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Abstract 
Conceptualizing tobacco dependence as a chronic relapsing condition suggests the need to use analytic strategies that reflect that premise. 
However, clinical trials for smoking cessation typically define the primary endpoint as a measure of abstinence at a single timepoint distal to 
the intervention, typically 3–12 months. This reinforces the concept of tobacco outcomes as a dichotomous state—one is, or is not, abstinent. 
Fortunately, there are several approaches available to handle longitudinal data that reflect the relapsing and remitting nature of tobacco use 
during treatment studies. In this paper, sponsored by the Society for Research on Nicotine and Tobacco’s Treatment Research Network, we 
present an introductory overview of these techniques and their application in smoking cessation clinical trials. Topics discussed include models 
to examine abstinence outcomes (eg, trajectory models of abstinence, models for transitions in smoking behavior, models for time to event), 
models that examine reductions in tobacco use, and models to examine joint outcomes (eg, examining changes in the use of more than one 
tobacco product). Finally, we discuss three additional relevant topics (ie, heterogeneity of effects, handling missing data, and power and sample 
size) and provide summary information about the type of model that can be used based on the type of data collected and the focus of the study. 
We encourage investigators to familiarize themselves with these techniques and use them in the analysis of data from clinical trials of smoking 
cessation treatment.
Implications: Clinical trials of tobacco dependence treatment typically measure abstinence 3–12 months after participant enrollment. However, 
because smoking is a chronic relapsing condition, these measures of intervention success may not accurately reflect the common trajectories of 
tobacco abstinence and relapse. Several analytical techniques facilitate this type of outcome modeling. This paper is meant to be an introduction 
to these concepts and techniques to the global nicotine and tobacco research community including which techniques can be used for different 
research questions with visual summaries of which types of models can be used for different types of data and research questions.

Introduction
Researchers and health care professionals have argued that 
tobacco dependence, like dependence on other drugs, should 
be classified and treated as a chronic disease.1–5 The majority 
of adults who use commercial tobacco, such as those who 
smoke cigarettes, state they want to stop smoking and re-
port making quit attempts, but very few of these individuals 
are successful at long-term abstinence.6 Relapse rates after 
smoking cessation attempts are high, and even the most effec-

tive and efficacious pharmacological and behavioral smoking 
cessation treatments do not help the majority of people who 
use cigarettes and/or other tobacco products achieve long-
term cessation success.7,8

This paper reviews methodologic and analytic 
considerations for clinical trials of smoking cessation treat-
ment. Our premise is that, although tobacco dependence is 
increasingly framed as a chronic relapsing disease,5 the pri-
mary outcome in many smoking cessation clinical trials is 
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the measurement of smoking abstinence (abstinent vs. not 
abstinent) and the standard empirical practice is to evaluate 
abstinence through self-report and/or biochemical confirma-
tion at a single timepoint (usually 3- or 6-months following 
treatment initiation or end of treatment (EOT)). The implicit 
assumption is that abstinence measured at this single point 
adequately captures smoking status. However, there is no 
reason to assume that smoking status over timepoints aver-
ages out over the study period. For example, if transitions be-
tween abstinent and not abstinent status occur over the study 
period, then the timepoint at which abstinence is measured is 
important.

Further, a simple timepoint as a proxy of abstinence 
cannot capture changes over different timepoints and may 
ignore critical periods in the abstinence process.9,10 The im-
portance of timing in clinical trials is not limited to smoking 
abstinence, but also changes in other important variables 
implicated in quit success (eg, dependence, withdrawal).10–13 
Together these limitations suggest that the standard evalua-
tion of abstinence status in clinical trials through the use of a 
single timepoint may miss dynamic changes in abstinence and 
important mechanisms at work in achieving and maintaining 
abstinence.14 In this time of value-based care and quality 
outcomes one needs to show that a treatment is effective 
but also when (ie, at what timepoints and for how long) the 
treatment is likely to be most effective to have the best clin-
ical outcomes and to reduce personal and societal negative 
consequences (eg, side effects, unnecessary cost).3,15,16 That 
is, the ability to evaluate and predict the timing of change 
becomes important. There are numerous statistical methods 
to deal with longitudinal measurements in smoking cessation 
trials. Our purpose here is to introduce the most relevant ones 
appropriate to explore the richness of the time-dependent 
measurements. Through the systematic assessment of longi-
tudinal data, we can enhance our understanding of smoking 
behaviors, facilitating the development of more robust the-
oretical frameworks that incorporate temporal dynamics as 
essential components.

