𝑗

. (1.10)

Notice that the active period random effects (𝜐 (𝐴)
0𝑖 and 𝜐 (𝐴)

1𝑖 ) and their interactions
with time (Mon_ws(𝐹 )

𝑖 𝑗
) are included as regressors in the model for the follow-up

weights (wt(𝐹 )
𝑖 𝑗

). Since these random effects are included in both models, the
term “shared-parameter” is given to this bivariate model. Here, we can assess
whether a subject’s active period time trend (both intercept and slope) influence
their weight in the follow-up period, both as main effects and as interactions with
time. As a result, the cross-period covariance parameters are set to zero in the
(co)variance matrix of the random effects:

𝚺𝜐 =



𝜎2
𝜐
(𝐴)
0

𝜎
𝜐
(𝐴)
0 𝜐

(𝐴)
1

0 0

𝜎
𝜐
(𝐴)
0 𝜐

(𝐴)
1

𝜎2
𝜐
(𝐴)
1

0 0

0 0 𝜎2
𝜐
(𝐹)
0

𝜎
𝜐
(𝐹)
0 𝜐

(𝐹)
1

0 0 𝜎
𝜐
(𝐹)
0 𝜐

(𝐹)
1

𝜎2
𝜐
(𝐹)
1


. (1.11)

The cross-period associations are now captured by the regression coefficients
𝛽
(𝐹 )
3 , 𝛽 (𝐹 )

4 , 𝛽 (𝐹 )
5 , and 𝛽

(𝐹 )
6 . Note that the total number of parameters is the same

as in the previous bivariate mixed model.
The results for this bivariate shared parameter mixed model are given in

Table 1.2.

****************************
Insert Table 1.2 about here
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****************************

Though not listed in the tables, the model deviance (−2 log 𝐿 value) is exactly
the same as the bivariate mixed model, namely −2 log 𝐿 = 91085. Thus, the
bivariate shared parameter mixed model is simply a reparameterized version of
the bivariate mixed model. Additionally, comparing the estimates in Tables 1.1
and 1.2, one sees that many of the parameter estimates are identical or near-
identical, though not all. Interestingly, the random effect intercept variance for
the follow-up weight model is dramatically reduced (from 1206.74 to 22.95).
To understand this, it is helpful to write the model for wt(𝐹 )

𝑖 𝑗
in its multilevel

representation (Goldstein 2011):

level-1

wt(𝐹 )
𝑖 𝑗

= 𝑏
(𝐹 )
0𝑖 + 𝑏

(𝐹 )
1𝑖 Mon_ws

(𝐹 )
𝑖 𝑗

+ 𝜖
(𝐹 )
𝑖 𝑗

, (1.12)

level-2

𝑏
(𝐹 )
0𝑖 = 𝛽

(𝐹 )
0 + 𝛽

(𝐹 )
2 Mon_bs(𝐹 )

𝑖
+
[
𝛽
(𝐹 )
3 𝜐

(𝐴)
0𝑖 + 𝛽

(𝐹 )
4 𝜐

(𝐴)
1𝑖

]
+ 𝜐

(𝐹 )
0𝑖 ,

(1.13)

𝑏
(𝐹 )
1𝑖 = 𝛽

(𝐹 )
1 +

[
𝛽
(𝐹 )
5 𝜐

(𝐴)
0𝑖 + 𝛽

(𝐹 )
6 𝜐

(𝐴)
1𝑖

]
+ 𝜐

(𝐹 )
1𝑖 . (1.14)

Here, level-1 is for the time-varying outcome and any time-varying predictors,
and level-2 is for subject-varying predictors. In the level-1 equation, the subject
intercept is 𝑏

(𝐹 )
0𝑖 and the slope (effect of Mon_ws(𝐹 )

𝑖 𝑗
) is 𝑏

(𝐹 )
1𝑖 . These are then

explained in terms of subject-varying variables in the level-2 equations, where
the terms in brackets are the shared random effects from the active phase. Note
that these would not be in the level-2 equations for the bivariate mixed model,
but are now included in the bivariate shared parameter mixed model. Thus, the
multilevel representation reveals that a subject’s intercept not only has Mon_bs(𝐹 )

𝑖

as a predictor in the bivariate mixed model, but also includes the active phase
random effects 𝜐

(𝐴)
0𝑖 and 𝜐

(𝐴)
1𝑖 as predictors in the bivariate shared parameter

mixed model. Similarly, for the equation of a subject’s slope, though the latter
does not include Mon_bs(𝐹 )

𝑖
(since we are not considering a Mon_bs(𝐹 )

𝑖
by

Mon_ws(𝐹 )
𝑖 𝑗

interaction). In addition to the predictors, both level-2 equations
include the follow-up phase random effects 𝜐 (𝐹 )

0 and 𝜐
(𝐹 )
1 , which can be thought

of as level-2 residuals (Goldstein 2011). Thus, to the extent that these additional
predictors are important, the residual level-2 variances are reduced. This is
precisely why the intercept variance for the follow-up weight model is so much
lower in the shared parameter model. The active phase random effects are
explaining much of the heterogeneity across subjects in their follow-up weight
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intercept (i.e., grand mean). As can be seen in Table 1.2, the active phase
random effects are highly statistically significant in the follow-up weight model
(𝛽 (𝐹 )

3 = 0.996, 𝛽 (𝐹 )
4 = 1.598, both with 𝑝 = 0.0001), whereas their interactions

with time are not statistically significant (𝛽 (𝐹 )
5 = 0.0006, 𝑝 = 0.87; 𝛽 (𝐹 )

6 =

0.061, 𝑝 = 0.24). The conclusions are the same as what was found in the
bivariate mixed model, namely (1) subjects’ grand mean from the active period
is positively associated with subjects’ grand mean in the follow-up period, and
(2) subjects’ time trend during the active period is also positively associated with
subjects’ grand mean in the follow-up period.

Another interesting difference is that the correlation of the two random
effects in the follow-up period is now highly significant (𝑟 = 0.597, 𝑝 = 0.0001),
whereas this same correlation was not significant in the bivariate mixed model
(𝑟 = 0.116, 𝑝 = 0.17). Again, the multilevel representation of the model for
wt(𝐹 )

𝑖 𝑗
helps to make sense of this. In the bivariate mixed model, the random

intercept was only conditional on Mon_bs(𝐹 )
𝑖

, and the random slope was not
conditional on any subject covariates. As noted, in the bivariate shared parameter
mixed model, both are conditional on the active phase random effects. Thus,
the highly significant positive correlation in the latter model is more akin to a
partial correlation that has partialled out these additional effects. The positive
nature of this association means that subjects with higher/lower grand means
have more positive/negative time trends, after controlling for the active phase
random effects.

Table 1.3 provides estimates obtained using the Bayesian software program
STAN.

