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The growing use of algorithms in social and 
economic life has raised a concern: that they 
may inadvertently discriminate against certain 
groups. For example, one recent study found 
that natural language processing algorithms can 
embody basic gender biases, such as associating 
the word nurse more closely with the word she 
than with the word he (Caliskan, Bryson, and 
Narayanan 2017). Because the data used to train 
these algorithms are themselves tinged with ste-
reotypes and past discrimination, it is natural to 
worry that biases are being “baked in.”

We consider this problem in the context of 
a specific but important case, one that is par-
ticularly amenable to economic analysis: using 
algorithmic predictions to guide decisions 
(Kleinberg et al. 2015). For example, predic-
tions about a defendant’s safety risk or flight 
risk are increasingly being proposed as a means 
to guide judge decisions about whether to grant 
bail. Discriminatory predictions in these cases 
could have large consequences. One can easily 
imagine how this could happen since recidivism 
predictions will be polluted by the fact that past 
arrests themselves may be racially biased. In 
fact, a recent ProPublica investigation argued 
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that the risk tool used in one Florida county 
was in fact discriminatory (Angwin et al. 2016). 
This widely-read article helped further elevate 
concerns about fairness within the policy and 
research communities alike, with subsequent 
work showing that the trade-offs are more subtle 
than was initially apparent.1

These concerns have led to a large litera-
ture that tries to “blind” the algorithm to race 
to avoid exacerbating existing unfairnesses in 
society. Numerous studies (many of them in 
computer science) have pointed out that this 
requires more than just excluding race from the 
predictor, since protected features such as race 
could be reconstructed from other features. To 
solve this “reconstruction problem,” procedures 
have been proposed such as pre-processing the 
data to orthogonalize the explanatory variables 
(“inputs”) or outcomes to race, or modifying the 
loss function the algorithm seeks to optimize to 
penalize race disparities in outcomes.

We argue that this perspective about how to 
promote algorithmic fairness, while intuitive, is 
misleading and in fact may do more harm than 
good. We develop a simple conceptual frame-
work that models how a social planner who 
cares about equity should form predictions from 
data that may have potential racial biases. Our 
primary result is exceedingly simple, yet often 
overlooked: a preference for fairness should 
not change the choice of estimator. Equity 

1 Angwin et al. (2016) argued the risk tool they examined 
was biased because African Americans are more likely to be 
mis-classified as higher risk, while whites were more likely 
to be mis-classified as lower risk. Kleinberg, Mullainathan, 
and Raghavan (2017) and Chouldechova (2017) note that 
this finding is an unavoidable consequence for calibrated risk 
tools in the presence of differences in offending rates across 
groups, unless we have tools that are perfectly predictive of 
risk. An alternative measure of fairness used in Kleinberg 
et al. (2018) focuses on a quantity derived from the actual 
decision outcome: detention rates to African Americans. 
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preferences can change how the estimated pre-
diction function is used (such as setting a dif-
ferent threshold for different groups) but the 
estimated prediction function itself should not 
change. Absent legal constraints, one should 
include variables such as gender and race for 
fairness reasons. As we show in an empirical 
example below, the inclusion of such variables 
can increase both equity and efficiency.

Our argument collects together and builds on 
existing insights to contribute to how we should 
think about algorithmic fairness.2 This argument 
is not specific to machine learning—indeed the 
argument is cleanest, and presented here, within 
the context of unbiased estimators. Additional 
issues arise beyond those we consider here for 
high-dimensional estimation procedures that 
trade off bias and variance to maximize out-of-
sample (OOS) prediction accuracy, which we 
discuss separately in other work.

We empirically illustrate this point for the case 
of using predictions of college success to make 
admissions decisions. Using nationally repre-
sentative data on college students, we underline 
how the inclusion of a protected variable—race 
in our application—not only improves predicted 
GPAs of admitted students (efficiency), but 
also can improve outcomes such as the fraction 
of admitted students who are black (equity).
The reason for this result is extremely simple. 
Equity preferences involve increasing the frac-
tion of black applicants admitted. Within that 
set, society is still served best by ranking as well 
as possible using the best possible predictions. 
Forming the best predictions possible aids both 
equity and efficiency.

I.  Conceptual Framework

As an illustrative case of our framework, sup-
pose we are interested in a social planner that 
is trying to make college admissions decisions 
based on anticipated college success. To do so, 

2 See, for example, the excellent discussions of existing 
algorithmic fairness research in Barocas and Selbst (2016) 
and Dwork et al. (2012, 2017), whose arguments are consis-
tent with the view we take in the present work. The impor-
tance of within-group rankings for affirmative action has 
been noted by Fryer and Loury (2013). Similarly, Corbett-
Davies et al. (2017) show that several notions of algorithmic 
fairness in the context of criminal justice rely on the use of 
race-specific decision rules. 

she applies some procedure to historical data 
to form a predictor of college success and uses 
that predictor to decide on future admissions. 
Individuals are described by ​(Y,  X, R)​ , where ​Y​ 
is eventual (measured) college success, ​X​ is a set 
of academic variables that are observed at time 
of admissions, and ​R ∈ {0, 1}​ is the applicant’s 
race (with ​R = 1​ if the individual is from the 
minority group of interest).

