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A Accelerometer missingness/non-compliance

Below we report—by study phase and treatment condition—the number and proportion of

MBC participants who wore the accelerometer for 10 or more hours a day on four or more

days in a given week. These two characteristics are conventionally regarded as the minimum

needed for validly estimating habitual PA levels [1, 2]

Table 1: Missing data patterns in MBC by treatment condition and overall. The first three
columns indicate whether a participant wore the accelerometer for 10 hours on four or more
days a week during each of the three study phases.

Baseline Rx1 Rx23 Total (n=204) iPA (n=95) dSED (n=109)
Data Data Data n (%) n (%) n (%)
O O O 174 (85.3) 81 (85.3) 93 (85.3)
M O O 14 (6.9) 5 (5.3) 9 (8.3)
O M M 7 (3.4) 3 (3.2) 4 (3.7)
O M O 4 (2.0) 2 (2.1) 2 (1.8)
O O M 4 (2.0) 4 (4.2) 0 (0.0)
M M O 1 (0.5) 0 (0.0) 1 (0.9)

Note: O=observed, M=missing

Over 85% of participants wore the accelerometer throughout the study. The second most

common compliance pattern occurred among 6.9% of participants who were non-compliant

at baseline only. This non-compliance occurred at the beginning of the study and was due to

challenges experienced by study staff when using the new technology. In terms of dropout,

only 7 of the 204 participants (3.4%) wore the accelerometer at baseline only.
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B Descriptive Figures
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Figure 1: Barplots of number of daily exercise bouts by study phase (Baseline, Rx1, and
Rx23) and treatment group in the MBC study. The top row are participants assigned to the
increase physical activity condition (iPA). The bottom row are participants assigned to the
decrease sedentary behavior (dSED) condition.
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Figure 2: Histograms of bout duration by study phase (Baseline, Rx1, and Rx23) and
treatment group in the MBC study. The top row are participants assigned to the increase
physical activity condition (iPA). The bottom row are participants assigned to the decrease
sedentary behavior (dSED) condition.
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C Daily minutes of physical activity

In Section 2.4 of the manuscript, we describe how to calculate average daily minutes of

physical activity across all study days. If the goal is to calculate total PA minutes on exercise

days (i.e days with more than zero bouts), we replace Equation (9) in the manuscript with

the mean of a truncated Poisson distribution, that is:

E(nij | nij > 0, λij) =
λij

1− exp(−λij)
, (C.1)

so that the mean minutes of PA on exercise days is

E(nij × ȳij | λij, µij) =
λijµij

1− exp(−λij)
. (C.2)

Plugging in (3), (4) and (6) from the manuscript into (C.2) we obtain

E(nij × yijk | bi) =
exp(xT

2ijβ2 + zT2ijb2i + xT
3ijβ3 + zT3ijb3i)[

1− exp(− exp(xT
2ijβ2 + zT2ijb2i))

] . (C.3)

The constant 7.9 is added to (C.2) and (C.3) in order to put estimates back on the

original duration scale. To obtain estimates of mean daily PA at the population level we

integrate out the random effects in (C.3) and (11) in the manuscript in order to calculate

marginal total duration by treatment group and time.

Integration of the random effects is performed at each MCMC iteration by averaging over

10 million draws of the random effects bi ∼ N(0,Σ(t)) where Σ(t) is the posterior draw of the

random effects variance covariance matrix at MCMC iteration (t). The posterior distribution

is obtained using 1000 MCMC iterations.
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D JAGS Code

joint <- "

model{

C <- 10000

for (i in 1:n.bout) {

y[i] <- z.bout[i]

z[i]<-step(y[i]-1) # d=I(y>0)

logit(p[i]) <- B[id.bout[i],1] + B[id.bout[i],5]*rx1.bout[i] + alpha1*rx1.bout[i]

+ B[id.bout[i],9]*rx23.bout[i] + alpha2*rx23.bout[i]