****************************
Insert Table 1.3 about here

****************************

Sample code for this is provided in the Appendix B. The results are based on 1500
post-warm-up iterations of four chains and a maximum tree depth of 20. Since
non-informative priors were used, the Bayesian estimates are nearly identical to
the maximum likelihood estimates. Notice that instead of 𝑝-values, the 95%
credible intervals are provided in the table. These indicate that, given the data,
there is a 95% probability that the true estimate lies within the interval.

1.3.3 Bivariate Shared Parameter Mixed Model with Interactions
An advantage of the shared parameter model is that we can now consider inter-
actions of the shared random effects with other variables. Thus, for example,
we can examine the degree to which a variable might moderate the association
between the active and follow-up period random effects. In the current case, the
variable we will consider is Cond, which denotes the condition that a subject
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was randomized to (0 = app only, 1 = app + coaching). The augmented model,
including Cond and Cond interactions, is given below. Because Cond𝑖 does
not change across the two periods, there is no need for a superscript on this
subject-level variable.

wt(𝐴)
𝑖 𝑗

= 𝛽
(𝐴)
0 + 𝛽

(𝐴)
1 Mon_ws

(𝐴)
𝑖 𝑗

+ 𝛽
(𝐴)
2 Mon_bs

(𝐴)
𝑖

+ 𝛽
(𝐴)
3 Cond𝑖 + 𝛽

(𝐴)
4 (Cond𝑖 × Mon_ws(𝐴)𝑖 𝑗

) + 𝛽
(𝐴)
5 (Cond𝑖 × Mon_bs(𝐴)𝑖

)

+ 𝜐
(𝐴)
0𝑖 + 𝜐

(𝐴)
1𝑖 Mon_ws

(𝐴)
𝑖 𝑗

+ 𝜖
(𝐴)
𝑖 𝑗

, (1.15)

wt(𝐹 )
𝑖 𝑗

= 𝛽
(𝐹 )
0 + 𝛽

(𝐹 )
1 Mon_ws(𝐹 )

𝑖 𝑗
+ 𝛽

(𝐹 )
2 Mon_bs(𝐴)

𝑖

+ 𝛽
(𝐹 )
3 Cond𝑖 + 𝛽

(𝐹 )
4 (Cond𝑖 × Mon_ws(𝐹 )

𝑖 𝑗
) + 𝛽

(𝐹 )
5 (Cond𝑖 × Mon_bs(𝐹 )

𝑖
)

+ 𝛽
(𝐹 )
6 𝜐

(𝐴)
0𝑖 + 𝛽

(𝐹 )
7 𝜐

(𝐴)
1𝑖 + 𝛽

(𝐹 )
8 (𝜐 (𝐴)

0𝑖 × Mon_ws(𝐹 )
𝑖 𝑗

) + 𝛽
(𝐹 )
9 (𝜐 (𝐴)

1𝑖 × Mon_ws(𝐹 )
𝑖 𝑗

)

+ 𝛽
(𝐹 )
10 (Cond𝑖 × 𝜐

(𝐴)
0𝑖 ) + 𝛽

(𝐹 )
11 (Cond𝑖 × 𝜐

(𝐴)
1𝑖 )

+ 𝛽
(𝐹 )
12 (Cond𝑖 × 𝜐

(𝐴)
0𝑖 × Mon_ws(𝐹 )

𝑖 𝑗
) + 𝛽

(𝐹 )
13 (Cond𝑖 × 𝜐

(𝐴)
1𝑖 × Mon_ws(𝐹 )

𝑖 𝑗
)

+ 𝜐
(𝐹 )
0𝑖 + 𝜐

(𝐹 )
1𝑖 Mon_ws

(𝐹 )
𝑖 𝑗

+ 𝜖
(𝐹 )
𝑖 𝑗

. (1.16)

Here, we are including Cond𝑖 , Cond𝑖 by Mon_ws𝑖 𝑗 , and Cond𝑖 by Mon_bs𝑖 in
both models (i.e., six additional parameters). Also, in the follow-up model, we
are interacting Cond𝑖 with the four shared parameter terms we introduced in the
bivariate shared parameter mixed model: (1) active random intercept 𝜐 (𝐴)

0𝑖 , (2)
active random slope 𝜐

(𝐴)
1𝑖 , active random intercept by time 𝜐

(𝐴)
0𝑖 × Mon_ws(𝐹 )

𝑖 𝑗
,

and (4) active random slope by time 𝜐 (𝐴)
1𝑖 × Mon_ws(𝐹 )

𝑖 𝑗
. Thus, there is a total of

10 additional parameters in this model, relative to the previous one.
Table 1.4 provides the results of this extended bivariate shared parameter

mixed model, which has a model deviance equal to 91065.

****************************
Insert Table 1.4 about here

****************************

The inclusion of these 10 additional parameters provides improved model fit
as indicated by a likelihood ratio test (𝜒2

10 = 91085 − 91065 = 20, 𝑝 < 0.03).
Turning to the individual tests of these 10 parameters, only the Cond by Mon_ws
during the active phase (𝛽 (𝐴)

4 = −1.38, 𝑝 = 0.0006) and the Cond by act1
by Mon_ws follow-up phase (𝛽 = 0.236, 𝑝 = 0.02) interactions are seen to be
statistically significant at the 0.05 level. The first indicates a greater weight loss
during the active phase of 1.38 pounds per month for the group randomized
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to receive App + Coaching, relative to the group that received App only. The
estimate for the App only group is weight loss of 2.13 pounds per month (𝑝 =

0.0001), and so the estimated weight loss for the App + Coaching group is 1.38
+ 2.13 = 3.51 pounds per month. Turning to the second significant result (Cond
by act1 by Mon_ws follow-up phase), let us first consider the act1 by Mon_ws
follow-up phase result. This interaction represents the association of the active
period time trend with the follow-up period time trend for the group that received
App only. Note that this parameter is estimated to be approximately zero and
non-significant (𝛽 = −0.038, 𝑝 = 0.58). Thus, there is no significant relationship
between the time trends of the two periods for the App only group. However, the
three way interaction (Cond by act1 by Mon_ws follow-up phase) is significant
(𝛽 = 0.236, 𝑝 = 0.02). This indicates that this association of the time trends is
significantly more positive for the App + Coaching group, relative to the App
only group. Adding these two together (as a linear combination of parameters),
we get an estimate of 0.236 - 0.038 = 0.198, with 𝑝 = 0.01. For the App +
Coaching group, but not for the App only group, this indicates that there is a
positive association between the weight loss/gain during the active phase with
the weight loss/gain during the follow-up phase.

To get a visual sense of the difference in this association of time trends by
condition, we generated the subject random effect (empirical Bayes) estimates
of these time trends based on the bivariate shared parameter model without
the interactions. Specifically, these are the random effects 𝜐 (𝐴)

1𝑖 and 𝜐
(𝐹 )
1𝑖 from

Equations (1.9) and (1.10), respectively. A scatterplot of these random effect
estimates for the App only and the App + Coaching conditions are provided in
Figure 1.2.