We consider an efficient planner and an equi-
table planner. The efficient planner maximizes 
an objective function ​ϕ(S)​ that depends only on 
the predicted performance of the set ​S​ of admit-
ted students.

We assume that the efficient planner applies 
an estimator to a given dataset on individuals 
consisting of ​(​Y​i​​, ​X​i​​, ​R​i​​)​ to produce a predictor 
​​ f ˆ ​ (X, R)​. We say this objective function ϕ is 
compatible with the prediction function ​​ f ˆ ​​ if the 
following natural monotonicity condition holds: 
If ​S​ and ​S​′ are two sets of students of the same 
size, sorted in descending order of predicted 
performance ​​ f ˆ ​ (X, R)​ , and the predicted perfor-
mance ​​ f ˆ ​ (X, R)​ of the ​i th​ student in ​S​ is at least 
as large as the predicted performance of the ​i th​ 
student in ​​S ′ ​​ for all ​i​ , then ​ϕ(S ) ≥ ϕ(S′)​.3 Given 
an objective function and a compatible predic-
tor, the efficient planner has a simple rule. For a 
desired number of admitted students ​K​ , the effi-
cient planner simply admits the set ​S​ consisting 
of the ​K​ students with the highest ​​ f ˆ ​ (X, R)​ values.

Now consider an equitable planner, who has 
preferences over both grades and the racial 
composition of the admitted class. They seek 
to maximize ​ϕ(S )  + γ (S)​ , where ​ϕ​ is compat-
ible with ​​ f ˆ ​​ as before, and ​γ (S)​ is monotonically 
increasing in the number of students in ​S​ who 
have ​R = 1​ (and thus belong to the minority 
group).4

How should the equitable planner solve her 
optimization problem? The following theorem 

3 A familiar case of compatibility is when ​ϕ​ is simply the 
sum of performance of admitted students and OLS is applied 
to the data to produce an unbiased estimator, such that for an 
individual ​i​ , ​​Y​i​​  = ​  f ˆ ​ ( ​X​i​​, ​R​i​​ )  + ​ϵ​i​​​ , where ​​ϵ​i​​​ is mean zero and 
orthogonal to ​(​X​i​​, ​R​i​​)​. 

4 The analysis that follows extends directly to the more 
general case in which the equitable planner seeks to maxi-
mize ​ψ(S )  + γ (S)​ , where ​ψ​ is compatible with ​f​ but may be 
different from the efficient planner’s function ​ϕ​. We use the 
case in which the efficient and equitable planners have the 
same ϕ in our exposition. 
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shows that they should also rank by ​​ f ˆ ​​ , just as the 
efficient planner, but change the cutoffs used for 
admission for the two groups defined by ​R  =  0​ 
and ​R  =  1​.

THEOREM 1: For some choice of ​​K​0​​​ and ​​K​1​​​ with ​​
K​0​​ + ​K​1​​  =  K​ , the equitable planner’s problem 
can be optimized by choosing the ​​K​0​​​ applicants 

in the ​R = 0​ group with the highest ​​ f ˆ ​ (X, R)​ , and 
the ​​K​1​​​ applicants in the ​R = 1​ group with the 

highest ​​ f ˆ ​ (X, R)​.

We can sketch the proof of this theorem as 
follows. Let ​​S​​ ∗​​ be any set of ​K​ applicants that 
maximizes ​ϕ(S ) + γ (S)​ , and partition ​​S​​ ∗​​ into 
the applicants ​​S​ 0​ 

