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Physical activity (PA) guidelines recommend that PA be accumulated in bouts
of 10 minutes or more in duration. Recently, researchers have sought to better
understand how participants in PA interventions increase their activity. Partici-
pants can increase their daily PA by increasing the number of PA bouts per day
while keeping the duration of the bouts constant; they can keep the number of
bouts constant but increase the duration of each bout; or participants can increase
both the number of bouts and their duration. We propose a novel joint modeling
framework for modeling PA bouts and their duration over time. Our joint model
is comprised of two sub-models: a mixed-effects Poisson hurdle sub-model for
the number of bouts per day and a mixed-effects location scale gamma regres-
sion sub-model to characterize the duration of the bouts and their variance. The
model allows us to estimate how daily PA bouts and their duration vary together
over the course of an intervention and by treatment condition and is specifically
designed to capture the unique distributional features of bouted PA as measured
by accelerometer: frequent measurements, zero-inflated bouts, and skewed bout
durations. We apply our methods to the Make Better Choices study, a longitudi-
nal lifestyle intervention trial to increase PA. We perform a simulation study to
evaluate how well our model is able to estimate relationships between outcomes.
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1 INTRODUCTION

1.1 Physical activity interventions

The 2008 physical activity (PA) guidelines for adults from the U.S. Department of Health and Human Services recommend
at least 150 min a week of moderate-intensity PA, 75 min a week of vigorous-intensity PA, or an equivalent combina-
tion of moderate-to-vigorous intensity physical activity (MVPA). According to the 2008 report, to meet these guidelines,
MVPA must be accumulated in bouts (episodes) of at least 10 minutes in duration.1 Unfortunately, less than 50% of
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T A B L E 1 Descriptive statistics on zero-bout days, non-zero bouts, and bout duration by study phase and treatment condition in the
MBC study.

Phase Treatment Percent days Mean (SD) Mean (SD)
(length) Condition Zero bouts Non-zero bouts Bout duration

Baseline Increase PA 66.7 1.83 (1.08) 12.9 (8.8)

(2 weeks) Decrease SED 72.3 1.79 (1.04) 14.0 (9.3)

Rx1 Increase PA 51.1 1.88 (1.07) 16.6 (10.5)

(1 week) Decrease SED 70.4 1.91 (1.16) 15.5 (12.2)

Rx23 Increase PA 47.7 1.98 (1.20) 17.9 (13.8)

(2 weeks) Decrease SED 68.9 1.98 (1.29) 14.6 (9.7)

American adults meet these guidelines,2 and developing interventions to promote physical activity is an active area
of research.

Little is known about the ways in which participants modify their activity in PA interventions where the level of
behavior is prescribed but not closely supervised in-person.3 Participants can increase their daily PA by increasing the
number of PA bouts per day while keeping the duration of the bouts constant; they can keep the number of bouts constant
but increase the duration of each bout; or participants can increase both the number of bouts per day and their duration.
Evaluating the relationship between these two processes, whether they are substitutes or compliments for one another,
and how they change in response to treatment can provide insights into how an intervention works and how it can be
refined.

1.2 Motivating example: The Make Better Choices study

The Make Better Choices (MBC) study was a randomized lifestyle intervention of 204 adults focused on changing PA and
eating behaviors. MBC participants were randomly assigned to one of two activity-related intervention arms: (1) iPA: an
increase PA arm with a goal to increase MVPA or (2) dSED: a decrease sedentary behavior arm with a goal to decrease
leisure-time sedentary screen time. Detailed information about the intervention has been published elsewhere.4,5 Briefly,
the study consisted of a 2-week baseline assessment period and a 3-week intervention period. The 3-week intervention
period used a step-up approach. A participant’s behavior change prescription for the first week of the intervention period
(referred to as the Rx1 phase) was to attain half of their final target goal. The prescription for the last 2 weeks of the
intervention period (referred to as the Rx23 phase) was to attain the full, targeted goal and to maintain that level of
performance until the end of the 3-week intervention period.

PA in the MBC study was measured daily using an Actigraph accelerometer (model 7164; Actigraph, LLC, Pen-
sacola, Florida) throughout the 5 weeks of the study. This uniaxial device measures and processes vertical acceleration as
counts, providing an indication of the amount and intensity of PA.6 Data were recorded in 1-min epochs. Using cut-points
developed by Freedson et al,7 MVPA was defined as an accelerometer count greater than 1951 counts/min. Following
Mâsse et al,8 an exercise bout was defined as at least 10 consecutive minutes of accelerometer counts greater than 1951
counts/min with allowance for 1–2 min of counts below 1951 counts/min. Note that based on this definition, the mini-
mum bout duration time is 8 min. See Siddique et al9 for further details regarding processing of the MBC accelerometer
data. Compliance with wearing the accelerometer was good, with 85% of participants wearing the accelerometer for 10 h
per day on 4 or more days per week throughout the study. More information on accelerometer compliance by treatment
phase and study condition is provided in Section A of the supplementary materials.