****************************
Insert Figure 1.2 about here

****************************

In this plot, the active period estimates are on the 𝑦-axis and the follow-up
period estimates are on the 𝑥-axis. The estimates from the two conditions (App
only and App + Coaching) are represented by different symbols, and regression
lines are included in the plot for each condition (with different line patterns).
As can be seen, there is virtually no relationship in the App only condition
(correlation: 𝑟 = 0.035), but a positive association in the App + Coaching
condition (correlation: 𝑟 = 0.236).

1.3.4 Bivariate Shared Parameter Mixed Model with Random Ef-
fect Interactions

Beyond interacting the shared parameters with observed variables, as was il-
lustrated in the previous model with Cond𝑖 , one can also interact the random
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effects themselves in the shared parameter model. Here, we will consider this
by interacting the active period and follow-up period random effects, including
interactions with time. Here, we will return to the model that does not include
Cond𝑖 , but instead build random effect interaction terms in the model for wt(𝐹 )

𝑖 𝑗
.

Below is this version of the bivariate shared parameter mixed model.

wt(𝐴)
𝑖 𝑗

= 𝛽
(𝐴)
0 + 𝛽

(𝐴)
1 Mon_ws

(𝐴)
𝑖 𝑗

+ 𝛽
(𝐴)
2 Mon_bs

(𝐴)
𝑖

+ 𝜐
(𝐴)
0𝑖 + 𝜐

(𝐴)
1𝑖 Mon_ws

(𝐴)
𝑖 𝑗

+ 𝜖
(𝐴)
𝑖 𝑗

,

(1.17)

wt(𝐹 )
𝑖 𝑗

= 𝛽
(𝐹 )
0 + 𝛽

(𝐹 )
1 Mon_ws(𝐹 )

𝑖 𝑗
+ 𝛽

(𝐹 )
2 Mon_bs(𝐹 )

𝑖
+ 𝛽

(𝐹 )
3 𝜐

(𝐴)
0𝑖 + 𝛽

(𝐹 )
4 𝜐

(𝐴)
1𝑖

+ 𝛽
(𝐹 )
5 (𝜐 (𝐴)

0𝑖 × Mon_ws(𝐹 )
𝑖 𝑗

) + 𝛽
(𝐹 )
6 (𝜐 (𝐴)

1𝑖 × Mon_ws(𝐹 )
𝑖 𝑗

)

+ 𝛽
(𝐹 )
7

(
𝜐
(𝐴)
0𝑖 × 𝜐

(𝐹 )
0𝑖

)
+ 𝛽

(𝐹 )
8

(
𝜐
(𝐴)
1𝑖 × 𝜐

(𝐹 )
0𝑖

)
+ 𝛽

(𝐹 )
9

(
𝜐
(𝐴)
0𝑖 × 𝜐

(𝐹 )
1𝑖 × Mon_ws(𝐹 )

𝑖 𝑗

)
+ 𝛽

(𝐹 )
10

(
𝜐
(𝐴)
1𝑖 × 𝜐

(𝐹 )
1𝑖 × Mon_ws(𝐹 )

𝑖 𝑗

)
+ 𝜐

(𝐹 )
0𝑖 + 𝜐

(𝐹 )
1 Mon_ws(𝐹 )

𝑖 𝑗
+ 𝜖

(𝐹 )
𝑖 𝑗

. (1.18)

Notice that the model for wt(𝐹 )
𝑖 𝑗

now includes the random-effect product terms
with regression coefficients 𝛽 (𝐹 )

7 , 𝛽
(𝐹 )
8 , 𝛽

(𝐹 )
9 , and 𝛽

(𝐹 )
10 .

Again, it is instructive to consider the multilevel version of the model for
wt(𝐹 )

𝑖 𝑗
, given below. The random-effect interaction terms are included in brackets

to distinguish what they add to the model.

level − 1

wt(𝐹 )
𝑖 𝑗

= 𝑏
(𝐹 )
0𝑖 + 𝑏

(𝐹 )
1𝑖 Mon_ws

(𝐹 )
𝑖 𝑗

+ 𝜖
(𝐹 )
𝑖 𝑗

, (1.19)

level − 2

𝑏
(𝐹 )
0𝑖 = 𝛽

(𝐹 )
0 + 𝛽

(𝐹 )
2 Mon_bs(𝐹 )

𝑖
+ 𝛽

(𝐹 )
3 𝜐

(𝐴)
0𝑖 + 𝛽

(𝐹 )
4 𝜐

(𝐴)
1𝑖 ,

+
[
𝛽
(𝐹 )
7

(
𝜐
(𝐴)
0𝑖 × 𝜐

(𝐹 )
0𝑖

)
+ 𝛽

(𝐹 )
8

(
𝜐
(𝐴)
1𝑖 × 𝜐

(𝐹 )
0𝑖

)]
+ 𝜐

(𝐹 )
0𝑖 , (1.20)

𝑏
(𝐹 )
1𝑖 = 𝛽

(𝐹 )
1 + 𝛽

(𝐹 )
5 𝜐

(𝐴)
0𝑖 + 𝛽

(𝐹 )
6 𝜐

(𝐴)
1𝑖

+
[
𝛽
(𝐹 )
9

(
𝜐
(𝐴)
0𝑖 × 𝜐

(𝐹 )
1𝑖

)
+ 𝛽

(𝐹 )
10

(
𝜐
(𝐴)
1𝑖 × 𝜐

(𝐹 )
1𝑖

)]
+ 𝜐

(𝐹 )
1𝑖 . (1.21)

Consider first, the equation for the follow-up period grand mean 𝑏
(𝐹 )
0𝑖 , which is a

function of the population grand mean 𝛽
(𝐹 )
0 , the subject’s average measurement

time 𝛽
(𝐹 )
2 Mon_bs(𝐹 )

𝑖
, their follow-up grand mean deviation 𝜐

(𝐹 )
0𝑖 , their active
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period random effects 𝛽
(𝐹 )
3 𝜐

(𝐴)
0𝑖 + 𝛽

(𝐹 )
4 𝜐

(𝐴)
1𝑖 , and the interaction of their follow-

up grand mean deviation with their active period random effects[
𝛽
(𝐹 )
7

(
𝜐
(𝐴)
0𝑖 × 𝜐

(𝐹 )
0𝑖

)
+ 𝛽

(𝐹 )
8

(
𝜐
(𝐴)
1𝑖 × 𝜐

(𝐹 )
0𝑖

)]
.

