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Improving academic outcomes for economically disadvantaged 
students has proven challenging, particularly for children at older 
ages. We present two large-scale randomized controlled trials of a 
high-dosage tutoring program delivered to secondary school stu-
dents in Chicago. One innovation is to use paraprofessional tutors to 
hold down cost, thereby increasing scalability. Participating in math 
tutoring increases math test scores by 0.18 to 0.40 standard devia-
tions and increases math and nonmath course grades. These effects 
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persist into future years. The data are consistent with increased 
personalization of instruction as a mechanism. The benefit-cost 
ratio is comparable to many successful early childhood programs.  
(JEL H75, I21, I24, I26, I32, J13, J15)

Improving academic outcomes for economically disadvantaged students has 
proven a difficult challenge, particularly for older children. Studies of educational 
interventions for adolescents tend to yield more disappointing results than interven-
tions for young children. This pattern gives rise to concerns that efforts to improve 
learning outcomes for teens may face intrinsic challenges, such as declining devel-
opmental plasticity (Carneiro and Heckman 2003; Knudsen et al. 2006; Heckman 
2013).1 More hopeful is Fryer’s (2014) study showing that key components of “no 
excuses” charter schools—including a longer school day and year, replacing prin-
cipals and teachers, and a culture of high expectations—improve outcomes for stu-
dents of all ages. Yet the difficulty of implementing these changes raises questions 
of whether they can be scaled (Cullen et al. 2013).

There is one instructional technology that has been viewed for centuries as prom-
ising and replicable for students of any age: intensive or “high-dosage” tutoring. This 
method of instruction dates back at least to the fifteenth century at Oxford. High-
dosage tutoring can be thought of in some sense as an extreme version of class-size 
reduction and has itself become a component of many no excuses charter schools.2 
Tutoring addresses what teachers report as the two most difficult challenges of class-
room teaching:3 classroom management and variability in the academic levels, and 
hence needs, across students. These challenges are more difficult with older students 
because as students age, disruptive behaviors become more prevalent,4 and the vari-
ability in student academic levels (hence instructional needs) also becomes more 
pronounced (Cascio and Staiger 2012). This variation in instructional needs is dif-
ficult to address in classroom settings that focus on teaching grade-level curricula. 
Small-scale randomized controlled trials (RCTs) comparing tutoring to classroom 
instruction confirm tutoring to be “the best learning conditions we can devise” (B. 
Bloom 1984; Nickow, Oreopoulos, and Quan 2020). The challenge to widespread 

1 Part of the argument here is conceptual, based on economic models suggesting that skills developed early 
in life improve the productivity of later skill investments (see for example Cunha et al. 2006). Empirical support 
comes partly from studies of nonhuman animals finding “sensitive periods” in which skills are much easier to 
modify than in later periods of life, as well as some examples of the same phenomenon among humans as well, 
such as language acquisition (Cunha et al. 2006; Knudsen et al. 2006). And part of the argument also comes from 
studies of educational data for children of different ages, including descriptive data suggesting that long-term trends 
in the income gap in test scores are less encouraging for older than younger children (see for example Hanushek 
et al. 2020 and Hashim et al. 2020, although also see Reardon 2011). Cunha et al. (2006) note that some selected 
interventions for teens, such as financial incentives for school performance or Catholic school enrollment, can affect 
behavioral outcomes like crime or dropout, but impacts on test scores are more modest, and argue that the returns 
for older teens and young adults from programs like public job training are very low.

2 See for example Fryer (2014); Dobbie and Fryer (2015); Dobbie and Fryer (2020); Tuttle et al. (2015); Angrist 
et al. (2016); and Abdulkadiroğlu et al. (2017).

3 For example, in the School and Staffing Survey (SASS), 43 percent of new elementary school teachers and 47 
percent of new secondary school teachers say they felt not at all or only somewhat prepared to deal with classroom 
management; 41 percent of new elementary school teachers and 44 percent of new secondary-school teachers said 
they were unprepared or only somewhat prepared to differentiate instruction (from original author tabulations of 
SASS data).