Table 1 reports the percentage of days with zero bouts, mean (SD) bouts on non-zero bout days, and mean (SD) bout
duration by treatment condition and study phase for the 204 participants in the MBC study. Overall, the percentage of
zero-bout days tends to decrease over time in the iPA group and stays constant in the dSED group. The average number
of bouts per day appears to stay the same over time and by treatment condition. Bout duration tends to increase in the
iPA group.

Figures 1 and 2 in Section B of the supplementary materials display the distribution of daily number of MPVA bouts
and the duration of bouts by study phase and treatment condition. A key characteristic of the data in these figures are the
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5102 SIDDIQUE et al.

skewed nature of the data. MVPA bouts are zero inflated such that the number of days with zero bouts ranges from 48%
to 72% of days depending on study phase and treatment condition (Table 1). Similarly, mean duration ranges from 13 to
18 min per bout (Table 1) but some bouts last longer than an hour.

We sought to develop a model that captures these unique features of bouted MVPA as measured by accelerometer:
frequent measurements, zero-inflated bouts, and skewed bout durations; and allows us to estimate how bouts and their
duration vary over the course of the MBC intervention and by treatment condition.

1.3 Research overview

In this manuscript, motivated by the MBC study, we develop methods for jointly modeling both the number of exer-
cise bouts per day and the duration of these bouts. This allows us to investigate the effect of the MBC intervention
on two outcomes: number of daily PA bouts and their duration. There are several advantages to jointly modeling PA
bouts and duration as opposed to fitting separate models for these outcomes. Modeling duration separately ignores
days when a participant did not exercise. Bout frequency is reported every day (even if it is 0) and joint modeling
allows one data type to compensate for lack of information in the other,10 potentially resulting in more precise param-
eter estimates. Joint modeling also allows us to explore the correlation between bout frequency and bout duration and
whether, for example, changes in bout frequency and duration are negatively correlated such that participants who
increase their exercise bouts reduce the duration of their bouts. Understanding these relationships between health
behaviors and whether they are substitutes or compliments for one another can help inform the development of PA
interventions.4

Originally focused on joint modeling of longitudinal and time-to-event outcomes, joint models have seen considerable
development in recent years and have been extended to accommodate multiple longitudinal outcomes of different types.
Most relevant to our work are joint models that model both the frequency (often zero-inflated) and intensity of a longitu-
dinal process. Buta et al11 developed a joint model of longitudinal data of drinking behavior in an alcoholism trial. Their
joint model included two sub-models: a hurdle-binomial model for number of drinking days per week; and a log-normal
model for the average number of drinks per drinking day in a given week. Gupta et al12 model longitudinal blood glucose
monitoring data from an observational study of pregnant women. They jointly model the number of daily glucose mea-
surements using a Poisson model, and a linear mixed model for average daily glucose. The random effects from these two
sub-models are used in a logistic regression to predict pre-term birth. Finally, Juarez–Colunga et al13 jointly modeled the
daily number of hot flashes and a daily indicator for whether the symptoms were severe or not through the use of shared
random effects.

We build on and extend these existing approaches for joint modeling of longitudinal outcomes in a number
of ways in order to better understand how participants change their physical activity in an intervention study. We
exploit the intensive nature of accelerometer data which is typically measured daily over long periods of time by
using a complex random effects structure in order to understand the multivariate relationship between outcomes and
how they change over time. We use a Poisson hurdle sub-model for daily bouts to model the effect of the inter-
vention not only on bout frequency but also on the presence/absence of PA on a given day. And we develop and
implement a mixed-effects gamma location scale model to account for the skewed, non-negative nature of the phys-
ical activity duration data and to model the effect of treatment condition and time on duration mean and duration
variance.

The outline for the rest of this paper is as follows. In Section 2, we describe our joint model of physical activity bouts
and their duration. In Section 3 we apply our method to the MBC study. In Section 4, we use simulation to investigate
how well our model can estimate the correlation between bouts and their duration. Section 5 provides discussion and
some areas for future research.

2 METHODS

Our joint model consists of two submodels: a mixed-effects Poisson hurdle model for the number of daily MVPA bouts,14

and a mixed-effects location scale gamma regression model for bout duration.
Let nij be the total number of exercise bouts for participant i on day j such that if the participant does not engage in any

MVPA bouts on day j, then nij = 0, otherwise nij > 0, where j = 1, … , Ji and i = 1, … ,N. Here, N is the total number of
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SIDDIQUE et al. 5103

participants and Ji is the total number of days that participant i wore an accelerometer. Furthermore, if nij > 0, then yijk
is the duration (in minutes) of the kth bout for participant i on (a physically active) day j, where k = 1, … ,nij. Because
yijk ≥ 8 by the definition given in Section 1.2, prior to fitting our models, we subtract 7.9 from all duration values to better
satisfy the assumptions of the Gamma distribution which we use to model duration.