If we further focus on contribution from the parameters involving the follow-up
grand mean deviation 𝜐

(𝐹 )
0𝑖 , we have:(

1 + 𝛽
(𝐹 )
7 𝜐

(𝐴)
0𝑖 + 𝛽

(𝐹 )
8 𝜐

(𝐴)
1𝑖

)
𝜐
(𝐹 )
0𝑖 . (1.22)

The follow-up grand mean deviations 𝜐
(𝐹 )
0𝑖 represent the heterogeneity across

subjects in the grand means. If these are more towards zero, there is less
heterogeneity, and as these deviate from zero, there is increased heterogeneity.
The interaction terms 𝛽

(𝐹 )
7 and 𝛽

(𝐹 )
8 , multiplied by the active period random

effects 𝜐 (𝐴)
0𝑖 and 𝜐 (𝐴)

1𝑖 , respectively, thus moderate this heterogeneity (to the extent
that they are non-zero). If these interaction effects are positive, heterogeneity
in the grand means is increased, whereas if these interactions are negative, then
heterogeneity in the grand means is decreased. Similarly, for the time trend 𝑏

(𝐹 )
1𝑖

and its subject-specific deviation 𝜐
(𝐹 )
1𝑖 . The interaction terms 𝛽

(𝐹 )
9 and 𝛽

(𝐹 )
10

indicate the degree to which heterogeneity in the follow-up period time trends is
affected by the active period random effects.

The results for this model are presented in Table 1.5.

****************************
Insert Table 1.5 about here

****************************

Comparing this model to a model without the four interaction terms yields a
likelihood-ratio test statistic of 𝜒2

4 = 53, 𝑝 = .001. Thus, there is clear evidence
of interaction between the active period and follow-up period random effects.
The estimates of these four interaction terms are listed under “Random effect
interactions” in Table 1.5; all four are observed to be statistically significant. At
first glance, one might think that these effects are not large given that they are
all close to zero. However, one must consider the scaling of the random effects.
For example, if we standardize the random effects (to have zero mean and unit
standard deviation), in terms of the effects involving the follow-up grand mean
deviation 𝜐

(𝐹 )
0𝑖 , we have (using 𝜃 to represent the standardized random effects):

(
1 + 𝛽

(𝐹 )
7 𝜎̂

𝜐
(𝐴)
0

𝜃
(𝐴)
0𝑖 + 𝛽

(𝐹 )
8 𝜎̂

𝜐
(𝐴)
1

𝜃
(𝐴)
1𝑖

)
𝜎̂
𝜐
(𝐹)
0

𝜃
(𝐹 )
0𝑖 . (1.23)

For the interaction involving the grand means of the two periods, multiplying the
regression estimates by the estimated random effect standard deviations yields
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0.009817×
√

1151.58×
√

23.0094 = 1.598. Similar calculations yield estimates
of -0.633 (active time trend by follow-up grand mean), 0.329 (active grand mean
by follow-up time trend), and -0.267 (active time trend by follow-up time trend)
for the other interactions. Thus, the general pattern is that higher/lower values of
the active period grand mean increases/decreases heterogeneity of both follow-
up random effects, and higher/lower values of the active period time trends
reduces/increases heterogeneity of both follow-up random effects.

A visual representation of these interaction effects is provided in Figure 1.3.

****************************
Insert Figure 1.3 about here

****************************

The top two figures display the effects of the active period grand mean and time
trend (random effects), respectively, on the estimated follow-up average weight
for three different values of the standardized active period random effects (-1,
0, 1). The slope of the lines in these figures represents the heterogeneity in the
follow-up average weight. As can be seen, in the top left figure, the slope is
more pronounced for higher values of the active period grand mean, relative to
lower values. Thus, as the active period grand mean is higher, heterogeneity in
the follow-up average weight is increased. Conversely, the effect of the active
period time trend on the follow-up average weight, which is displayed in the
top right figure, is the opposite. Here, as the active period time trend is higher,
heterogeneity in the follow-up average weight is decreased. This suggests that
some subjects who lost more weight in the active period (i.e., negative active
period time trends) were susceptible to relapsing and gaining the weight back.

The bottom two figures in Figure 1.3 display the effects of the active period
grand mean and time trend (random effects), respectively, on the estimated
follow-up linear trend for three different values of the standardized active period
random effects (-1, 0, 1). Here, negative/positive linear trends indicate weight
loss/gain in the follow-up period. First, focusing on the figure in lower left-hand
side, one sees that higher values of the active period grand mean led to greater
negative time trends in the follow-up period if the follow-up random effect was
negative. Conversely, higher values of the active period grand mean led to greater
positive time trends in the follow-up period if the follow-up random effect was
positive. Thus, there was increased heterogeneity in the follow-up time trends
(i.e., a wider range of time trends) as the active period grand mean increased.
The figure in the lower right-side displays the effect of the active period time
trend on the follow-up period time trend. Here, lower values (i.e., more negative)
of the active period time trend are associated with greater heterogeneity in the
follow-up period time trends. Again, this suggests that some subjects who lost
more weight in the active period (i.e., negative active period time trends) were
susceptible to relapsing and gaining the weight back. Another interesting finding
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is the convergence of the three lines for positive follow-up time trends (say, trends
of 0.5 to 1.0). Since trends in this range indicate weight gain in the follow-up
period, this convergence indicates that follow-up weight gain was essentially
independent of the value of the active period time trend.

1.4 DISCUSSION

This chapter has illustrated how multivariate mixed models can be used to
model the longitudinal data from several outcomes. This builds on the work
of Thiébaut et al. (2002), who described a practical way of using mixed model
software for bivariate outcomes. Their paper focused on mixed models for
two outcomes measured concurrently. Here, we have considered two outcomes
measured at different time periods, and have shown how elements of the random
effect variance covariance matrix can be shifted to be shared parameters in the
mixed models. The advantage of this is that these random effect associations can
then interact with other variables, either observed variables or random effects
themselves. In this way, one can examine whether such variables moderate the
associations of the outcome variables, in terms of their random effects.

Appendix A indicates how to structure the dataset for both the bivariate
mixed model and the bivariate shared parameter mixed model, and provides
sample syntax for all of the models considered in this chapter. In particular, the
software program SAS PROC NLMIXED was used for the analyses presented in
this chapter, and sample NLMIXED scripts are provided in Appendix A for all of
the models. NLMIXED is useful because it allows for programming statements,
which also makes it somewhat more complicated to use than standard mixed
model software. Also provided in Appendix B is sample syntax using STAN for
Bayesian analysis of the bivariate mixed model. Hopefully, the scripts provided
in the appendices will help researchers use the models presented in this chapter
for their own research.