+ alpha3*rx1.bout[i]*pa.bout[i] + alpha4*rx23.bout[i]*pa.bout[i]

log(lambda[i]) <- B[id.bout[i],2] + B[id.bout[i],6]*rx1.bout[i] + beta1*rx1.bout[i]

+ B[id.bout[i],10]*rx23.bout[i] +beta2*rx23.bout[i]

+ beta3*rx1.bout[i]*pa.bout[i] + beta4*rx23.bout[i]*pa.bout[i]

# Poisson hurdle log Likelihood

ll[i] <- (1-z[i])*log(1-p[i]) + z[i]*(log(p[i])+y[i]*log(lambda[i]) - lambda[i]

- loggam(y[i]+1)-log(1-exp(-lambda[i])))

# zeros trick

zeros[i]~dpois(phi[i])

phi[i]<- - ll[i] + C

# generate replicates for pp checking

any.new[i] ~ dbern(p[i])

numbout.new[i] ~ dpois(lambda[i])T(1,)

new.bouts[i] <- any.new[i] * numbout.new[i]

} # end bout loop

# Duration sub-model

# gamma regression, log link

# mean parameterization, rate=shape/mu

for (i in 1:n.dur) {

y.hat[i] <- exp(B[id.dur[i], 3] + B[id.dur[i], 7]*rx1.dur[i] gam1*rx1.dur[i] +

+ B[id.dur[i], 11]*rx23.dur[i] + gam2*rx23.dur[i]

+ gam3*rx1.dur[i]*pa.dur[i] + gam4*rx23.dur[i]*pa.dur[i])

# model the shape parameter

shape[i] <- exp(B[id.dur[i], 4] + B[id.dur[i], 8]*rx1.dur[i] + gs1*rx1.dur[i]

+ B[id.dur[i], 12]*rx23.dur[i] + gs2*rx23.dur[i]
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+ gs3*rx1.dur[i]*pa.dur[i] + gs4*rx23.dur[i]*pa.dur[i])

y.dur[i] ~ dgamma(shape[i], shape[i]/y.hat[i])

# duration log likelihood

log_lik_dur[i] <- logdensity.gamma(y.dur[i], shape[i], shape[i]/y.hat[i])

# generate replicates

y.new[i] ~ dgamma(shape[i], shape[i]/y.hat[i])

} # end duration loop

# Log likelihoods

log_lik_poisson_sum <- sum(ll[])

log_lik_gamma_sum <- sum(log_lik_dur[])

total_log_lik <- sum(log_lik_poisson_sum, log_lik_gamma_sum)

mydev <- -2 * total_log_lik

# Priors for regression coefficients

alpha1 ~ dnorm (0.0, .0001)

alpha2 ~ dnorm (0.0, .0001)

alpha3 ~ dnorm (0.0, .0001)

alpha4 ~ dnorm (0.0, .0001)

beta1 ~ dnorm (0.0, .0001)

beta2 ~ dnorm (0.0, .0001)

beta3 ~ dnorm (0.0, .0001)

beta4 ~ dnorm (0.0, .0001)

gam1 ~ dnorm (0.0, .0001)

gam2 ~ dnorm (0.0, .0001)

gam3 ~ dnorm (0.0, .0001)

gam4 ~ dnorm (0.0, .0001)

gs1 ~ dnorm (0.0, .0001)

gs2 ~ dnorm (0.0, .0001)

gs3 ~ dnorm (0.0, .0001)

gs4 ~ dnorm (0.0, .0001)

# Random effects

for (j in 1:J){

B[j,1:K] ~ dmnorm (mu[], Tau.B[,])

}

# Priors for random effects

# random intercepts have non-zero mean

for (k in 1:4){

7



mu[k] <- mu.raw[k]

mu.raw[k] ~ dnorm (0, .0001)

}

# random time does have zero mean

# because we include their fixed effects in the model

for (k in 5:12){

mu[k] <- 0

mu.raw[k] ~ dnorm (0, .0001)