2.1 Mixed-effects poisson hurdle sub-model

We assume that nij follows a Poisson hurdle distribution, which is a mixture of a point mass at zero for physically inactive
days and a zero-truncated poisson distribution for physically active days:

Pr(nij = 0) = 1 − 𝜋ij, 0 ≤ 𝜋ij ≤ 1, (1)

Pr(nij = k) = 𝜋ij
𝜆

k
ije
−𝜆ij

k!(1 − e−𝜆ij)
, k = 1, … ,∞, 0 < 𝜆ij < ∞, (2)

where 𝜋ij = Pr(nij > 0); the probability that participant i engages in at least one MVPA bout on day j. The parameter
𝜆ij in Equation (2) is the expected number of episodes on day j for the ith participant under an untruncated poisson
distribution.14

We model the parameters in (1) and (2) as a function of subject-specific random effects and study covariates:

logit(𝜋ij) = xT
1ij𝜷1 + zT

1ijb1i (3)

log(𝜆ij) = xT
2ij𝜷2 + zT

2ijb2i, (4)

where xT
1ij and xT

2ij denote covariate vectors for the fixed effects 𝜷1 and 𝜷2, respectively, and zT
1ij and zT

2ij denote covariate
vectors for the normally distributed random effects b1i and b2i, respectively.

2.2 Mixed-effects location scale gamma sub-model

For participants who engage in at least 1 MVPA bout on day j, we assume that the duration of the kth bout on day j for
the ith participant, yijk, follows a mean-parametrized gamma distribution:15

f (yijk|nij > 0, 𝜇ij, 𝛼ij) =
1

Γ(𝛼ij)

(
𝛼ij

𝜇ij

)
𝛼ij

y𝛼ij−1
ijk exp

(

−
yijk𝛼ij

𝜇ij

)

for yijk > 0, (5)

where Γ(⋅) denotes the gamma function, 𝜇ij (𝜇ij > 0) is the expected duration of a bout on day j for participant i, and
𝜇

2
ij

𝛼ij

is its variance. As mentioned above, to better satisfy the assumptions of the gamma distribution, we subtract 7.9 from all
duration values. Note that the shape parameter, 𝛼ij (𝛼ij > 0) is—like the mean parameter— indexed by participant and day.

As in (3) and (4) we model the mean and shape parameters in (5) as a function of subject-specific random effects and
study covariates via the following log-linear models:

log(𝜇ij) = xT
3ij𝜷3 + zT

3ijb3i (6)

log(𝛼ij) = xT
4ij𝜷4 + zT

4ijb4i, (7)

where xT
3ij and xT

4ij denote covariate vectors for the fixed effects 𝜷3 and 𝜷4, respectively, and zT
3ij and zT

4ij are covariate
vectors for the random effects b3i and b4i, respectively.

We refer to the model in (5)–(7) as a mixed-effects location scale gamma regression model as it closely follows the
approach outlined by Hedeker et al16 for modeling both the location and scale of longitudinal data as a function of fixed
and random effects.
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5104 SIDDIQUE et al.

2.3 Joint poisson hurdle gamma model

The joint poisson hurdle gamma model is obtained by connecting the four models (two sub-models) in (3)–(4), and (6)–(7).
Together, these four models provide a rich description of PA behavior in the MBC study and how it changes over time
and by treatment condition. Model (3) allows us to test whether the MBC intervention increases the probability that a
participant will exercise on a given day. Model (4) allows us to test whether the intervention increases the frequency
of bouts on days when a participant exercises. Model (6) models the duration of a participant’s PA bouts and whether
duration increases over time and/or by treatment condition. Finally, model (7) characterizes changes in a participant’s
bout duration variability over time and by treatment condition. Importantly, connecting these four models through the use
of random effects allows us to estimate the correlations of these outcomes and their changes over time. These quantities
can help inform researchers when designing physical activity interventions.

Let 𝜷 = (𝜷1, 𝜷2, 𝜷3, 𝜷4) denote the vector of fixed effects in (3)–(4) and (6)–(7) and let bi = (b1i,b2i,b3i,b4i) denote the
random effects which we assume are independently and identically distributed from a multivariate normal distribution
(dimension p) with mean zero and an unstructured covariance matrix Σ. We assume conditional independence—that
given the random effects, nij and yijk are independent as are repeated measurements of nij and yijk within a participant.
Let Ni summarize the nij values for participant i and Yi summarize their duration values yijk. The likelihood for the ith
participant is then:

Li(𝜷,Σ) = f (Ni,Yi | 𝜷,Σ) =
∫bi

f (Ni,Yi | 𝜷,bi,Σ)f (bi | Σ)dbi

=
∫bi

Ni∏

j=1
(1 − 𝜋ij)1−dij

⎧
⎪
⎨
⎪
⎩

𝜋ij𝜆
nij

ij exp(−𝜆ij)

nij!{1 − exp(−𝜆ij)}

nij∏

k=1

1
Γ(𝛼ij)

(
𝛼ij

𝜇ij

)
𝛼ij

y𝛼ij−1
ijk exp

(

−
yijk𝛼ij

𝜇ijk

)⎫
⎪
⎬
⎪
⎭

dij

×
( 1

2𝜋

) p
2
|Σ|−

1
2 exp

{

−1
2

(

b
′

iΣ
−1bi

)}

dbi, (8)

where dij is an indicator that nij > 0 and 𝜋ij, 𝜆ij, 𝛼ij, and 𝜇ij are defined above.