4 Disciplinary actions in school increase with age (https://nces.ed.gov/programs/raceindicators/indicator_RDA.
asp), as do absences (https://www2.ed.gov/datastory/chronicabsenteeism.html) and arrests, including for serious 
crimes.

https://nces.ed.gov/programs/raceindicators/indicator_RDA.asp
https://nces.ed.gov/programs/raceindicators/indicator_RDA.asp
https://www2.ed.gov/datastory/chronicabsenteeism.html
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implementation has not been a pedagogical problem so much as an economic one—
cost. Is it simply too costly to provide every student with tutoring without compro-
mising effectiveness?

One potential solution to this cost (and hence scaling) challenge is to rethink 
the human resource model we use for tutoring versus classroom teaching. Given 
the enormous skill required for the difficult task of classroom teaching, and the 
variability across teachers in this skill,5 many policies have focused on improving 
teacher skill and effort through some combination of teacher recruitment, training, 
or performance-based pay (e.g., Rivkin, Hanushek, and Kain 2005; Gordon, Kane, 
and Staiger 2006). An alternative idea is that simplifying the teaching task itself 
can reduce the amount of skill instructors require to teach effectively. The Pratham 
NGO in India tried this approach by hiring paraprofessionals to hold down costs 
(local community women hired at one-tenth the price of regular teachers), providing 
them with two weeks of training, and then directing them to work on remedial skill 
development with 15–20 children grouped based on their academic needs. Ability 
grouping is one way to make teaching easier because less skill is required of the 
instructor to personalize instruction across students. Banerjee et  al. (2007) show 
test score gains from this intervention of 0.28 standard deviations (SD) in the short 
term, which were larger still for the students furthest behind, with gains that faded 
to 0.10 SD a year later.

In this paper we report on an intervention that seeks to deliver Oxford-style 
high-dosage tutoring at relatively low cost by employing a Pratham-style human 
resources model. The key premise is that dramatically reducing class size to two 
students per instructor (tutor) simplifies the teaching task enough that tutors without 
extensive prior pedagogical training or on-the-job experience can be effective. Saga 
Education, the developer of the tutoring model we study, hires paraprofessionals to 
serve as tutors for one year as a public service at a modest stipend.6 Given evidence 
of substantial on-the-job learning by classroom teachers (Rockoff 2004; Clotfelter, 
Ladd, and Vigdor 2010; Henry, Bastian, and Fortner 2011) a staffing model with 
such high turnover would simply be infeasible for regular classroom instruction. But 
if tutors can be effective in their first year the benefit would be to help substantially 
hold down costs. Saga’s cost during this study was $3,200 to $4,800 per year per stu-
dent to deliver students nearly an hour of tutoring a day in school every day at a 2:1 
tutor-student ratio (costs are lower now).7 By comparison, Chicago Public Schools 
(CPS) spending per pupil is about $17,000 per year.

We carried out two separate RCTs of high-dosage tutoring with disadvantaged 
high school students, the first large-scale major tests of this strategy with students 
in this age range (the vast majority of previous tutoring studies focus on very 
young children; see Nickow, Oreopoulos, and Quan 2020). The pooled sample 
size of the two RCTs is 5,343; previous tutoring studies typically examine fewer 

5 See, for example, Chetty, Friedman, and Rockoff (2014a, b); Gilraine, Gu, and McMillan (2020); Rothstein 
(2010); Rockoff (2004); Kane and Staiger (2008); and Jackson (2018).

6 Saga was initially part of the Match charter school organization in Boston, then spun off to become SAGA 
Innovations to focus on tutoring nationwide, then changed the name to Saga Education in 2019.

7 Saga has since dropped its cost to $1,800 per pupil as of the time of release of this paper by obtaining an 
AmeriCorps subsidy of $15,000 per fellow and using a blended-learning model, in which the student:tutor ratio is 
4:1 in lieu of 2:1 and students spend half their time on a learning platform, e.g., ALEKS.