}

# Prior on random effects precision matrix

Tau.B[1:K,1:K] ~ dwish(W[,], df)

df <- K+1

Sigma.B[1:K,1:K] <- inverse(Tau.B[,])

# Calculate Random effect correlations and SDs

for (k in 1:K){

for (k.prime in 1:K){

rho.B[k,k.prime] <- Sigma.B[k,k.prime]/

sqrt(Sigma.B[k,k]*Sigma.B[k.prime,k.prime])

}

sigma.B[k] <- sqrt(Sigma.B[k,k])

}

} #end model loop

"

# Function for starting values

inits <- function() {

list(beta1=rnorm(1), beta2=rnorm(1), beta3=rnorm(1), beta4=rnorm(1),

alpha1=rnorm(1), alpha2=rnorm(1), alpha3=rnorm(1), alpha4=rnorm(1),

gam1=rnorm(1), gam2=rnorm(1), gam3=rnorm(1), gam4=rnorm(1),

gs1=rnorm(1), gs2=rnorm(1), gs3=rnorm(1), gs4=rnorm(1),

B=array(rnorm(J*K), c(J,K)), mu.raw=rnorm(K),

Tau.B=rwish(K+1,diag(K)))

# Parameters to save

params <- c("alpha1", "alpha2", "alpha3", "alpha4", "beta1", "beta2", "beta3",

"beta4", "gam1", "gam2", "gam3", "gam4", "mu", "Sigma.B", "rho.B")

fit <- run.jags(model=joint, data=jags.data, inits=inits, monitor=params,

n.chains=5, method="parallel", adapt=5000, thin=20, sample=20000)
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E Table of WAIC values

Table 2: Log pointwise predictive density (lppd), model complexity penalty (pW ), and widely
applicable information criterion (WAIC) for four models with increasing numbers of random
effects. The model with three random effects for duration shape has the lowest WAIC. Note
that in models where no random effects were included for shape, the shape parameter was
not modeled and was assumed constant across treatment condition and time.

Mean Random Shape Random Covar lppd pW WAIC (∆∗)

Effects Effects Params

Int. None 6 -21190.8 285.0 42951.6 (—)

Int., Rx1, Rx23 None 45 -20878.6 490.8 42739.0 (212.6)

Int., Rx1, Rx23 Int. 55 -20764.9 553.4 42636.6 (102.4)

Int., Rx1, Rx23 Int., Rx1, Rx23 78 -20710.0 600.7 42621.2 (15.4)
∗Change from previous model
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F Calculating variance in the mixed-effects location

scale gamma model

The mean-parameterized gamma distribution with mean µ and shape α has variance equal

to µ2/α. Therefore, the variance of PA duration is a function of the parameters in both (6)

and (7) of the manuscript.

From (6) in the manuscript, the final model for the duration mean applied to the MBC

study is:

log(µij | bi) = β30 + β31Rx1ij + β32Rx23ij + β33Rx1ij ∗ PAi + β34Rx23ij ∗ PAi

+ b30i + b31iRx1ij + b32iRx23ij, (F.1)

and the model for shape from Equation (7) in the manuscript is:

log(αij | bi) = β40 + β41Rx1ij + β42Rx23ij + β43Rx1ij ∗ PAi + β44Rx23ij ∗ PAi

+ b40i + b41iRx1ij + b42iRx23ij. (F.2)

Then the subject-specific variance is:

Var(yijk | bi)) = exp
{
2(β30 + β31Rx1ij + β32Rx23ij + β33Rx1ij ∗ PAi + β34Rx23ij ∗ PAi

+ b30i + b31iRx1ij + b32iRx23ij)

− (β40 + β41Rx1ij + β42Rx23ij + β43Rx1ij ∗ PAi + β44Rx23ij ∗ PAi

+ b40i + b41iRx1ij + b42iRx23ij)
}
. (F.3)

To obtain the marginal variance by time and treatment condition as well as the relative

increase in variance from baseline to Rx1 between the iPA and dSED groups we integrate
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Table 3: Marginal bout duration standard deviation by treatment condition and time.