2.4 Daily minutes of physical activity

A benefit of our model is its ability to decompose physical activity into its components: number of bouts and the duration
of each bout and to estimate the effects of covariates on these outcomes. However, PA recommendations are made at the
day or week level and researchers may wish to understand the the effects of treatment on total daily duration both overall
and on exercise days.

The total PA minutes for participant i on day j is the sum of the duration of their nij bouts. That is,
∑nij

k=1yijk + 7.9 =
nijyij + 7.9 where yij is the average bout duration for participant i on day j.

The mean of the Poisson hurdle distribution in terms of the parameters in (1) and (2) is

E(nij | 𝜋ij, 𝜆ij) = 𝜋ij
𝜆ij

1 − exp(−𝜆ij)
, (9)

where 𝜋ij is the probability that nij > 0. For mean duration, since the model in (5) does not depend on covariates measured
at the bout-level, E(yijk) = E(yij) = 𝜇ij.

Due to conditional independence of nij and yijk, the expectation of nij × yij can be written as a product of their
expectations, that is:

E(nij × yij | 𝜋ij, 𝜆ij, 𝜇ij) = E(nij | 𝜋ij, 𝜆ij)E(yij | 𝜇ij) =
𝜋ij𝜆ij𝜇ij

1 − exp(−𝜆ij)
. (10)

Plugging in (3), (4), and (6) we obtain

E(nij × yijk | bi) =
exp(xT

2ij𝜷2 + zT
2ijb2i + xT

3ij𝜷3 + zT
3ijb3i)

[

1 + exp
(

−xT
1ij𝜷1 − zT

1ijb1i

)][

1 − exp
(

− exp
(

xT
2ij𝜷2 + zT

2ijb2i

))] . (11)
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SIDDIQUE et al. 5105

The constant 7.9 is added to the quantities in (10) and (11) to put total duration back on its original scale. In Section C
of the supplementary materials, we provide details on integrating out the random effects in (11) in order to calculate
marginal daily duration by treatment group and time. If the goal is to calculate daily minutes of PA on exercise days, (9)
is replaced with the mean of a truncated Poisson distribution E(nij | nij > 0, 𝜆ij).

3 APPLICATION TO THE MBC STUDY

We modeled the MBC data using the joint model described above with and without modeling the shape parameter in (7).
We used several different models with different random effect structures. The simplest model consisted of random inter-
cepts only in each sub-model and no model for the shape parameter. The most complex model included random intercept,
Rx1, and Rx23 terms in all four sub-models. In all of our models, the fixed-effects covariate vectors were the same with
main effects for study phase and study phase by treatment interaction terms and we did not include any bout-specific
covariates (eg, time of day or weather) in our models so that x1ij = x2ij = x3ijk = x4ijk = xij where

xT
ij = (1,Rx1ij,Rx23ij,Rx1ij ∗ iPAi,Rx23ij ∗ iPAi). (12)

In (12), Rx1ij and Rx23ij are indicator variables for study phase, and Rx1ij ∗ iPAi and Rx23ij ∗ iPAi are treatment by
study phase interaction terms. The regression coefficients for these two interaction terms are our estimates of interest, the
difference between iPA and dSED at follow-up for the outcome in the sub-model. For example, in the sub-model in (1),
the regression coefficient on the Rx23 by iPA interaction term is the difference in log odds at Rx23 of participant i engaging
in any bouts on day j in the iPA group versus the dSED group. Note that (12) does not include a main effect for treatment
under the assumption that the distribution of responses at baseline can be assumed to be equal in a randomized trial.17

3.1 Parameter estimation, model selection, model fit

We used a Bayesian approach to obtain the posterior distribution of our model parameters. We specified non-informative
normal priors with mean 0 and variance 1,000 for the regression coefficients, and a IW(Ik, k + 1) inverse-Wishart prior18

for the covariance matrix Σk of the random effects where k is the dimension of the combined collection of random effects
in each of the four sub-models and Ik is a k × k identity matrix. Based on the above priors and the likelihood in (8), the
posterior distribution of the fixed effects 𝜷, random effects b and their covariance Σ is

p(𝜷,b,Σ | N,Y ) ∝
N∏

i=1
f (Ni,Yi | 𝜷,bi,Σ)p(bi |Σ)𝜋(Σ)𝜋(𝜷). (13)

Markov Chain Monte Carlo (MCMC) using JAGS19 via the R package runjags20 was used to obtain draws from the
joint posterior distribution in (13). The number of iterations needed to achieve convergence depended on the number
of random effects in our models. Convergence of the MCMC chains was monitored using trace plots, density plots, and
Gelman-Rubin statistics.21 JAGS code for our model is included in Section D of the supplementary materials.