In this chapter, we have focused on continuous normally-distributed out-
comes. However, the same general approach can be applied to other outcome
types and even mixtures of outcome types (i.e., a binary outcome with a con-
tinuous normal outcome). Software like SAS PROC NLMIXED, with its pro-
gramming capabilities, makes this possible, and Blozis et al. (2020) provide
NLMIXED code for a model that has both a continuous log-normal component
and a logistic component. Alternatively, Bayesian software like JAGS, STAN,
and WinBUGS can be used as well, and offer great flexibility, but they need ad-
ditional specifications for prior distributions of the parameters. As an example,
Siddique et al. (2023) describe a bivariate model of the frequency and duration
of accelerometer-measured physical activity data, including JAGS code, using
a mixed-effects Poisson hurdle sub-model for the number of bouts per day and
a mixed-effects location scale gamma regression sub-model to characterize the
duration of the bouts and their variance.
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FIGURE 1.2 Plot of estimated linear trends in active and follow-up by condition.
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TABLE 1.1 Bivariate mixed-effects model of weight, 𝑁 = 196,
∑
𝑛𝑖 = 20, 703,

maximum likelihood estimates, standard errors, z-values, and p-values.
Variable Estimate Std Error z-value p-value
Regression coefficients
active
Intercept 207.23 2.4265 85.40 0.0001
Mon_ws -2.8521 0.2016 -14.15 0.0001
Mon_bs 3.4319 1.3491 2.54 0.0118
follow-up
Intercept 202.88 2.4822 81.74 0.0001
Mon_ws -0.2161 0.1310 -1.65 0.1005
Mon_bs -0.1155 0.1561 -0.74 0.4603

Random effect variances
active
Intercept 1153.96 118.61 9.73 0.0001
Mon_ws 7.7154 0.8196 9.41 0.0001
follow-up
Intercept 1206.74 124.02 9.73 0.0001
Mon_ws 2.1962 0.2672 8.22 0.0001

Correlations of random effects∗
act01 0.06116 0.07261 0.84 0.4007
fol01 0.1164 0.08402 1.39 0.1675
act0_fol0 0.9822 0.00250 392.97 0.0001
act1_fol0 0.1873 0.07053 2.66 0.0086
act0_fol1 0.02056 0.08541 0.24 0.8100
act1_fol1 0.1147 0.09538 1.20 0.2308

Error variances
active 2.9875 0.03855 77.49 0.0001
follow-up 5.8648 0.09284 63.17 0.0001
∗ 0 = Intercept, 1 = Mon_ws, act = active, fol = follow-up
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TABLE 1.2 Bivariate shared parameter mixed-effects model of weight, 𝑁 =

196,
∑
𝑛𝑖 = 20, 703, maximum likelihood estimates, standard errors, z-values, and

p-values.
Variable Estimate Std Error z-value p-value
Regression coefficients
active
Intercept 207.23 2.4265 85.40 0.0001
Mon_ws -2.8521 0.2016 -14.15 0.0001
Mon_bs 3.4319 1.3491 2.54 0.0118
follow-up
Intercept 202.88 2.4822 81.74 0.0001
Mon_ws -0.2161 0.1310 -1.65 0.1005
Mon_bs -0.1155 0.1561 -0.74 0.4603
shared parameter effects in follow-up model∗
act0 0.9964 0.01050 94.88 0.0001
act1 1.5976 0.1329 12.02 0.0001
act0 by Mon_ws 0.000593 0.003739 0.16 0.8742
act1 by Mon_ws 0.06074 0.05162 1.18 0.2408

Random effect variances
active
Intercept 1153.70 116.57 9.90 0.0001
Mon_ws 7.7154 0.8196 9.41 0.0001
follow-up
Intercept 22.9483 2.4264 9.46 0.0001
Mon_ws 2.1669 0.2652 8.17 0.0001

Correlations of random effects∗
act01 0.06113 0.07263 0.84 0.4010
fol01 0.5966 0.05766 10.35 0.0001

Error variances
active 2.9875 0.03855 77.49 0.0001
follow-up 5.8648 0.09284 63.17 0.0001
∗ 0 = Intercept, 1 = Mon_ws, act = active, fol = follow-up
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TABLE 1.3 Bivariate shared parameter mixed-effects model of weight, 𝑁 =

196,
∑
𝑛𝑖 = 20, 703, Bayesian estimates and 95% Credible Intervals via Stan.

Variable Estimate 95% Credible Interval
Regression coefficients
active
Intercept 203.79 (197.65 to 209.80)
Mon_ws -2.8457 (-3.2605 to -2.3888)
Mon_bs 3.4130 (0.5985 to 6.1209)
follow-up
Intercept 204.71 (199.50 to 209.57)
Mon_ws -0.2230 (-0.4803 to 0.0290)
Mon_bs -0.1382 (-0.4485 to 0.1673)
shared parameter effects in follow-up model∗
act0 0.9960 (0.9746 to 1.0171)
act1 1.5942 (1.3290 to 1.8514)
act0 by Mon_ws 0.0005127 (-0.007364 to 0.007821)
act1 by Mon_ws 0.06130 (-0.03594 to 0.16005)

Random effect variances
active
Intercept 1162.03 (952.96 to 1411.69)
Mon_ws 7.7660 (6.2709 to 9.6012)
follow-up
Intercept 23.5487 (19.0222 to 29.1019)
Mon_ws 2.2228 (1.7404 to 2.8091)

Correlations of random effects∗
act01 0.06072 (-0.07919 to 0.2000)
fol01 0.5916 (0.4697 to 0.6957)

Error variances
active 2.9884 (2.9113 to 3.0653)
follow-up 5.8672 (5.6862 to 6.0518)
∗ 0 = Intercept, 1 = Mon_ws, act = active, fol = follow-up



24

TABLE 1.4 Bivariate shared parameter mixed-effects model of weight with condi-
tion interactions, 𝑁 = 196,

∑
𝑛𝑖 = 20, 703, maximum likelihood estimates, standard

errors, z-values, and p-values.
Variable Estimate Std Error z-value p-value
Regression coefficients
active
Intercept 207.70 3.5216 58.98 0.0001
Mon_ws -2.1271 0.2876 -7.40 0.0001
Mon_bs 3.1991 1.6732 1.91 0.0574

Cond -0.8806 4.8580 -0.18 0.8563
Cond by Mon_ws -1.3800 0.3948 -3.50 0.0006
Cond by Mon_bs -0.4806 2.8702 -0.17 0.8672

follow-up
Intercept 204.61 3.6266 56.42 0.0001
Mon_ws -0.2183 0.1876 -1.16 0.2461
Mon_bs -0.03737 0.2204 -0.17 0.8656

Cond -3.2964 4.9674 -0.66 0.5077
Cond by Mon_ws 0.02693 0.2606 0.10 0.9178
Cond by Mon_bs -0.1750 0.3145 -0.56 0.5786

shared parameter effects in follow-up model∗
act0 1.0043 0.01476 68.03 0.0001
act1 1.5691 0.1874 8.37 0.0001
act0 by Mon_ws 0.003533 0.005079 0.70 0.4875
act1 by Mon_ws -0.03790 0.06795 -0.56 0.5776

Cond by act0 -0.01624 0.02097 -0.77 0.4394
Cond by act1 0.04407 0.2712 0.16 0.8711
Cond by act0 by Mon_ws -0.00528 0.007301 -0.72 0.4701
Cond by act1 by Mon_ws 0.2358 0.09992 2.36 0.0193

Random effect variances
active
Intercept 1152.97 116.49 9.90 0.0001
Mon_ws 7.3632 0.7817 9.42 0.0001
follow-up
Intercept 22.7933 2.4124 9.45 0.0001
Mon_ws 2.0566 0.2530 8.13 0.0001

Correlations of random effects∗
act01 0.06340 0.07267 0.87 0.3840
fol01 0.6067 0.05643 10.75 0.0001