Topics discussed below include models to examine absti-
nence outcomes (eg, trajectory models of abstinence, models 
for transitions in smoking behavior, models for time to event), 
models that examine reductions in tobacco use, and models 

to examine joint outcomes (ie, more than one outcome var-
iable simultaneously, as is the case among those who con-
currently use more than one tobacco product). Finally, we 
will discuss three additional relevant topics; heterogeneity of 
effects, handling missing data, and power and sample size; 
and provide summary information about the type of models 
that can be used based on the type of data collected and the 
focus of the study.

This paper is meant to be a useful introduction of the topic 
to the global nicotine and tobacco research community with 
an emphasis on researchers conducting smoking cessation 
treatment clinical trials in a range of settings (eg, smoking ces-
sation clinics, medical settings, psychiatric settings). As such, 
we present information, including visual summaries, of what 
types of models can be used for different types of data and 
research questions. This paper does not present an exhaus-
tive discussion of these techniques. Interested readers who 
would like to investigate specific topics in more depth are 
encouraged to do so by using the ideas presented here when 
consulting with research team members with more specialized 
knowledge of statistical techniques. An Appendix with a list 
of references related to each modeling approach is also pro-
vided for interested readers.

In this paper, “tobacco” refers to commercial, not ceremo-
nial, tobacco. In addition, while we refer to clinical trials for 
smoking cessation treatment, these treatment studies may 
have a range of inclusion criteria (eg, tobacco dependence, 
current smoking, daily cigarette use) or labels for the type 
of study (eg, smoking cessation treatment, tobacco depend-
ence treatment, tobacco use treatment) and we use “smoking 
cessation treatment” as an umbrella term for these types of 
studies for consistency.

Examining Abstinence Outcomes
Trajectory Models for Abstinence
In the trajectory models of abstinence, we shift the focus 
from measuring abstinence at a specific timepoint or points 
to modeling change in abstinence over time in the form of 
curves (Figure 1). In doing so, we approach time-specific 
observations of smoking status as snapshots of an under-
lying curve (see green and red curves in Figure 1) that help to 

Figure 1. Hypothetical trajectories in the probability of abstinence in group level and individual level change.
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 uncover trends in the abstinence/non-abstinence continuum 
that may reveal important information on the timing of 
smoking cessation treatment (eg, early or delayed treatment 
effects), as well as the impact of changes of other smoking-
related attributes (such as affect and withdrawal symptoms). 
In general, the trajectory model of abstinence captures a 
richer and more nuanced characterization of the abstinence 
process than assessing abstinence at specific points in time.

Questions of Clinical Importance
Questions that a clinician can ask when using trajectory 
models include: (a) When, on average, do we observe the most 
rapid change in the probability of abstinence or relapse? (b) 
How big is the change in the probability of abstinence or re-
lapse? (c) How do abstinence trajectories differ between treat-
ment groups? and (d) How do abstinence trajectories differ 
for individuals within treatment groups?

Analytic Technique
A general analytic approach for modeling group, as well as 
individual-specific, abstinence trajectories is growth curve 
models (GCM)17–21 (other names for these models are mul-
tilevel models, hierarchical linear models, or mixed effects 
models). GCM has several desirable features that characterize 
cessation trials. They can: (a) handle situations where absti-
nence is measured at different timepoints, (b) incorporate both 
time-varying and time-invariant treatments eg, adjust to treat-
ment dose, augmentation, or switching pharmacotherapies 
during treatment) as well as both time-varying (eg, changes 
in depression during treatment) and static (eg, level of to-
bacco dependence at baseline) covariates, (c) produce unbi-
ased estimates as long as missingness is missing-at-random 
(MAR; see the section below on missing data) (note, however, 
that this is only valid in full maximum likelihood estimation 
procedures), (d) provide an error structure that can be mod-
eled instead of making arbitrary assumptions (eg, assuming 
that within-group variation is homogeneous across treatment 
groups and across time), and (e) produce individual-specific 
abstinence trajectories as a function of cessation treatment.