As recommended by Gelman et al22 for use with hierarchical Bayesian models where the number of parameters
increases with the sample size, we used the Widely Applicable Information Criterion (WAIC) to select among models
with different random effects. WAIC is based on the log pointwise predictive density (lppd) which—in our application—is
the sum of each participant’s log likelihood averaged over the posterior distribution of the model parameters and can
be calculated using MCMC draws. Let [𝜷s

,bs
,Σs], s = 1, … , S be draws from the posterior distribution in (13) and

p(Ni,Yi|𝜷
s
,bs

i ,Σ
s) be the likelihood for participant i based on the sth draw. The lppd is defined as

lppd =
N∑

i=1
log

(

1
S

S∑

s=1
p(Ni,Yi|𝜷

s
,bs

i ,Σ
s)

)

. (14)

To adjust for overfitting, the WAIC includes a correction to the lppd for the effective number of parameters:

pw =
N∑

i
V S

s=1(log p(Ni,Yi|𝜷
s
,bs

i ,Σ
s)), (15)

 10970258, 2023, 28, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9903 by U
niversity O

f C
hicago, W

iley O
nline L

ibrary on [17/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



5106 SIDDIQUE et al.

where V S
s=1 represents the sample variance. To put it on a deviance scale, WAIC is defined as −2lppd + 2pw.

After identifying the best fitting model using the WAIC, we evaluated how well our final model fit the observed data
using posterior predictive checking.23 For each draw from the posterior distribution of our parameters we generated repli-
cated values nrep

ij and yrep
ijk corresponding to daily number of bouts and their duration. We used four different test statistics

to capture how well the replicated data resembled the observed data. These test statistics are based on the observed quan-
tities reported in Table 1: the proportion of days with zero bouts, the mean number of non-zero bouts, mean bout duration,
and the standard deviation of bout duration. We calculated these test statistics at each treatment phase and compared
them to their values based on the replicated data both in terms of the magnitude of the difference as well as by calculating
posterior predictive probabilities (pB), the probability that the replicated data is more extreme than the observed data.

We also generated QQ plots to assess how well the Poisson hurdle and Gamma regression models fit our data. We
calculated quantiles using nrep

ij and yrep
ijk and plotted them against their observed quantiles. For the QQ plots we used 10

draws from the posterior distribution to generate 10 QQ plots for both number of bouts and their duration.

3.2 Results

Table 2 in Section E of the supplementary materials reports the WAIC for each of the models with varying numbers
of random effects. Despite containing a random effects variance-covariance matrix with 78 parameters, the model with
random intercepts, Rx1, and Rx23 in all four sub-models had the lowest WAIC. Further, modeling the duration shape

T A B L E 2 Posterior estimates from the joint mixed-effects Poisson gamma mixed-effects location scale model with random effects for
intercept, Rx1, and Rx23.

Lower Upper
Variable Mean 95% CI 95% CI

Logistic regression on probability of exercise day

Intercept −0.987 −1.172 −0.800

R×1 −0.081 −0.349 0.185

R×23 −0.046 −0.300 0.207

PA*R×1 1.090 0.728 1.451

PA*R×23 1.031 0.682 1.377

Loglinear regression on mean number of bouts

Intercept −0.045 −0.187 0.090

R×1 −0.034 −0.277 0.203

R×23 −0.039 −0.249 0.163

PA*R×1 0.090 −0.145 0.323

PA*R×23 0.160 −0.039 0.352

Loglinear regression on duration mean

Intercept 1.540 1.401 1.686

R×1 0.070 −0.160 0.294

R×23 −0.061 −0.272 0.144

PA*R×1 0.413 0.176 0.645

PA*R×23 0.639 0.430 0.851

Loglinear regression on duration shape

Intercept −0.432 −0.536 −0.327

R×1 0.056 −0.145 0.268

R×23 −0.074 −0.230 0.083

PA*R×1 0.139 −0.068 0.343

PA*R×23 0.020 −0.127 0.171
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SIDDIQUE et al. 5107

T A B L E 3 Posterior predictive checks from the joint mixed-effects Poisson gamma location-scale model with random effects for
intercept, Rx1, and Rx23 applied to the MBC data.

Baseline Rx1 Rx23

Test statistic Obs Rep ppp Obs Rep ppp Obs Rep ppp

Prop. days any bouts 0.304 0.304 0.96 0.392 0.392 1.00 0.410 0.410 0.95

Mean daily bouts 0.550 0.551 0.99 0.741 0.739 0.97 0.812 0.809 0.88

Mean bout duration 13.4 13.4 0.96 16.2 16.2 0.89 16.6 16.6 0.95

Bout duration SD 9.07 9.16 0.95 11.2 12.7 0.26 12.4 14.1 0.13

Note: Four test statistics were used to assess model fit at each of the three study time points: proportion of days with any bouts, mean number of daily bouts,
mean bout duration, standard deviation of bout duration.
Abbreviations: Obs, observed value; ppp, posterior predictive probability; Rep, mean replicated value.

parameter, that is, modeling both duration mean and variance demonstrated an improvement in model fit, resulting in a
reduction in WAIC of 102.4 compared to a model where duration shape is assumed to be constant.