Error variances
active 2.9872 0.03855 77.49 0.0001
follow-up 5.8645 0.09283 63.17 0.0001
∗ 0 = Intercept, 1 = Mon_ws, act = active, fol = follow-up
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TABLE 1.5 Bivariate shared parameter mixed-effects model of weight with ran-
dom effect interactions, 𝑁 = 196,

∑
𝑛𝑖 = 20, 703, maximum likelihood estimates,

standard errors, z-values, and p-values.
Variable Estimate Std Error z-value p-value
Regression coefficients
active
Intercept 207.23 2.4241 85.49 0.0001
Mon_ws -2.8939 0.1985 -14.58 0.0001
Mon_bs 1.8822 1.1639 1.62 0.1075
follow-up
Intercept 202.89 2.4728 82.05 <.0001
Mon_ws -0.1865 0.1292 -1.44 0.1505
Mon_bs -0.01468 0.1339 -0.11 0.9128
shared parameter effects in follow-up model∗
act0 0.9981 0.01016 98.26 0.0001
act1 1.5225 0.1410 10.80 0.0001
act0 by Mon_ws 1.507E-6 0.003589 0.00 0.9997
act1 by Mon_ws 0.06042 0.05066 1.19 0.2345

Random effect interactions∗
act0 by fol0 0.009817 0.001544 6.36 0.0001
act1 by fol0 -0.04830 0.01903 -2.54 0.0119
act0 by fol1 0.006851 0.002112 3.24 0.0014
act1 by fol1 -0.06931 0.02283 -3.04 0.0027

Random effect variances
active
Intercept 1151.58 116.35 9.90 0.0001
Mon_ws 7.4626 0.7791 9.58 0.0001
follow-up
Intercept 23.0094 2.8518 8.07 0.0001
Mon_ws 1.9982 0.2761 7.24 0.0001

Correlations of random effects∗
act01 0.02721 0.07335 0.37 0.7111
fol01 0.5996 0.05444 11.01 <.0001

Error variances
active 2.9860 0.03852 77.51 0.0001
follow-up 5.8624 0.09281 63.17 0.0001
∗ 0 = Intercept, 1 = Mon_ws, act = active, fol = follow-up
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SAS PROC NLMIXED code

First, let us get a sense of the dataset structure that is needed for the bivariate
mixed model. Suppose that subject 10 is measured three times during the active
period and twice in the follow-up period, and that his/her weights (and time
values) were 200 (0), 195 (1), and 190 (2) during the active phase; and 189
(0) and 191 (3) during the follow-up phase. Using act to denote the active
period, and fol to denote the follow-up period, this subject would then have
the between-subject average values of act_Mon_bs = 1 and fol_Mon_bs = 1.5.
The act_Mon_ws and fol_Mon_ws values would then be relative to these means,
namely -1,0,1 for the active period and -1.5,1.5 for the follow-up period. Then,
this subject would contribute five records in the dataset with variables and values
as the following.

id wt_lbs act_int act_Mon_ws act_Mon_bs fol_int fol_Mon_ws fol_Mon_bs

10 200 1 -1 1 0 0 0
10 195 1 0 1 0 0 0
10 190 1 1 1 0 0 0
10 189 0 0 0 1 -1.5 1.5
10 191 0 0 0 1 1.5 1.5

Here, id is a subject identifier, wt_lbs denotes the outcome (with the ac-
tive period weights stacked on top of the follow-up period weights); act_int,
act_Mon_ws, and act_Mon_bs are the active period regressors; and fol_int,
fol_Mon_ws, and fol_Mon_bs are the follow-up period regressors. Note that
the follow-up variables have values of 0 for the three active period rows, and the
active period variables have 0 values for the two follow-up period rows.

Once the dataset is organized in this way, sample syntax necessary to run
the bivariate mixed-effects model described in this chapter is given below. In
this syntax, upper case is used for SAS specific syntax and lower or mixed case
is used for user defined entities.

/* Bivariate mixed model via PROC MIXED */
PROC MIXED COVTEST METHOD=ML;
CLASS id;
MODEL wt_lbs = act_int act_Mon_ws act_Mon_bs

fol_int fol_Mon_ws fol_Mon_bs / S NOINT;
RANDOM act_int act_Mon_ws act fol_int fol_Mon_ws

/ SUBJECT = id TYPE=UN G GCORR;
REPEATED / LOCAL=EXP(fol_int);

27
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RUN;

Here it is important to specify the NOINT option on the MODEL statement,
since we are estimating separate intercepts for the two periods by including
act_int and fol_int as regressors. Also, the specification on the REPEATED
statement will yield the two error variance estimates, one for the active period
and the second for the difference between the follow-up and active periods (on the
log scale). Other options are COVTEST to provide standard error estimates and
tests of the (co)variance parameters, METHOD=ML to select maximum likelihood
estimation, S (on the MODEL statement) to print out the estimated regression
coefficients, TYPE=UN (on the RANDOM statement) to allow the random effects to
be correlated, G (on the RANDOM statement) to print out the estimated variance-
covariance matrix of the random effects, and GCORR (on the RANDOM statement)
to print out the estimated variance-covariance matrix of the random effects as a
correlation matrix.



SAS PROC NLMIXED code Appendix | A 29

One can also use SAS PROC NLMIXED to estimate the parameters of the
bivariate mixed model. Strictly speaking, this is not necessary since PROC
MIXED can do it, however, NLMIXED is necessary for the shared-parameter
models included in this chapter. So, it is helpful to use NLMIXED for the
bivariate mixed model, and then to modify the code for the shared-parameter
models. Below is NLMIXED code for the bivariate mixed model. NLMIXED
has many estimation options, which sometimes need to be modified to achieve
convergence. Here, we have selected the options TECH=TRUREG OPTCHECK
HESCAL=1. Also, all model parameters need to be named and given starting
values on the PARMS statement. Here, we use the estimates from the previous
PROC MIXED run as the starting values.

/* Bivariate mixed model via PROC NLMIXED */
/* these results are listed in Table 1 */
PROC NLMIXED TECH=TRUREG OPTCHECK HESCAL=1 ;
PARMS b0_act=202.64 b_act_Mon_ws=-2.85 b_act_Mon_bs=3.43

b0_fol=203.15 b_fol_Mon_ws=-0.22 b_fol_Mon_bs=-0.12
v0_act=1159 c01_act=-5.02 v1_act=8.23 act0_fol0=1148.3 act1_fol0=16.19
v0_fol=1232.2 act0_fol1=-3.3 act1_fol1=1.08 c01_fol=-8.66 v1_fol=2.51
vare_act=3 vare_fol=3.5;

/* initialize the likelihood functions to zero */
ll_act=0; ll_fol=0; pi = ARCOS(-1);
IF (fol_int EQ 0) THEN /* active period model */
DO;
mu_act = (b0_act + u0_act) + (b_act_Mon_ws + u1_act)*act_Mon_ws