741GURYAN ET AL.: NOT TOO LATE: IMPROVING ACADEMIC OUTCOMESVOL. 113 NO. 3

than 200 students. The cost of the intervention we study relative to its intensity 
increases the chance of passing a benefit-cost test. Because high cost per student can 
be a barrier to scale up, evaluating programs that might support students’ learning at 
reasonable cost also has the potential for large social impact.8

In the first RCT (“study 1”), we randomly assigned 2,633 rising ninth or tenth 
graders in 12 CPS high schools in the summer of 2013 to Saga tutoring versus 
control. This sample consists almost entirely of low-income male high school stu-
dents of color. We focus on math because failing core math classes is a driver of 
dropout (Allensworth and Easton 2005), because math is important for later earn-
ings (Duncan et  al. 2007), and because math skills may be more responsive to 
school-based interventions than are reading skills (e.g., Fryer 2014, 2017). After 
one year of the program, the intention-to-treat effect (ITT) on standardized math test 
scores is 0.09 SD, and the treatment-on-the-treated (TOT) effect is 0.18 SD. These 
gains in test scores do not appear to be the result of tutors narrowly teaching to the 
test. We also estimate TOT effects on grades in regular classroom math courses 
equal to 0.57 points (on a 0 to 4 point scale), and a decline in the percent of math 
course failures of 48 percent.

Motivated partly to see if these results would replicate, in the summer of 2014 
we randomized a separate sample of 2,710 ninth and tenth graders (“study 2”). The 
TOT effect on math scores after one year is more than twice as large as in study 1 
(0.40 SD). We also find sizable positive effects on math grades in study 2 similar to 
the findings for study 1. This sample for study 2 includes females as well, who seem 
to benefit as much as male students do.

When we look at eleventh grade outcomes, a year or two after tutoring, we find 
persistent gains in math test scores of 0.23 SD (pooling study 1 and 2) and math 
grades of 0.25 GPA points. The estimate for on-time graduation is small and posi-
tive, 1.3 percentage points, but imprecise and not statistically significant. 

These results may understate the learning gains students experience because of 
“floor effects,” the idea that achievement tests do not measure gains in knowledge 
below the level the test questions target. For math course grades, we find positive 
treatment effects for all four quartiles of baseline achievement. In contrast, for math 
test scores, we find positive treatment effects for the top three baseline achievement 
quartiles, but no significant effects for the bottom quartile. These are patterns we 
might expect from floor effects because the gains in knowledge by students in the 
bottom quartile of the baseline test score distribution are most likely to be in topics 
not covered by end-of-grade standardized tests. The possibility of floor effects also 
complicates tests of candidate mechanisms that compare effects across students by 
baseline achievement levels.

So why does high-dosage tutoring generate such large gains in student learning? 
To guide exploration of the mechanisms by which high-dosage tutoring might gen-
erate learning gains we develop a simple model in the spirit of Lazear (2001) that 
suggests tutoring impacts should be larger in settings where there is more disruption 
to classroom learning time either because of disruptive behaviors (which are eas-
ier to manage in two-on-one tutoring) or relatively greater heterogeneity in student 

8 See also Dietrichson et al. (2017); Fryer (2017); Baye et al. (2019); and Pellegrini et al. (2021).
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achievement levels within the classroom (since instruction is easier to personalize in 
tutoring). We find some suggestive support for the personalization hypothesis in the 
available data. An alternative hypothesis is that because tutors can really get to know 
students, this seemingly academic intervention is actually improving learning by 
serving as a nonacademic intervention through a “mentoring effect” that improves 
metacognitive or other nonacademic skills. But in survey data we see no signs that 
tutoring participants have more or stronger adult relationships than control youth, 
nor do we find detectable treatment effects on grit, conscientiousness, locus of con-
trol or other such skills.

Extrapolating the estimated test score impacts to earnings gains implies that the 
benefit-cost ratio is comparable to both exemplar early childhood model programs, 
like the Abecedarian Project and the Perry Preschool Program, as well as larger-scale 
efforts to improve outcomes for younger children such as the Tennessee Star class 
size reduction experiment.

I.  The Intervention

Saga Education’s high-dosage tutoring program provided students 50 minutes of 
small-group in-person tutoring (two students per tutor) every school day. About half 
of each tutoring session focused on earlier-grade topics the student had not yet mas-
tered, for which Saga developed its own curriculum, and the other half was tied to 
grade-level material taught in the regular math classrooms. Saga used frequent for-
mative assessments of student progress to individualize instruction. Tutors also dis-
cussed general study skills as part of both the formal tutoring program (like how to 
approach a difficult problem by breaking it down) and through informal discussions.