Table 2 reports the posterior means and 95% credible intervals from this best fitting model for both fixed effects and
variances from the random effects variance-covariance matrix. In all four models, the main effects for Rx1 and Rx23 are
not significant indicating no change over time in the dSED group on all four outcomes. Focusing our attention on the
time by treatment interaction terms, we see significant effects in the Poisson hurdle component and the mean model
for duration. These results suggest that MBC iPA participants increased their physical activity by having more exercise
days and also by increasing the duration of their exercise bouts; not by increasing the number of bouts on days they
exercised. Interestingly, the treatment effects in the shape model were not significant. Since the mean-parameterized
gamma distribution with mean 𝜇 and shape 𝛼 has variance equal to 𝜇2∕𝛼, the parameters of the shape sub-model cannot
be interpreted directly since duration variance is a function of both the parameters in (6) and (7) (Supplementary materials
Section F). Still, these results suggest that increases in duration variability were due to changes in mean duration rather
than a change in the shape parameter.

Table 3 reports the results from posterior predictive checking of the fit of our final model. Overall, our model shows
adequate fit. None of the four test statistics at the three time points has a two-sided posterior predictive probability less
than 0.10.

Figures 3 and 4 in Section G of the supplementary materials are QQ plots of posterior predictive replicates of the daily
bout values and duration values versus their observed values, respectively. In both plots, the distribution of the replicated
data are similar to that of the observed data.

Although our interest is on the effect of treatment on all four outcomes in the joint model, it is possible to perform a
global test of significance of the treatment effects, to test whether any of the time by treatment interactions are significant.
To do this, we calculated the proportion of MCMC draws where the treatment effects in the hurdle, truncated Poisson,
and gamma mean models were greater than zero or the treatment effect in the gamma shape model was less than zero.
At both Rx1 and Rx23, the predictive probability for this global test was < .0001.

Table 4 in Section H of the supplementary materials reports the lower diagonal of the 12×12 random effects correla-
tion matrix from the final model. Correlations whose 95% credible intervals did not include zero are noted in bold. The
correlation between the random intercept for the hurdle sub-model and the random intercept for the number of bouts
sub-model was 0.70 indicating that participants who had a greater than average probability of exercising also engaged in
more bouts per day than average. The correlation of the random Rx23 effect between these two sub-models was also sig-
nificant, such that those participants with greater than average increases in their probability of of exercising at Rx23 also
had greater than average increases in bouts per day (�̂� = 0.55).

Within all four sub-models, the correlations between the random effects for Rx1 and Rx23 were large and significant.
For example, participants who had greater than average changes in their probability of exercising at Rx1 also had greater
than average changes in their probability of exercising at Rx23 (�̂� = 0.80). However, only in the shape model were random
intercepts correlated with random effects at Rx1 and Rx23. Here, participants with lower than average shape parame-
ter values at baseline tended to have higher than average changes in shape values at follow up (�̂� = −0.33 and −0.39,
respectively).

It is also worth noting that while there were significant correlations between random effects associated with the
Poisson sub-models and significant correlations between random effects associated with the gamma sub-model, almost
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5108 SIDDIQUE et al.

none of the correlations of the random effects across these two sub-models were significant. For example, the correla-
tion between the random intercept of the number of bouts model and the random intercept for the duration model (a
quantity of particular interest to interventionists) was only 0.06. These low correlations may explain why—as described
below—there is minimal loss in precision for this particular data set when fitting separate models for bouts per day and
bout duration.

3.3 Separate models for bouts and duration

The primary benefit of our joint modeling approach is the ability to estimate the correlation between the change in exercise
bouts and their duration as well as the ability to perform a global test of treatment. Still, both joint and separate models
allow one to calculate treatment effects. Therefore, we fit separate models of exercise bouts and their duration in order to
compare these models to our joint modeling approach. The results from these separate models are reported in Section I of
the supplementary materials. A comparison of treatment effects from the joint model and the separate models is displayed
in Supplementary Materials Figure 5. Overall, there is very little difference in treatment effects between joint and separate
models, both in terms of their point estimates and the width of their credible intervals.

3.4 Daily duration

Table 4 reports daily duration—on all days as well as on exercise days—by treatment condition and time. Results are
provided based on a joint model as well as based on separate modeling of bouts and duration. The conclusions are similar
to those in Table 2. Daily duration does not change over time in the dSED group but does change in the iPA group such
that by Rx23, iPA participants engage in 11 more minutes of MVPA per day compared to dSED participants.

T A B L E 4 Daily minutes of physical activity by treatment condition and time.