+ b_act_Mon_bs*act_Mon_bs;
ll_act = LOG(1 / (SQRT(2*pi*vare_act)))

+ (-(wt_lbs-mu_act)**2)/ (2*vare_act);
END;
IF (fol_int EQ 1) THEN /* follow-up period model */
DO;
mu_fol = (b0_fol + u0_fol) + (b_fol_Mon_ws + u1_fol)*fol_Mon_ws

+ b_fol_Mon_bs*fol_Mon_bs;
ll_fol = log(1 / (SQRT(2*pi*vare_fol)))

+ (-(wt_lbs-mu_fol)**2)/ (2*vare_fol);
END;
ll = ll_act+ll_fol;
MODEL wt_lbs ~ GENERAL(ll);
RANDOM u0_act u1_act u0_fol u1_fol ~ normal([0,0,0,0],

[v0_act,c01_act,v1_act,act0_fol0,act1_fol0,
v0_fol,act0_fol1,act1_fol1,c01_fol,v1_fol]) SUBJECT=id;

/* express covariances as correlations */
ESTIMATE ’corr_act01’ c01_act / (SQRT(v0_act) * SQRT(v1_act));
ESTIMATE ’corr_fol01’ c01_fol / (SQRT(v0_fol) * SQRT(v1_fol));
ESTIMATE ’corr_act0_fol0’ act0_fol0 / (SQRT(v0_act) * SQRT(v0_fol));
ESTIMATE ’corr_act1_fol0’ act1_fol0 / (SQRT(v1_act) * SQRT(v0_fol));
ESTIMATE ’corr_act0_fol1’ act0_fol1 / (SQRT(v0_act) * SQRT(v1_fol));
ESTIMATE ’corr_act1_fol1’ act1_fol1 / (SQRT(v1_act) * SQRT(v1_fol));
RUN;
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Below is NLMIXED syntax for the shared parameter bivariate mixed model,
corresponding to Equations (1.9) and (1.10) and with results in Table 1.2. For
the starting values, we used estimates from the bivariate mixed model.

/* Shared Parameter bivariate mixed model via PROC NLMIXED */
/* these results are listed in Table 2 */
PROC NLMIXED TRUREG OPTCHECK HESCAL=1;
PARMS b0_act=202.64 b_act_Mon_ws=-2.85 b_act_Mon_bs=3.43

b0_fol=203.15 b_fol_Mon_ws=-0.22 b_fol_Mon_bs=-0.12
b_act0_fol0=0 b_act1_fol0=0 b_act0_fol1=0 b_act1_fol1=0
v0_act=1159 c01_act=-5.02 v1_act=8.23
v0_fol=1232.2 c01_fol=-8.66 v1_fol=2.51
vare_act=3 vare_fol=3.5;

/* initialize the likelihood functions to zero */
ll_act=0; ll_fol=0; pi = arcos(-1);
IF (fol_int EQ 0) THEN /* active period model */
DO;
mu_act = (b0_act + u0_act) + (b_act_Mon_ws + u1_act)*act_Mon_ws

+ b_act_Mon_bs*act_Mon_bs;
ll_act = LOG(1 / (SQRT(2*pi*vare_act)))

+ (-(wt_lbs-mu_act)**2)/ (2*vare_act);
END;
IF (fol_int EQ 1) THEN /* follow-up period model */
DO;
mu_fol = (b0_fol + u0_fol + b_act0_fol0*u0_act + b_act1_fol0*u1_act)

+ (b_fol_Mon_ws + u1_fol + b_act0_fol1*u0_act
+ b_act1_fol1*u1_act)*fol_Mon_ws
+ b_fol_Mon_bs*fol_Mon_bs;

ll_fol = LOG(1 / (SQRT(2*pi*vare_fol)))
+ (-(wt_lbs-mu_fol)**2)/ (2*vare_fol);

END;
ll = ll_act+ll_fol;
MODEL wt_lbs ~ GENERAL(ll);
RANDOM u0_act u1_act u0_fol u1_fol ~ NORMAL([0,0,0,0],

[v0_act,c01_act,v1_act,0,0,
v0_fol,0,0,c01_fol,v1_fol]) SUBJECT=id;

/* express covariances as correlations */
ESTIMATE ’corr_act01’ c01_act / (SQRT(v0_act) * SQRT(v1_act));
ESTIMATE ’corr_fol01’ c01_fol / (SQRT(v0_fol) * SQRT(v1_fol));
RUN;
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Below is NLMIXED syntax for the shared parameter bivariate mixed model
that includes interactions with the Cond variable. This corresponds to Equations
(1.15) and (1.16) and with results in Table 1.4. For the starting values, we used
estimates from the previous shared parameter bivariate mixed model, and set all
of the interaction effects with starting values of zero.
/* Shared parameter bivariate mixed model via PROC NLMIXED */
/* with Cond and Cond interactions */
/* these results are listed in Table 3 */
PROC NLMIXED TRUREG OPTCHECK HESCAL=1;
PARMS b0_act=207.23 b_act_Mon_ws=-2.85 b_act_Mon_bs=3.43

b_act_cond=0 b_act_cond_Mon_ws=0 b_act_cond_Mon_bs=0
b0_fol=202.88 b_fol_Mon_ws=-0.22 b_fol_Mon_bs=-0.12
b_fol_cond=0 b_fol_cond_Mon_ws=0 b_fol_cond_Mon_bs=0
b_act0_fol0=0.99 b_act1_fol0=1.60 b_act0_fol1=0 b_act1_fol1=0.061
b_cond_act0_fol0=0 b_cond_act1_fol0=0 b_cond_act0_fol1=0 b_cond_act1_fol1=0
v0_act=1154 c01_act=-5.77 v1_act=7.72 v0_fol=22.95 c01_fol=4.21 v1_fol=2.17
vare_act=3 vare_fol=5.86;

ll_act=0; ll_fol=0; pi = arcos(-1);
IF (fol_int EQ 0) THEN /* active period model */
DO;
mu_act = (b0_act + u0_act) + (b_act_Mon_ws + u1_act)*act_Mon_ws

+ b_act_Mon_bs*act_Mon_bs
+ b_act_cond*cond + b_act_cond_Mon_ws*cond*act_Mon_ws
+ b_act_cond_Mon_bs*cond*act_Mon_bs;

ll_act = LOG(1 / (SQRT(2*pi*vare_act)))
+ (-(wt_lbs-mu_act)**2)/ (2*vare_act);

END;
IF (fol_int EQ 1) THEN /* follow-up period model */
DO;
mu_fol = (b0_fol + u0_fol + b_act0_fol0*u0_act + b_act1_fol0*u1_act)