The model parameters of GCM allow for the estimation 
of a variety of quantities of interest that can be compared 
across treatment groups, including abstinence rates at any 
point in time or averaged over time (eg, at treatment initi-
ation, EOT, or any follow-up point, or across specific time-
intervals), the shape of the abstinence curve (linear, quadratic, 

step, nonlinear), and rates of change at time intervals of in-
terest captured by piecewise growth models (eg, from treat-
ment initiation to treatment augmentation). The initial level 
and the rate of change (also known as intercept and slope) are 
the most used metrics that characterize trajectories. In binary 
endpoints, such as abstinence status, the initial level and rate 
of change are most intuitive when interpreted as probabilities 
of abstinence. Another way to summarize the treatment’s 
overall impact is by capturing the cumulative effects across 
the treatment timeline by integrating the entire trajectory 
in the form of an area under the curve. This approach is il-
lustrated in Figure S1. This method offers a comprehensive 
summary by considering the total impact over time, with the 
flexibility to prioritize key moments in the treatment timeline 
(by applying weights to specific timepoints).

Models for Transitions
Models of transition allow researchers to model multiple se-
quential transitions between abstinence and smoking. Unlike 
trajectory models which often use a continuous dependent 
variable eg, smoking rate), transition models often use a di-
chotomous on/off state-based variable.

Questions of Clinical Importance
In modeling abstinence/non-abstinence transitions, the salient 
research questions change from “Who is most likely to be ab-
stinent at a specific timepoint?” to questions such as: (1) Who 
is most likely to remain abstinent and who is most likely to 
relapse? (2) How do smoking cessation interventions affect 
the probabilities of switching between smoking states? and 
(3) How do past abstinence states affect future abstinence 
states and how does this relationship vary as a function of 
treatment?

Illustrative Example
Figure 2 depicts hypothetical scenarios of abstinence dy-
namics. The y-axis is divided by abstinence status which 
separates the abstinent from the non-abstinent. The horizontal 
axis represents the study time with hypothetical trajectories of 
several study participants. Person B, for instance, was absti-
nent for most of the period observed but experienced a short 
transitory non-abstinence period, so intensified interventions 
during this time may be more effective in reversing the trend 
during the specific time interval. In contrast, Person C ex-
perienced a transition from abstinence to non-abstinence 

Figure 2. Trajectories and transitions of six hypothetical study participants.
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and remained in a state of non-abstinence for the rest of the 
study. This graphical representation illustrates the proba-
bility of being in a specific state (abstinent or not abstinent) 
over time, despite the outcome itself being binary. This ap-
proach captures the dynamic process of transition, reflecting 
the evolving likelihood of an individual’s smoking status at 
different points. Here, intervening with higher intensity near 
the tipping timepoints may be needed to delay or completely 
prevent a return into the not abstinent state.

Analytic Technique
The static analysis assumes that the abstinent/not abstinent 
categories are fixed groups with members of the groups 
displaying persistent characteristics that do not change over 
time (ie, based on a measurement at one timepoint, a person is 
classified as either “abstinent” or “not abstinent”). However, 
people within each of the two groups may display a range 
of potential smoking status patterns that can be captured 
over time. The assumption of persistence of smoking states 
is not merely inadequate for causal analysis, it can also have 
distorting effects when evaluating the efficacy of smoking 
cessation interventions.22 Single point analysis misses impor-
tant information about when people initiate abstinence, for 
how long they are abstinent, and when they lapse or relapse 
back to smoking.23 Further, the trajectories of participants in 
clinical trials can exhibit abstinent and non-abstinent periods 
that may reveal processes central to smoking cessation and 
reduction. In terms of actionable knowledge, information on 
trajectories of abstinence and transition patterns between ab-
stinence states bring much added value to clinicians compared 
to information from studies using single fixed timepoint 
analyses, and accommodate modeling of harm reduction, in-
sofar as the endpoint modeled does not remain dichotomous 
(ie, either abstinent or not abstinent).

One approach for the analysis of abstinence dynamics 
is based on Markov models22 that estimate the probability 
of transition (ie, the probability of someone who smokes 
transitioning to abstinence, and the probability of someone 
who abstains transitioning to relapse) as a function of an 
intervention as well as other characteristics eg, tobacco de-
pendence, effect). Technically, a Markov chain is a discrete 
dynamical system of transition probabilities (conditional on 
previous states and other participant characteristics) from 
one smoking status to the other.24 Markov chains can be of 
first-order (ie, the future smoking state depends only on the 
present smoking state and is independent of past states) or 
higher-order (ie, the future smoking state depends on the 
present smoking state as well as on past states).

Models of transition between smoking states shift the focus 
of interventions from those who currently smoke toward 
identifying routes to quitting and preventing relapse. These 
models explicitly address the underlying processes which lead 
people to abstain and to relapse, critical processes that can 
inform treatment to improve individual smoking outcomes.