Joint model Separate models

Group Mean SE LCI UCI Width Mean SE LCI UCI Width

All days

Baseline 7.85 0.64 6.73 9.19 2.46 7.85 0.62 6.73 9.05 2.32

iPA Rx1 17.85 1.88 14.55 21.93 7.38 17.32 1.67 14.27 20.82 6.55

dSED Rx1 8.97 1.09 7.05 11.24 4.19 8.84 1.05 7.07 11.12 4.05

R×1 Diff 8.89 1.85 5.42 12.61 7.19 8.48 1.75 5.23 12.04 6.81

iPA Rx23 20.05 2.12 16.19 24.81 8.62 19.27 1.86 16.03 23.33 7.30

dSED Rx23 8.97 1.03 7.16 11.16 4.00 8.70 0.93 7.07 10.64 3.57

Rx23 Diff 11.08 2.06 7.38 15.53 8.15 10.57 1.83 7.13 14.26 7.13

Exercise days

Baseline 22.66 0.99 20.72 24.64 3.92 22.66 0.92 20.93 24.53 3.60

iPA Rx1 31.03 2.13 27.22 35.56 8.34 31.58 2.13 27.89 36.21 8.32

dSED Rx1 24.19 1.59 21.43 27.56 6.13 24.85 1.66 21.91 28.46 6.55

Rx1 Diff 6.84 2.46 2.47 12.02 9.55 6.73 2.47 2.07 11.48 9.41

iPA Rx23 34.08 2.26 30.06 38.77 8.71 34.51 2.22 30.53 39.10 8.57

dSED Rx23 22.89 1.25 20.64 25.41 4.77 23.26 1.25 20.96 25.89 4.93

Rx23 Diff 11.19 2.38 6.75 15.89 9.14 11.24 2.31 6.97 16.03 9.06

Note: The top half of the table averages over all days (including days with zero bouts). The bottom half of the table only includes days with one or more bouts
(exercise days). Results are provided based on a joint model of bouts and their duration and also based on fitting two separate models for bouts and their duration.
Abbreviations: dSED, decrease sedentary group; iPA, increase PA group.
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SIDDIQUE et al. 5109

Interestingly, while point estimates are similar between results based on a joint model and those based on separate
models, the standard errors are smaller for separate models as compared to joint models.

4 SIMULATION STUDY

As our primary motivation for using a joint model is to estimate the correlation between bouts and their duration, we
performed a simulation study using a factorial design to evaluate the ability of our joint model to accurately estimate the
correlations between these two processes.

We simulated number of daily bouts (nij) and their duration (yijk) using the joint Poisson hurdle gamma model
described in Section 2. The parameters of the distributions were based on the following random intercept mixed-effects
models:

logit(𝜋ij) = 𝛼0 + 𝛼1(timeij × trti) + b1i (16)

log(𝜆ij) = 𝛽0 + 𝛽1(timeij × trti) + b2i (17)

log(𝜇ij) = 𝛾0 + 𝛾1(timeij × trti) + b3i (18)

log(𝛼ij) = 𝜙0 + 𝜙1(timeij × trti) + b4i, (19)

where timeij × trti is the time by treatment interaction and the random effects bi follow a multivariate normal
distribution with mean 0 and and variance-covariance matrix Σ where

Σ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1
0.7 1
𝜌13 𝜌23 1
𝜌14 𝜌24 −0.2 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (20)

Since the variances in Σ are equal to 1, its off-diagonal terms are correlations. In a simplified version of the
MBC data, we assumed N = 200 participants with half of participants belonging to the treatment condition, half to
the control condition. Each participant was measured for 7 days at baseline (timeij = 0) and 7 days at follow-up
(timeij = 1). Across all simulations, based on values from the MBC study, we fixed 𝛼0 in (16) to 1.1 corresponding
to 25% zero bout days and set the coefficients 𝛼1, and 𝛽1 in (16) and (17) to log(3). The coefficient 𝛽0 in (17) was
set to log(2). The parameters in the duration models in (18) and (19) were fixed at 𝛾0 = 1.5, 𝛾1 = 0.5, 𝜙0 = −0.4, and
𝜙1 = 0.14.

Only the correlations in (20) varied across simulation scenarios. The parameters 𝜌13, 𝜌14, 𝜌23, 𝜌24, were set to either 0.2
or 0.5. These were deemed to be plausible values and would allow us to evaluate how well our model is able to estimate
these correlations when their true values are both small and moderate.

With four factors set to two levels, there are a total of 24 = 16 scenarios. For each scenario, we generated 100 simulated
data sets and fit a joint model to each data set. Our targets of inference were the four correlation parameters in (20) which
we evaluated in terms of the following performance criteria: bias, variance, mean squared error (MSE), coverage of the
95% credible interval, and width of the credible interval.

4.1 Simulation results

Table 5 presents the simulation results for the four correlation coefficients that varied across scenarios. Each row is
based on 800 simulations that average over the levels of the three other correlation coefficients. All correlation coef-
ficients were estimated with low bias, variance and MSE. Coverage tended to be slightly below the nominal level
and the width of the 95% credible interval was narrower when the true value of the correlation parameter was
0.5 versus 0.2.
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5110 SIDDIQUE et al.

T A B L E 5 Bias, variance, mean squared error (MSE), coverage, and average width of the 95% credible interval of parameter estimates
from the simulation study.

Parameter True value Bias Variance MSE Coverage 95% CI width

𝜌13 0.2 0.011 0.009 0.01 0.922 0.35

0.5 −0.005 0.006 0.01 0.930 0.29

𝜌14 0.2 −0.001 0.007 0.01 0.934 0.33

0.5 −0.009 0.005 0.01 0.936 0.28

𝜌23 0.2 −0.005 0.005 0.01 0.924 0.29

0.5 −0.004 0.003 0.00 0.948 0.23

𝜌24 0.2 −0.006 0.005 0.00 0.939 0.28

0.5 −0.009 0.003 0.00 0.935 0.22

Note: All correlation coefficients were estimated with low bias, variance and MSE. Coverage tended to be slightly below the nominal level and the width of the
95% credible interval was narrower when the true value of the correlation parameter was 0.5 versus 0.2.