+ (b_fol_Mon_ws + u1_fol + b_act0_fol1*u0_act
+ b_act1_fol1*u1_act)*fol_Mon_ws
+ b_fol_Mon_bs*fol_Mon_bs
+ b_fol_cond*cond + b_fol_cond_Mon_ws*cond*fol_Mon_ws
+ b_fol_cond_Mon_bs*cond*fol_Mon_bs
+ b_cond_act0_fol0*u0_act*cond + b_cond_act1_fol0*u1_act*cond
+ (b_cond_act0_fol1*u0_act*cond
+ b_cond_act1_fol1*u1_act*cond)*fol_Mon_ws;

ll_fol = LOG(1 / (SQRT(2*pi*vare_fol)))
+ (-(wt_lbs-mu_fol)**2)/ (2*vare_fol);

END;
ll = ll_act+ll_fol;
MODEL wt_lbs ~ GENERAL(ll);
RANDOM u0_act u1_act u0_fol u1_fol ~ NORMAL([0,0,0,0],

[v0_act,c01_act,v1_act,0,0,
v0_fol,0,0,c01_fol,v1_fol]) SUBJECT=id;

/* express covariances as correlations */
ESTIMATE ’corr_act01’ c01_act / (SQRT(v0_act) * SQRT(v1_act));
ESTIMATE ’corr_fol01’ c01_fol / (SQRT(v0_fol) * SQRT(v1_fol));
RUN;
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Below is NLMIXED syntax for the shared parameter bivariate mixed model
that includes interactions with the random effects. This corresponds to Equa-
tions (1.17) and (1.18) and with results in Table 1.5. For the starting values,
we used estimates from the shared parameter bivariate mixed model (without
interactions), and set all of the interaction effects with starting values of zero.

/* Shared parameter bivariate mixed model via PROC NLMIXED */
/* with random effect interactions */
/* these results are listed in Table 4 */
PROC NLMIXED TRUREG OPTCHECK HESCAL=1;
PARMS b0_act=207.23 b_act_Mon_ws=-2.85 b_act_Mon_bs=3.43

b0_fol=202.88 b_fol_Mon_ws=-0.22 b_fol_Mon_bs=-0.12
b_act0_fol0=1 b_act1_fol0=1.6 b_act0_fol1=0 b_act1_fol1=0.06
b_INT_act0_fol0=0 b_INT_act1_fol0=0 b_INT_act0_fol1=0 b_INT_act1_fol1=0
v0_act=1154 c01_act=3.10 v1_act=7.72 v0_fol=22.95 c01_fol=3.95 v1_fol=2.17
vare_act=3 vare_fol=5.86;

ll_act=0; ll_fol=0; pi = arcos(-1);
IF (fol_int EQ 0) THEN /* active period model */
DO;
mu_act = (b0_act + u0_act) + (b_act_Mon_ws + u1_act)*act_Mon_ws

+ b_act_Mon_bs*act_Mon_bs;
ll_act = LOG(1 / (SQRT(2*pi*vare_act)))

+ (-(wt_lbs-mu_act)**2)/ (2*vare_act);
END;
IF (fol_int EQ 1) THEN /* follow-up period model */
DO;
mu_fol = (b0_fol + u0_fol + b_act0_fol0*u0_act + b_act1_fol0*u1_act

+ b_INT_act0_fol0*u0_act*u0_fol + b_INT_act1_fol0*u1_act*u0_fol)
+ (b_fol_Mon_ws + u1_fol + b_act0_fol1*u0_act + b_act1_fol1*u1_act
+ b_INT_act0_fol1*u0_act*u1_fol
+ b_INT_act1_fol1*u1_act*u1_fol)*fol_Mon_ws
+ b_fol_Mon_bs*fol_Mon_bs;

ll_fol = LOG(1 / (SQRT(2*pi*vare_fol)))
+ (-(wt_lbs-mu_fol)**2)/ (2*vare_fol);

END;
ll = ll_act+ll_fol;
MODEL wt_lbs ~ GENERAL(ll);
RANDOM u0_act u1_act u0_fol u1_fol ~ NORMAL([0,0,0,0],

[v0_act,c01_act,v1_act,0,0,
v0_fol,0,0,c01_fol,v1_fol]) SUBJECT=id;

/* express covariances as correlations */
ESTIMATE ’corr_act01’ c01_act / (SQRT(v0_act) * SQRT(v1_act));
ESTIMATE ’corr_fol01’ c01_fol / (SQRT(v0_fol) * SQRT(v1_fol));
RUN;



Appendix B

STAN code

//Shared parameter bivariate mixed model via Stan
//Use the same starting values as the algorithm’s maximum-likelihood counterpart using PROC NLMIXED

//The input data is a vector ’y’ of length ’N’.
data {
int<lower=1> N; //number of data points
int<lower=1> nsubj; //number of subjects
int<lower=1, upper=nsubj> subject[N]; //subject numbers
real act_Mon_ws[N];
real act_Mon_bs[N];
real fol_int[N];
real fol_Mon_ws[N];
real fol_Mon_bs[N];
real y[N]; //outcome

}

parameters {
//fixed parameters for active period
real b0_act;
real b_act_Mon_ws;
real b_act_Mon_bs;
//fixed parameters for follow-up period
real b0_fol;
real b_fol_Mon_ws;
real b_fol_Mon_bs;
//active on follow-up
real b_act0_fol0;
real b_act1_fol0;
real b_act0_fol1;
real b_act1_fol1;
//random effects
//active_period
vector[2] u_act[nsubj];
//follow-up period
vector[2] u_fol[nsubj];
//random effects variances & covariances
cov_matrix[2] cov_act;
cov_matrix[2] cov_fol;
//error variance
real<lower = 0> vare_act;
real<lower = 0> vare_fol;
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}

model {
//priors
cov_act ~ inv_wishart(3, diag_matrix(rep_vector(1, 2)));
cov_fol ~ inv_wishart(3, diag_matrix(rep_vector(1, 2)));
//random effects
for (j in 1:nsubj) {
u_act[j] ~ multi_normal(rep_vector(0, 2), cov_act);
u_fol[j] ~ multi_normal(rep_vector(0, 2), cov_fol);

}
//likelihood
for (i in 1 : N) {
if(fol_int[i] == 0){
y[i] ~ normal(b0_act + u_act[subject[i]][1] + (b_act_Mon_ws + u_act[subject[i]][2]) * act_Mon_ws[i] +
b_act_Mon_bs * act_Mon_bs[i],
sqrt(vare_act));

}else{
y[i] ~ normal(b0_fol + u_fol[subject[i]][1] + b_act0_fol0 * u_act[subject[i]][1] +
b_act1_fol0 * u_act[subject[i]][2] +
(b_fol_Mon_ws + u_fol[subject[i]][2] + b_act0_fol1 * u_act[subject[i]][1] +
b_act1_fol1 * u_act[subject[i]][2]) * fol_Mon_ws[i] +
b_fol_Mon_bs * fol_Mon_bs[i],
sqrt(vare_fol));

}
}

}

generated quantities{
//correlations between random effects
real corr_act;
real corr_fol;

corr_act = cov_act[1,2]/sqrt(cov_act[1,1])/sqrt(cov_act[2,2]);
corr_fol = cov_fol[1,2]/sqrt(cov_fol[1,1])/sqrt(cov_fol[2,2]);

}