Model for Time to Event
Questions of Clinical Importance
In research settings where the primary endpoint is the point 
when a change in abstinence status occurs, the time until that 
change (often called survival time, failure time, or event time) 
is the outcome of interest. Important questions in this setting 
include: (1) What is the probability that a study participant 

will stay abstinent for 6 months (or any other length of time)? 
(2) Are there differences in time to relapse between the treat-
ment and the control groups? and (3) Does the risk of relapse 
change as the number of previous relapse events increases?

Illustrative Example
Figure S2 presents a hypothetical example of the abstinence 
experience of two groups showing the percentage remaining 
abstinent at any point in time throughout the study. For 
any point on the curves, we can estimate the percentage of 
those who have not relapsed up to this point for any group. 
Statistical comparisons (that can be made for the whole curve 
or any point on the curve) can evaluate whether these dif-
ferent percentages are statistically significant.

Analytic Technique
Survival analysis is one strategy to consider when the interest 
is in examining the time until an event occurs (eg, abstinence 
or relapse).25,26 For example, survival analysis can be used 
when the research question is to identify the treatment group 
that is more likely to relapse soonest, or the treatment group 
that remains abstinent the longest before relapsing. There 
are three main analytic elements in survival analysis19: (1) 
a well-defined dichotomous event (eg, from “not abstinent” 
to “abstinent”), (2) a clearly defined beginning of time, and 
(3) a meaningful metric for measuring time. Like models of 
transitions discussed above, an event in survival analysis is 
understood as a transition from one state to another (eg, from 
not abstinent to abstinent) and the timing of this transition is 
the key point of interest. A clearly defined beginning of time 
refers to a timepoint where all study participants can experi-
ence the event (ie, abstinence) but have not yet done so, such 
as a prespecified quit date or start date of the intervention. 
Finally, measurement of time should be done in the smallest 
possible unit that is relevant to the study. For example, weekly 
measurements may be the most meaningful time metric for 
pharmacotherapy smoking cessation studies as it is common 
to report outcomes such as 7-day-point-prevalence. One 
can also perform survival analysis on typical longitudinal 
data (such as from monthly or yearly questionnaires).27–29 In 
general, survival analysis should be used when the research 
question asks whether a predefined smoking event occurs and 
when it occurs.

Consider a hypothetical example of a clinical study 
comparing the abstinence rates between two treatment 
groups who have been followed for 12 months. After 12 
months a certain proportion of each group will be abstinent, 
while the rest are not abstinent (ie, still smoking). What is 
the most efficient way to evaluate the effects of the treatment 
on abstinence? Usually, what is reported is the percentage of 
each group who is abstinent, ignoring important additional 
information such as whether the treatment group reached ab-
stinence sooner than the control group. Single timepoint anal-
ysis also does not consider the arbitrariness of the timing of 
the endpoint. There are almost always study participants who 
are not abstinent by the endpoint, but they may eventually 
be abstinent if followed long enough. This lack of complete 
information on the event of interest due to the arbitrary time 
limitations of a study is called censoring.25 Censoring is the 
most important characteristic that distinguishes the analysis 
of time-to-event data from other methods for time-dependent 
data. For censored study participants, we do not have in-
formation on when the event will occur, if ever. The  advantage 
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of survival analysis in the presence of censored data is that 
it produces unbiased estimates at each unique event time by 
suitably adjusting the number of participants at risk (ie, the 
participants who have not experienced the event (eg, absti-
nence) and are not censored).26 The most commonly used 
method to model time to event data is the Cox model,30 also 
known as the relative risk or relative hazard model. The effect 
of cessation treatment on the time to event denotes the differ-
ence in hazard between treatment groups of experiencing the 
event of interest (eg, abstinence) at any fixed timepoint during 
the observation period. The basic Cox model can be extended 
to facilitate time-dependent covariates, repeated events, and 
competing risks.19,31

Examining Reduction Outcomes
Models for Reduction in Use
Alongside the collection of abstinence data in clinical trials, 
longitudinal information on reduction in the use of tobacco 
products is frequently obtained as an additional endpoint. In 
these endpoints, changes in cigarettes per day (CPD) are often 
the outcome of interest and other outcomes may include the 
number of relapses to smoking or the number of days absti-
nent from cigarettes.