∗​​ in the ​R = 0​ group and ​​S​ 1​ 
∗​​ in 

the ​R = 1​ group. Let ​​K​0​​ = | ​S​ 0​ 
∗​ |​ and ​​K​1​​ = | ​S​ 1​ 

∗​ |​; 
let ​​S​ 0​ 

+​​ be the ​​K​0​​​ applicants in the ​R = 0​ group 

with the highest ​​ f ˆ ​ (X, R)​ , and let ​​S​ 1​ 
+​​ be the ​​K​1​​​ 

applicants in the ​R  =  1​ group with the highest 

​​ f ˆ ​ (X, R)​. Write ​​S​​ +​  = ​ S​ 0​ 
+​ ∪ ​S​ 1​ 

+​​. One can prove 

that if we sort ​​S​​ +​​ and ​​S​​ ∗​​ in descending order of 
predicted performance, the ​i th​ student in ​​S​​ +​​ has 
predicted performance at least as large as the ​i th​ 
student in ​​S​​ ∗​​. Hence by the compatibility of ϕ 
and ​f​ , we have ​ϕ(​S​​ +​) ≥ ϕ(​S​​ ∗​)​. Since ​​S​​ +​​ and ​​S​​ ∗​​ 
have the same number of members with ​R = 1​ 
by construction, we also have ​γ (​S​​ +​) = γ (​S​​ ∗​)​;  
thus ​ϕ(​S​​ +​) + γ (​S​​ +​) ≥ ϕ(​S​​ ∗​) + γ (​S​​ ∗​)​ , and so ​​
S​​ +​​ is a set maximizing the equitable planner’s 
objective function and satisfying the conditions 
of the theorem.

Put in another way, given the equita-
ble planner’s preferences, they still wish to 
rank-order individuals within each group 
using the same estimate of expected perfor-

mance ​​ f ˆ ​  (X, R)​.
The intuition behind this Theorem is simple. 

The efficient planner only values ranking on the 
best possible prediction of output. An equitable 
planner, conditional on the fraction of minority 
students admitted, cares about this as well. 
Since the fraction of admitted students that are 
minorities can always be altered by changing 
the thresholds used for admission, the equitable 
planner should use the same prediction function 
as the efficient planner. Implicit in this theorem 
is that the use of race will always be strictly 
improving for the equitable planner’s objective 
function as long as race is useful for predicting ​

Y​. This happens exactly when we feel there 
is disadvantage—when individuals of ​R = 1​ 
have a different process than those with ​R = 0​.  
In this case, access to ​R​ improves prediction  
quality.

II.  Further Implications

The theorem in the previous section helps 
parse some common reasons we worry that the 
data may bake in bias. First, we may worry that 
the inputs (​X​ ) are biased. In the college con-
text, America’s history of segregated schools 
may affect the degree to which minority stu-
dents are comparably prepared to succeed in 
college. One consequence could be that with 
fewer inputs, black students are less prepared 
for college, so that ​E [ Y  | R = 1 ] < E [ Y  | R = 0]​.  
Implicit in our theorem is that the solution here 
is to set a different threshold for admissions. 
Another concern may be that, even for the same 
level of preparation to succeed in college, black 
applicants appear worse on observed inputs. 
For example, they may receive less coaching 
on how to take standardized tests like the SAT. 
Yet this scenario implies that ​f (X, R)​ crucially 
depends on ​R​. For the algorithm to account for 
this sort of bias, it must know ​R​. If white stu-
dents are given more SAT prep, then the same 
SAT score implies higher college success 
for a black student than a white one; that is, 
​E [ Y | X, R = 1 ] > E [ Y | X, R = 0]​. A prediction 
function can only uncover this if it is allowed to 
put different “slopes” on the SAT score for white 
and black candidates.5 As a result, racial equity 
is promoted by giving the algorithm access to 
race.

Second, we may also worry that the ​Y​ vari-
ables themselves are biased. When we measure ​
Y​ using college GPA, biases faced in the college 
experience are reproduced in ​Y​. Specifically, 
there may be a true ​​Y​​ ∗​​ (such as actual learning 
in college) which determines ϕ , even though 
we only measure ​Y​ (grades). We may fear that 
​E [ Y − ​Y​​ ∗​ | R = 1 ] < E [ Y − ​Y​​ ∗​ |R = 0]​. Even 
here, as long as ​​ f ˆ ​​ is compatible to ϕ in the 
sense above, the theorem says the equitable and 
efficient planners should use the same ​​ f ˆ ​​. The 

5 This discussion subsumes one where there are true ​​X​​ ∗​​ , 
and the ​X​ are racially biased measures of ​​X​​ ∗​​. This type of 
mis-measurement will have the same effect. 
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intuition is again straightforward. As long as ​Y​ 
and ​​Y​​ ∗​​ are monotonically related, ranking on ​​ f ˆ ​​ 
remains the best strategy even when you care 
about equity. The ​Y − ​Y​​ ∗​​ bias can be accounted 
for by setting a different threshold for the dis-
criminated group.

III.  Data

We rely on the public-use version of the US 
Department of Education’s National Education 
Longitudinal Study of 1988 (NELS:88). This 
dataset captured information for a nationally 
representative sample of students who entered 
eighth grade in the fall of 1988, and who were 
then followed up in 1990, 1992, 1994, and 
finally in 2000 (when respondents were in their 
mid-20s).6

The decision we examine is college admis-
sion, specifically whether to admit a student to a 
four-year college or university. We limit our anal-
ysis sample to those who were followed through 
the 2000 survey wave and had ever attended a 
four-year institution. To simplify, we focus just 
on two groups: non-Hispanic white students 
(​N = 4,274​) and black students (​N = 469​).