5 DISCUSSION

We have described an approach for modeling physical activity data from a lifestyle intervention trial that jointly mod-
els daily exercise bouts and the duration of those bouts. We extended existing approaches for joint modeling by using
sub-models that accommodate the unique distributional properties of our outcomes—zero inflated bout frequencies and
skewed bout durations. In addition, in our model for PA duration, we model both the mean and shape parameters of the
gamma distribution as a function of fixed and random effects, the first time that we are aware of that this has been done
for a gamma-distributed longitudinal outcome.

In our analysis of the MBC data, we found significant treatment effects on the number of non-zero exercise days
as well as on duration mean. Participants in the iPA condition increased their MVPA compared to the dSED condi-
tion by exercising on more days and by increasing their bout duration. They did not, however, increase the number of
bouts per day, and participants in both conditions averaged a little less than two bouts per day throughout the study
on days they engaged in any exercise. Participants in the iPA condition also increased their bout duration variability
over time.

There are numerous advantages to our joint modeling approach as compared to modeling bout frequency and its
duration in separate models. The joint model allows researchers to estimate the correlation between these outcomes which
is an important quantity of interest to behavioral scientists. If change in these outcomes is uncorrelated, as was seen in
the MBC data, then researchers can focus on either outcome in order to increase the volume of physical activity. On the
other hand, if the change in bouts and their duration is negatively correlated, then interventionists may need target both
outcomes with the understanding that increasing one outcome, say number of bouts per day, may decrease the duration
of each individual bout. In an intervention study, a joint model also allows one to perform an global test of whether the
intervention has an effect on any outcome of interest including outcomes across sub-models.

Additional covariates can be incorporated into our model and not all sub-models need to use the same covariates.
Day-level covariates like weather and weekend/weekday can be included into the bout sub-model,24 and both day-level
and bout-level predictors like time of day can be incorporated into the duration model. Including these additional variables
into the models can help shed light on what contextual factors may play a role in a person’s decision to engage in physical
activity and whether these covariates moderate the effect of treatment. In settings where there are multiple bouts per day,
a three-level model with a day-level random effect can be incorporated in the the duration sub-model to capture day-level
variability. If compliance with wearing the accelerometer is an issue, an additional sub-model could be added indicating
whether the accelerometer was worn on a given day.

It is noteworthy that in our analysis of the MBC data we found little difference in estimates of treatment effects from
our joint model as compared to estimates using separate models for bouts and duration. Based on work by Su et al,25

this is to be expected since the benefits of joint modeling in longitudinal data are reflected in more accurate estimates of
intercepts, rather than treatment effects. If the distribution of random effects differed by treatment condition—as may
occur in an observational study where “treatment” is not randomly assigned—differences in estimates of treatment effects
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SIDDIQUE et al. 5111

between the joint and separate modeling approaches may arise. In settings where there are a fewer number of days, a
joint modeling approach may provide gains in efficiency.

In our estimates of daily minutes of physical activity, we found that point estimates were similar between estimates
based on a joint model and those based on separate models. However, standard errors were smaller for estimates based on
separate models. The reason for this discrepancy is not clear and future work will attempt to elucidate these differences
in results.

Our model can be used to identify different features of physical activity and its change over time in terms of frequency
of exercise days, number of bouts per day, bout duration, and bout duration variance. Examples of these “behavioral
phenotypes” are shown in Figures 6 and 7 in Section J of the supplementary materials. Behavioral phenotypes that are
measured during the intervention period may be good predictors of distal outcomes like weight gain or behavior main-
tenance.26 If particular behavioral phenotypes (eg, composed of distinct combinations of bout duration, bout duration
variability, frequency of days with exercise) appear to be associated with distal outcomes of clinical interest, then this
would support tailoring intervention recommendations to include specific goals related to the components that are char-
acteristic of the optimal behavioral phenotype. We are interested in incorporating these distal outcomes into our joint
model where features from the intervention period are used as predictors.

Other work will involve relaxing the normality assumption of the distribution of random effects to allow for non-linear
correlations in addition to modeling these correlations as a function of participant characteristics to better understand
how behaviors change over the course of an intervention.27-29 Identifying behaviors that change together (ie, are posi-
tively correlated) or behaviors that are substitutes for one another (ie, are negatively correlated) is of particular interest
to researchers when designing interventions that target multiple behaviors.

While the physical activity guidelines are expressed in minutes per week, physical activity is in fact a multidimen-
sional construct that occurs at the day or even more granular levels. Our model allows researchers to decompose physical
activity into its many parts: (1) its occurrence; (2) its frequency; (3) its duration; and (4) its variability. Understanding
these different components, how they covary, and how they change over time will allow researchers to better understand
the effects of their interventions, help design new and better interventions, and identify those features that lead to durable
behavior change.
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