Questions of Clinical Importance
One clinical question of interest for these data would be: (1) 
Is the smoking or abstinence outcome of interest (eg, CPD, 
number of relapses) observed more frequently in one of the 
treatment groups, and if observed, at what level of intensity? 
and (2) Does there exist a subpopulation of people who smoke 
that will never experience a relapse during treatment (eg, will 
always have zero CPD throughout the study)? An investigator 
can also evaluate the effects of treatment in more detail by 
examining both processes simultaneously. Hence, in longitu-
dinal measurements of count-related outcomes (eg, number 
of CPD, number of relapses, number of days abstinent) one 
can assume two populations, one characterized by never 
displaying the behavior under study and one characterized by 
always or sometimes displaying the behavior.

Illustrative Example
As an illustration, Figure S3 shows a hypothetical total 
number of CPD counts for a treatment and a control group. 
In this hypothetical scenario, the time by CPD displayed is 
characterized by heterogeneity in treatment group trajectories. 
The red line representing the control group is an example of 
slightly rising CPD counts early in the study with a slight re-
duction later in the study. In contrast, the intervention group 
(green line) presents a dramatic initial decrease in CPD counts 
followed by an increase thereafter.

Analytic Technique
Here, to model these changes in reduction, similar to the earlier 
section of trajectories of abstinence, growth curve modeling 
can be used to estimate differences in initial level and rate of 
change between treatment groups32 using the Poisson or neg-
ative binomial model. Smoking reduction outcomes (eg, CPD, 
number of relapses, number of days abstinent) may frequently 
have a large number of data points at zero indicating that 
the behavior represented by the outcome was not realized 

(eg, zero number of relapses). This is seen in Figure S3, which 
shows differences in counts of CPD across time for the con-
trol and the intervention groups as well as differences in the 
number of zeros (ie, the number who did not smoke at all). 
Two different statistical models can be used to model the 
zero vs. any CPD, and the total number of CPD: (1) a logistic 
model for the zero versus any CPD and (2) a count regression 
model for non-zero CPD. Models for these types of outcomes 
are generally known as Two-Part models33,34 and are usually 
estimated using logistic regression for the binary part (zero vs. 
any CPD) and Poisson or negative binomial regression for the 
continuous part (non-zero CPD).

In addition, by simultaneously examining both processes, 
the likelihood of engaging in a behavior and, the frequency 
of the behavior for those who do engage, these models can 
provide a more nuanced and detailed evaluation of the inter-
vention effect.35,36

Examining Multiple Outcomes Jointly
Simultaneous modeling of longitudinal and time-to-event 
data can become a valuable tool in the analysis of data in 
smoking cessation studies. This is especially important when 
certain processes, such as craving or withdrawal, are time-
dependent and co-evolve with abstinence or any other event 
of interest. Moreover, there may be interest in the association 
of longitudinal measurements of two or more different to-
bacco products (eg, cigarettes and e-cigarettes). Joint models 
can accommodate both multiple categorical or continuous 
longitudinal measurements and the examine interdependence 
of poly-tobacco use.

Questions of Clinical Importance
Questions that a clinician can ask when using joint modeling 
include: (1) What is the interdependence of the trajectory of 
craving or withdrawal with abstinence status for different 
treatment groups? (2) What is the time-dependent associa-
tion of use among different tobacco products? and (3) Are 
these types of time-dependent associations different between 
or among treatment groups?

Illustrative Example
Figure S4 provides an illustration of a joint model for absti-
nence and craving. The red and green line in the top panel 
shows how the probability of abstinence changes in time for 
the control and treatment groups respectively. In the bottom 
panel, the lines represent the underlying longitudinal trajec-
tory of craving for the control and treatment groups. This 
joint model in its simple form assumes that the probability of 
abstinence at any point in time (denoted by the dotted black 
line) is directly associated with craving at the same timepoint, 
but only for the control group. For the treatment group, the 
evolution in abstinence is not correlated with the evolution 
in craving.

Figure S5 presents an illustration of two longitudinal 
processes representing the dual use of two products (cigarette 
and e-cigarette use) and hypothetical differences in the rela-
tionship between the two products. This example illustrates 
that at any point in time, the association of use between two 
(or more) tobacco products can be derived and the strength of 
this association can be compared between different treatment 
groups. In this hypothetical example, the data from the con-
trol group suggests switching from cigarettes to e-cigarettes, 
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followed by a return to greater cigarette use and lesser use of 
e-cigarettes. In this case, and assuming the use of nicotine-
containing e-cigarettes, the total daily consumption of nico-
tine may remain constant. In the treatment group, in contrast, 
there is an overall decrease in the use of both products.