The key to making this high-dosage tutoring scalable and feasible from a cost 
perspective was to rely on paraprofessionals rather than teachers to serve as tutors. 
As with other public service programs, tutors were willing to serve at low wages 
($17,000 plus benefits for the academic year during the study period, $20,000 plus 
benefits today). The tutors were mostly recent college graduates hired because they 
had both strong math skills (according to Saga’s screening assessment) and strong 
interpersonal skills (as revealed by interviews that also involved delivering a mock 
tutoring session). Hired tutors had higher average SAT scores than is typical among 
big-city public school classroom teachers (Jacob et al. 2018). But Saga tutors nei-
ther had formal teacher training nor were licensed Illinois teachers. Roughly half of 
tutors hired during this study were Black or Hispanic, and around 50 percent were 
female. Each tutor participated in approximately 100 hours of training in the sum-
mer before school started.

Students in the treatment group were assigned—as part of their regular class 
schedule—to a tutoring session for one class period every day, which was a 
credit-bearing course and was in addition to their regular math class. For study 1 
ninth graders (most of the study 1 sample), tutoring most commonly replaced a 
second hour of “double dose” Algebra. For study 2, tutoring typically replaced an 
elective course like art or physical education. The control group was eligible for all 
the status quo supports in the CPS high schools in our study including No Child Left 
Behind-funded supplemental educational services (SES) tutoring, which was of 
much lower dosage than Saga tutoring (and without the same structure, curriculum, 
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or supervision).9 While schools in the study had other supplemental programs, none 
focused on academic skills the way Saga tutoring did. Additional details about the 
Saga tutoring model are in the online Appendix.

II.  Results

A. Samples

For study 1 we recruited 12 of the larger high schools in the CPS system, pri-
marily located on the south and west sides of Chicago. Using administrative data 
the summer before the 2013–2014 academic year (AY) started, we identified a total 
of 2,633 students we expected to enroll in the study schools that fall. We then ran-
domized them to the treatment group, which was offered up to two years of Saga 
tutoring, or else to control. Of the 2,633 students we randomized, 2,103 enrolled in 
study schools at the beginning of the school year. Our study sample represented 86.4 
percent of all ninth and tenth grade male students in the study schools.

In study 1, we also independently randomized students to a behavioral science- 
informed metacognitive intervention from the nonprofit Youth Guidance called 
Becoming a Man (BAM), which we had tested in previous RCTs as reported in Heller 
et al. (2017). The inclusion of BAM in a 2 × 2 factorial design for this RCT was the 
motivation for the limitation of study 1’s sample to males. At the time of randomiza-
tion, our study team’s goal was to present the main BAM effects from this RCT in one 
paper (see Bhatt et al. 2021), the main tutoring effects in a separate paper (this one), 
and the interaction in a third paper that would attempt to measure any complementar-
ity between academic and nonacademic skill building. In practice, what appeared to 
have been variable implementation of BAM in this sample led to an imprecise esti-
mate of the tutoring-BAM interaction, as discussed below and in Bhatt et al. (2021).

In response to a preliminary analysis of the study 1 results, the city of Chicago 
began to support Saga tutoring in public schools in the 2014–2015 school year with 
public-sector funding. To validate the results from study 1, we worked with the city 
to randomize the offer of these additional tutoring slots in what we refer to as study 
2. We randomized 2,645 students in 15 schools (12 of which were also in study 1) 
to treatment (one year of tutoring in this study) versus control.10 Though study 2 
took place in many of the same schools as study 1, the students in study 2 were a 
different set of students from those in study 1. Most of the students in study 2 were 
incoming ninth graders in the 2014–2015 school year, but the study included some 
tenth graders as well. Study 2 did not include independent randomization to BAM 
as study 1 had, alleviating the restriction of the study to male students. Thus, study 
2 included both female and male students. For study 2, 68.8 percent of all ninth and 
tenth grade male students in our study 2 schools were randomized and included in 
our study sample, while 33.5 percent of all female ninth and tenth grade students in 
our study schools were randomized and included in our sample for study 2.