Group/Time Mean Lower Upper
95% CI 95% CI

Baseline 9.87 7.96 12.54
Increase PA, Rx1 15.30 12.06 20.24
Decrease SED, Rx1 10.70 8.42 13.85
PA/SED Ratio, Rx1 1.44 1.10 1.84
Increase PA, Rx23 18.34 14.67 22.96
Decrease SED Rx23 9.74 7.85 12.15
PA/SED Ratio, Rx23 1.89 1.50 2.34

out the random effects in (F.3). The marginal duration variance can be written as

Var(Yi) = E{Var(Yi|bi)}+Var{E(Yi|bi)}

= E{Var(Yi|bi)}+ E
[
{E(Yi|bi)}2

]
− [E{E(Yi|bi)}]2 (F.4)

where the outer expectation in each of the terms in (F.4) is with respect to the random effects

distribution. To calculate these expectations, we use the same approach as in Section C

where, at each MCMC iteration we average over 10 million draws from the random effects

bi ∼ N(0,Σ(t)) where Σ(t) is the posterior draw of the random effects variance covariance

matrix at MCMC iteration (t). As in Section C, we used 1000 MCMC iterations to obtain

the posterior distribution.

Results are reported in Table 3 in terms of standard deviations. While duration variability

stays the same in the dSED condition, variability increases in the iPA condition such that

at Rx23, iPA variability is almost twice that of dSED variability.
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G Model diagnostics

In addition to the posterior predictive checks reported in the manuscript, we performed

additional tests of goodness of fit. Specifically, for both number of daily bouts and their

duration, we generated replicates of these values from the posterior predictive distribution

of our model and compared these values to the observed data using QQ plots. Figure 3 is a

QQ plot of posterior predictive replicates of the daily bout values versus the observed values.

Plotted are quantiles from 10 sets of replicates corresponding to 10 sets of parameter draws

from our model. The distribution of the replicated data is similar to that of the observed

data as indicated by the fact that values (with the exception of the maximum values) tend to

fall on the 45◦ line (indicated in red). It is also worth noting that due to the highly skewed

nature of the bout data, the 90th, 95th, and 99th percentiles of the observed data are 2, 3,

and 5 bouts/day, respectively.

Figure 4 is a QQ plot of posterior predictive replicates of the duration values versus the

observed values (minus 7.9 minutes). Plotted are quantiles from 10 sets of replicates corre-

sponding to 10 sets of parameter draws from our model. The distribution of the replicated

data is similar to that of the observed data as indicated by the fact that values (with the

exception of the maximum values) tend to fall on the 45◦ line (indicated in red). As with the

bout data, it is worth noting that due to the highly skewed nature of the duration data, the

90th, 95th, and 99th percentiles of the observed data are 21, 31, and 54 minutes, respectively.
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Figure 3: QQ plots of observed daily bout values versus quantiles from 10 sets of replicated
values drawn from the posterior predictive distribution of our model. The distribution of the
replicated data is similar to that of the observed data as indicated by the fact that values
tend to fall on the 45◦ line (indicated in red). Due to the highly skewed nature of the bout
data, the 90th, 95th, and 99th percentiles of the observed data are 2, 3, and 5 bouts/day,
respectively.
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Figure 4: QQ plots of observed duration values (minus 7.9 minutes) versus 10 sets of repli-
cated values drawn from the posterior predictive distribution of our model. The distribution
of the replicated data is similar to that of the observed data as indicated by the fact that
values tend to fall on the 45◦ line (indicated in red). Due to the highly skewed nature of the
duration data, the 90th, 95th, and 99th percentiles of the observed data are 21, 31, and 54
minutes, respectively.
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I Separate models for bouts and duration

Table 5: Posterior estimates from the bouts only mixed-effects Poisson model with random
effects for intercept, Rx1, and Rx23.