Analytic Technique
Smoking cessation trials often collect data on daily cigarette 
consumption and other smoking behaviors in a longitudinal 
fashion. Behavioral data such as craving, dependence, affect, 
depression, or withdrawal, can be important predictors of 
abstinence or relapse.37,38 This dependency of the longitu-
dinal outcomes and abstinence status is not considered when 
analyzing each outcome separately. Models that consider the 
dependency of the longitudinal measurements and abstinence 
status simultaneously, and assess the degree of dependence 
between them, can provide a more accurate evaluation of 
treatment efficacy. Knowledge of treatment response of a tra-
jectory of withdrawal or dependence can be an indication of a 
clinical benefit and provide prognostic information on future 
abstinence status. Moreover, to the degree that the treatment 
effect is mediated via a longitudinal surrogate, joint modeling 
can clarify the mechanism of treatment response of clinical 
outcomes of interest. Most importantly, when examining 
outcomes separately, the presence of random error in the 
outcome of interest biases the estimates of the effect of the 
treatment towards the null and produces less precise treat-
ment effects.39 That translates into potentially characterizing 
interventions as non-efficacious, when they truly are.

A joint model can be constructed by bringing together two 
or more longitudinal outcomes and performing an analysis 
accounting for their dependence and estimating parameters 
that evaluate their relationship. That includes: (1) the estima-
tion of the true trajectory of a behavior such as craving and 
(2) the estimation of a survival model for abstinence. The tra-
jectory and survival models are linked through a shared pa-
rameter, and treatment effects can be evaluated separately for 
each outcome accounting for their dependence. Extensions 
of this basic joint model include estimating the effect of the 
slope of a trajectory of craving before a specific timepoint 
on the probability of abstinence at that timepoint, cumula-
tive effects of craving on abstinence at future timepoints 
(usually represented as area under the trajectory before the 
timepoint of interest), or lagged effects. In addition, the sur-
vival analysis part of the joint model can examine abstinence 
as a single event, recurrent event, or as a competing event to 
other behaviors such as e-cigarette use. In clinical studies, the 
direct effects of cessation treatment on craving and abstinence 
can be estimated, controlling for the association between the 
two, as well as the indirect effect of treatment on abstinence 
via craving (which can be defined as the overall treatment 
effect). Moreover, in the process of discovery of mechanisms 
on how smoking cessation treatment cause changes in clinical 
outcomes, an investigator can examine the effects of treat-
ment on the association of two time-dependent processes 
(eg, the relationship between craving and abstinence), as well 
as the change of this association as a function of treatment. 
Although we have discussed in more detail joint models of a 
longitudinal outcome and an event of interest, the extension 
to handling other longitudinal outcomes (eg, multiple tobacco 
products) is straightforward with the same implementation 
characteristics as the ones discussed.40

Additional Considerations
Heterogeneity of Effects
In randomized controlled trials for smoking cessation, we can 
estimate the average causal effect of the treatment by exper-
imentally controlling for confounding through randomiza-
tion. When clinicians translate that effect to individuals, they 
assume that the treatment effect of the specific study is con-
stant across individuals. This assumption has the advantage 
that the effect identified in the study is relevant to each study 
participant. To verify this assumption, we suggest researchers 
test for heterogeneity of treatment effects.

Questions of Clinical Importance
Relevant clinical questions relative to heterogeneity of effects 
include: (1) Is the effect identified in the trial constant across 
individuals? (2) If not, how much do individual effects deviate 
from the average effect identified? and (3) If heterogeneity 
of effect is identified, what are predictors of differential re-
sponse?

Illustrative Example
Examination of heterogeneity of effects provides evidence for 
whether smoking cessation treatments should be refined at 
the group or individual level by searching for predictors of 
differential response to smoking cessation treatment.

We illustrate three different types of treatment effects in 
clinical trials in Figure S6. In Scenario A, the treatment effect 
is constant implying that smoking cessation treatment affects 
all participants similarly. Scenarios B and C, however, indicate 
heterogeneity by treatment group (Scenario B) and by indi-
vidual (Scenario C) and would need personalized approaches 
to treatment. Scenario B should be followed with analyses to 
identify baseline predictors of group level variation in treat-
ment effects. Scenario C is more complicated, however, and 
it does not predict well the effects of treatment on future 
patients so there is the need to further personalize the clinical 
interventions. Finally, examination of unobserved heteroge-
neity can demonstrate treatment efficacy in the presence of 
placebo effects (a response observed in the placebo group that 
is not related to treatment) that can confound the true effect 
of the treatment.41