We assume the admit decision is based on 
predicted student performance (college grade 
point average). Predictors taken from the 1988, 
1990, and 1992 waves of NELS data include 
(besides race) high school grades, course taking 
patterns, extracurricular activities, and student 
performance on the standardized achievement 
tests that NELS administered to students in 
four core subject areas: math, reading, science, 
and social studies.7 Consistent with previous 
studies, college graduation rates are higher for 
white students than black students in our sam-
ple (​67.4 percent​ versus ​50.9 percent​). College 
grades such as share earning a GPA of at least 
2.75 are also higher on average for white than 
black students, ​82.2 percent​ versus ​69.5 per-

6 The NELS provides sampling weights to account for the 
fact that not all baseline respondents were eligible for fol-
low-up waves. We present unweighted results below, but our 
findings are not sensitive to using the weights. 

7 The public-use NELS tells us whether a student took 
the SAT or ACT, but not their score, so we use these tests 
as a proxy. 

cent​ , as are most of our measures of high school 
outcomes.8

IV.  Empirical Results

We summarize our main results by show-
ing what would happen to college admissions 
outcomes for both the efficient planner and 
equitable planner using different candidate pre-
diction functions. The binary outcome we pre-
dict has ​Y = 1​ if the student’s college GPA is ​
<2.75​. We consider predictions from a simple 
unbiased algorithm (ordinary least squares), one 
version of which is blinded to race altogether, 
one of which pre-processes the inputs to make 
them orthogonal to race, and one of which is 
made race-aware by interacting race with the 
various predictors described above.9

For starters, Figure 1 shows the efficient plan-
ner would choose to use the race-aware predic-
tor. The cross in the figure shows what would 
happen if the efficient planner selected the top ​
50 percent​ of four-year college students in the 
NELS using the race-aware predictor (that is, by 
rank-ordering all four-year students in the NELS 
by the predicted outcome from the race-aware 
predictor, then selecting the top half). Just under ​

8 We do not use data on the sociodemographics of the stu-
dent’s family or school in any analyses. 

9 Results are qualitatively similar when we instead use a 
machine learning algorithm (random forest), or use different 
outcome measures for college performance such as varying 
the GPA threshold or an indicator for college completion. 

Figure 1. Racial Composition/Grades Curves
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13 percent​ of students admitted using the race-
aware algorithm would go on to get GPAs below ​
2.75​ , at least a full percentage point lower than 
if the efficient planner had instead rank-ordered 
students for admission using either the race-
blind algorithm or the predictor that first orthog-
onalizes inputs to race (the circle and triangle 
in Figure 1, respectively). Because the efficient 
planner cares only about efficiency (i.e., location 
along the y-axis), using the race-aware predictor 
dominates.

More interesting is our evidence that the equi-
table planner (who uses a different threshold to 
admit white versus black students, to promote 
fairness) would also wish to use the race-aware 
predictor. Varying the threshold used for black 
students changes the share of the admitted ​
50 percent​ of students who are black (shown on 
the x-axis): for a given predictor the lower the 
threshold used for black students, the larger the 
share of admitted students who are black, but 
the higher the share of admitted students who 
achieve a GPA ​<2.75​. So, for a given predic-
tor, the curve shows that the possible combina-
tions of diversity and college achievement that 
can be achieved has a positive slope. The race-
aware predictor dominates the other prediction 
functions, even for the equitable planner. For 
any given level of diversity among admitted 
students, using the race-aware predictor leads 
to the smallest share of admitted students with 
low grades. Equivalently, for any given level of 
achievement among admitted students, using the 
race-aware predictor would lead to admission of 
relatively more black applicants.

Figure 2 shows why this is so. The race-blind 
predictor mis-ranks black students. This “heat-
map” shows the distribution of black students 
in our NELS sample across predicted-outcome 
deciles according to the race-blind (x-axis) or 
race-aware (y-axis) predictors. For example, 
consider the group of students in the southeast 
part of Figure 2. The race-blind predictor clas-
sifies them as being in the ninth decile of pre-
dicted probability of receiving a GPA ​<2.75​ , 
but, according to the race-aware predictor, they 
are actually members of the lowest decile.

This mis-ranking stems from the differences 
in the slopes for the relationship between col-
lege grades and different predictors (such as 
high school achievement tests) for black versus 
white students. Only by giving the algorithm 
access to race can we account for this, improve 

the rank-ordering within the pool of black appli-
cants and form a decision rule that dominates 
those based on race-blind predictors.

V.  Conclusion

Concern about the potential fairness conse-
quences of algorithmic decision-aids is under-
standable and plays an important role in debates 
about their wide-scale adoption. Our central 
argument is that across a wide range of estima-
tion approaches, objective functions, and defi-
nitions of fairness, the strategy of blinding the 
algorithm to race inadvertently detracts from 
fairness.
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