Variable Mean Lower Upper
95% CI 95% CI

Logistic regression on probability of exercise day
Intercept -1.000 -1.191 -0.813
Rx1 -0.061 -0.339 0.216
Rx23 -0.020 -0.278 0.247
PA*Rx1 1.071 0.687 1.445
PA*Rx23 1.014 0.669 1.388
Loglinear regression on mean number of bouts
Intercept -0.060 -0.205 0.079
Rx1 -0.024 -0.272 0.221
Rx23 -0.028 -0.236 0.177
PA*Rx1 0.091 -0.148 0.328
PA*Rx23 0.161 -0.031 0.364
Random effect variances
Sigma.B[1,1] 1.335 0.955 1.751
Sigma.B[2,2] 0.270 0.156 0.395
Sigma.B[3,3] 0.647 0.289 1.028
Sigma.B[4,4] 0.145 0.060 0.247
Sigma.B[5,5] 0.931 0.560 1.325
Sigma.B[6,6] 0.170 0.079 0.275
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Table 6: Posterior estimates from the duration only mixed-effects Gamma location-scale
model with random effects for intercept, Rx1, and Rx23.

Variable Mean Lower Upper
95% CI 95% CI

Loglinear regression on duration mean
Intercept 1.542 1.421 1.665
Rx1 0.136 -0.061 0.325
Rx23 -0.007 -0.183 0.163
PA*Rx1 0.394 0.157 0.628
PA*Rx23 0.625 0.417 0.843
Loglinear regression on duration shape
Intercept -0.389 -0.472 -0.303
Rx1 -0.027 -0.207 0.147
Rx23 -0.038 -0.172 0.091
PA*Rx1 0.145 -0.066 0.349
PA*Rx23 -0.004 -0.145 0.142
Random effect variances
Sigma.B[7,7] 0.409 0.275 0.556
Sigma.B[8,8] 0.098 0.052 0.149
Sigma.B[9,9] 0.205 0.090 0.335
Sigma.B[10,10] 0.151 0.069 0.243
Sigma.B[11,11] 0.269 0.136 0.414
Sigma.B[12,12] 0.106 0.052 0.166
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Figure 5: Parameter estimates and their 95% credible intervals for treatment effects from
the four sub-models. Plotted are coefficients for the time by treatment interaction terms.
The solid black lines are from a joint model of PA bouts and their duration. The red dotted
lines are from a bouts-only model (top row) or a duration-only model (bottom row).
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J Physical activity behavioral phenotypes
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Figure 6: Strip plots of bouts per day during the two weeks of baseline from four individuals
with varying non-zero bout days and bout frequencies. Participants were identified by looking
at their random intercept terms in the Poisson hurdle sub-model. Participant 190 in the
top row has only 5 non-zero bout days, but engages in multiple bouts on those days. Their
probability of exercising on a given day was 0.40 and their mean number of bouts on exercise
days was 1.24. Participant 127 has only a single non-zero bout day and engages in only one
bout on that day. Their probability of exercising on a given day was 0.05 and their mean
number of bouts on exercise days was 0.68. Participant 104 exercises about as frequently as
Participant 190 (exercise probability=0.36), but only engages in a single bout on those days
(mean number of bouts=0.83). Participant 100 is characterized by both a high frequency
of non-zero bout days (exercise probability=0.72) and—like participant 190—multiple bouts
per day (mean number of bouts=1.39).
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Figure 7: Strip plots of duration data at baseline from five individuals with different duration
means and variances. The values on the x-axis are subject-specific means and standard
deviations that were calculated using the random intercept terms in the duration mean
model and the duration shape model. The first two participants have low duration means
but the second participant has greater variability. The third and fourth participants have
similar duration variances but the fourth participant has a lower duration mean. The last
participant has a similar mean as the fourth participant but a lower variance. A model
that treated the shape parameter as constant would not be able to distinguish between
participants with similar mean duration values but different variances.
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