Analytic Technique
Testing this assumption by examination of the variability of 
the effects of smoking cessation treatments is important be-
cause it conveys clinically relevant information about whether 
to adapt treatments based on patients’ profiles. Variability of 
treatment effects can be attributed to either patient variability 
(addressed by subgroup analyses, eg, by race or gender) or 
differential treatment effects that require more personalized 
smoking cessation treatments. In longitudinal analysis, varia-
bility of treatment effects can be explored with mixture mod-
eling approaches that can identify observed or unobserved 
heterogeneity of temporal development in smoking outcomes: 
growth mixture modeling,42 latent class growth analysis,43 
latent transition analysis also known as hidden Markov 
models,44,45 and survival mixture analysis.45,46 These methods 
accommodate analyses with outcomes that are binary, con-
tinuous, counts, ordered categorical, and censored. Moreover, 
these methods can be applied to test for the presence of both 
observed heterogeneity (eg, due to demographic groups) in 
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treatment effects, but also for unobserved heterogeneity of 
treatment effects.

Missing Data and Dropout
Missing data in longitudinal studies on tobacco use are 
often caused by dropout, where participants’ responses are 
lost to follow-up. Analysis of such data is complicated by 
the fact that the responder’s probability of dropout may re-
late to smoking status or other longitudinal outcomes that 
would have been observed if the participant had remained in 
the study.47 Below we present the taxonomy of missing data 
introduced by Rubin and Little48 and discuss three ways to 
deal with missing data.

When dropout can be predicted from the observed data (ie, 
dropout at time t can be predicted by the measurement of the 
outcome at time t − 1, especially in data with measurements 
of close proximity) and/or if the dropout process is assumed 
to be independent of the outcome process given observed 
information, a MAR assumption (MAR), then missingness 
can be ignored49 when using full maximum likelihood esti-
mation.50,51 When data are MAR, maximum likelihood or 
multiple imputation can provide unbiased estimates, and the 
effects can be estimated as if no one has dropped out.52 In 
rare cases (such as lost questionnaires or participants skip-
ping survey pages accidentally), missing data can be assumed 
to be independent of both observed and unobserved informa-
tion, missing completely at random, and point estimates are 
not likely to be affected by missingness. However, if dropout 
is caused by specific values in the outcome (eg, those who are 
non-abstinent or those with higher withdrawal symptoms are 
more likely to drop out) then the missingness is not-missing 
at random and should be accounted for. The researcher must 
explicitly specify a plausible model for the mechanism of 
missingness and integrate it into the analysis.

The most common modeling approaches for handling 
dropout can be generally classified either as pattern-mixture 
modeling (PMM),53 selection modeling (SM),54 or shared-
parameter model (SPM).39,55 In PMM, the sample is stratified 
by dropout time, and the outcome is modeled separately for 
each stratum, and potentially averaged across patterns.56,57 
This method is more intuitive to researchers and clinicians 
because it separates clinical outcomes between those who 
drop out from the study early and those who remain in the 
study.58 In contrast, SM describes how the probability of 
dropout in a smoking cessation clinical trial may depend on 
the smoking status (or any other outcome) of the individuals. 
Hence, in SM missingness is predicted by the observed data 
(current and previous responses), usually by a logistic model, 
and these predictions are integrated into the analyses. Finally, 
in SPM, the outcome and missingness are assumed to be 
described by latent variables (such as random effects) that 
when estimated explain the dependence between the outcome 
and the dropout process.

Pattern-mixture models may be more suitable for situations 
where it is not meaningful to consider non-response as missing 
data (eg, missing data due to death), and it may be prefer-
able to estimate the trajectories of subgroups defined by their 
dropout patterns. Selection models may be preferred when we 
have a good understanding the mechanisms of dropout due to 
their intuitive appeal (ie, using current earlier measurements 
of the outcome to predict missingness). Although SPM has 
not received a lot of attention, it is an efficient method for 

handling dropout, especially when other types of missing data 
(such as intermittent) are present in the data.59

Power and Sample Size
The utilization of longitudinal models in smoking cessation 
research can provide a substantial increase in statistical power, 
primarily due to their capacity to capture within-subject vari-
ability across multiple timepoints.60–62 Unlike single timepoint 
analyses, which offer a static glimpse into the cessation 
process, longitudinal models can discern and quantify subtle 
changes and trends that might be obscured in a time-fixed 
framework. The characteristic of longitudinal models is fur-
ther magnified by their ability to account for the correlated 
structure of repeated observations, which reduces random 
error. This increased efficiency translates to an improved sen-
sitivity in detecting treatment effects, even when these effects 
are modest or evolve over time. Consequently, studies can 
achieve statistically significant results with fewer participants 
and more timepoints,63,64 thus mitigating costs without com-
promising the rigor or reliability of the research.

Determining the optimal number of timepoints for lon-
gitudinal analysis can vary based on the specific goals and 
contexts of the study. In GCM, for instance, even with only 
three timepoints, we can estimate an initial trajectory of 
change. However, to capture more complex growth patterns 
such as non-linear trends, or to understand the variability in 
individual growth trajectories, additional timepoints are usu-
ally necessary. Similarly, in transition models, having more 
than two timepoints allows for a more nuanced understanding 
of the transition dynamics. With only two timepoints, these 
models can identify a change in state, but they are limited 
in their ability to characterize the process of transition or 
the factors influencing it. Survival analysis can be effective 
with a minimal number of timepoints, as it often focuses on 
the occurrence and timing of a single event. However, more 
timepoints allow for a more detailed exploration of the 
hazard function over time, particularly in cases where the risk 
of the event may change at different stages of the follow-up 
period. While these time-dynamic models can be applied with 
a limited number of assessments, the depth of the analysis is 
proportional to the number of timepoints. For instance, with 
only two follow-ups, the models might not fully exploit their 
capacity to describe intricate temporal patterns or detailed 
transitions over time. We do not think that there is a strict 
minimum number of timepoints for these models, but the 
complexity and detail of the insights obtained can be signifi-
cantly enhanced with more follow-up assessments. The choice 
of the number of timepoints should be considered in the con-
text of the specific objectives of the study. In smoking cessa-
tion studies, where individual trajectories can vary widely, the 
adoption of longitudinal models represents a methodologi-
cally sound, but also a cost-effective strategy to enhance the 
power of clinical trials.65

Discussion
Throughout this paper, we have presented an overview of 
the most relevant longitudinal models that can be used in 
the evaluation of smoking cessation treatments including 
how these methods reflect the type of questions researchers 
ask in the context of treatment trials. Figure 3 provides a 
schema summarizing the different types of data, study focus, 
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and models discussed while Figure 4 provides a schema of 
considerations to aid researchers in the potential options, 
choices, and types of questions that can arise in the process 
of analyzing longitudinal data from clinical trials of smoking 
cessation. Several widely used software packages have default 
routines that can estimate the models discussed including R, 
Stata, SAS, SPSS, and Mplus.

In addition to what is discussed here, there are addi-
tional approaches to analyzing longitudinal data that allow 
investigators to expand on the type of temporal questions they 
can ask. These include but are not limited to generalized forms 
of modeling, including generalized estimating equations,66 dy-
namic structural equation model,67 and time-varying effects 
models.68,69 Many of these techniques can handle missing data, 
without the need for additional imputation when data are 
MAR. If imputation is desired, modern methods of multiple im-
putation allow investigators to avoid the traditional approach 
of imputing smoking at specified endpoints.70 In addition, new 
techniques like time-varying effect modeling68 and time-series,71 
allow investigators to analyze the kinds of intensive longitu-
dinal data obtained from ecological momentary assessment (or 
EMA) assessments. We encourage investigators to familiarize 
themselves with these techniques and use them in the anal-
ysis of clinical trials of treatment. They are  methodologically 

 rigorous, clinically sensible, and respect the framing of tobacco 
dependence as a chronic relapsing disease. Note, however, that 
while our manuscript emphasizes the benefits of analyzing the 
entire trajectory of treatment effects, we acknowledge the con-
tinued importance of individual timepoint assessments. These 
single timepoint assessments offer vital information about the 
immediate effectiveness of treatments, potential short-term 
benefits, or time-specific effects.

Conclusions
Modern computer-intensive statistical methods permit 
investigators to model longitudinal trajectories of tobacco use 
and quitting as the complex, relapsing/remitting behaviors 
they are. Longitudinal models therefore provide more real-
istic representations of the process of tobacco cessation, albeit 
at the cost of increased statistical complexity. The final choice 
of a model will depend on the research questions, the data at 
hand, the data structure, and the nature of the outcomes.

Supplementary material
Supplementary material is available at Nicotine and Tobacco 
Research online.

Figure 3. Schema of the different types of data, study focus, and models discussed.

Figure 4. Schema of considerations in longitudinal models.
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