9 For example, for study 1 we estimate about 25 percent of control students in our schools received SES tutoring, 
which involves 21 hours of writing tutoring and 20 hours of math tutoring per year. Previous nonexperimental studies 
of SES tutoring in Chicago find little effect on math scores (http://sesiq2.wceruw.org/documents/chicago_ses.pdf). 

10 Sixty-five students were missed in the de-duplication process and appear in the sample twice so the study 2 
sample size is 2,710. All study 2 estimates are clustered by student to account for these duplicates. 

http://sesiq2.wceruw.org/documents/chicago_ses.pdf
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B. Data and Measures

Our main source of information about study participants was from longitudinal 
student-level records maintained by CPS. These data captured basic demographics, 
enrollment, attendance, course grades, disciplinary actions, and standardized test 
scores. The standardized tests administered at the end of the two program years, 
which are primary outcomes for the study, are from the ninth grade EXPLORE and 
tenth grade PLAN tests, developed by ACT, Inc. We have CPS data at baseline for 
all students in both study samples (not every baseline item is available for every stu-
dent, but we have some baseline data for all students). There was more missingness 
in postrandomization data, which can be seen in online Appendix Table 1. In study 
1, school attendance was missing at a 4.4 percent rate for the control group and a 6.2 
percent rate for the treatment group. The missingness rate was somewhat higher for 
course grades (about 16.2 percent for both groups for math grades and 14.6 percent 
for both groups for nonmath grades) and test scores (just under 30 percent for both 
groups and subject areas), presumably because of students dropping out, transfer-
ring to suburban or private schools, and missing school on testing days. Attrition 
rates were similar for study 2. Online Appendix Table 1 shows the vast majority of 
treatment-control differences in missingness were not statistically significant. The 
only outcome with a significant difference in missingness at the 5 percent level is 
for school attendance in study 1. Below we show our results are not sensitive to 
different approaches to dealing with missing outcomes.

From Saga we obtained tutoring attendance records, tutor characteristics, and 
student scores on Saga’s internal math assessments. Because we hypothesized Saga 
tutoring would increase school persistence, and because of the link between edu-
cational attainment and crime involvement (Lochner and Moretti 2004), we also 
measured impacts on criminal behavior using administrative arrest records from the 
Chicago Police Department.

Our final data source came from two waves of in-person surveys carried out 
on behalf of the research team by the Institute for Social Research (ISR) at the 
University of Michigan. To develop this survey we drew on existing survey ques-
tions that have been used in previous studies of youth, including the Moving to 
Opportunity surveys.11 The survey also included a math achievement test that we 
use as an alternative outcome to help mitigate missingness in the CPS test data. The 
ISR-administered test was based on a test designed for the eighth grade wave of the 
National Educational Longitudinal Study of 1988 (National Center for Educational 
Statistics 1988), which we supplemented with items from the fifth grade wave of the 
Early Childhood Longitudinal Study math assessment to help mitigate floor effects. 
The ISR survey was administered to a randomly selected subsample of 881 students 
in study 1 at the end of the first program year. The effective response rates were 88.2 
percent and 90.6 percent for treatment and control, respectively. ISR administered 
a second wave of the survey to 1,238 randomly selected students in study 1 in the 
fall after the second intervention year (2014–2015). Response rates for the second 

11 See http://www2.nber.org/mtopublic/. 

http://www2.nber.org/mtopublic/
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wave of the survey were 90.1 percent for the treatment group and 89.1 percent for 
the control group.

C. Sample Characteristics

Table 1 provides context for the study sample. The table shows the distribution 
of test scores measured the year before randomization. Panel A presents baseline 
test scores for study 1 (spring 2012–2013 AY) for all ninth and tenth grade male 
students in CPS, for all ninth and tenth grade students and male students in study 
schools, and students in the study sample; panel B presents the same for study 2 
(spring 2013–2014 AY). The average test score among all ninth and tenth grade CPS 
students is close to the national median (forty-fifth percentile the year before study 
1 for male students only and forty-ninth percentile the year before study 2), but 
the national norming of the test was based on assessments commonly taken in the 
fall. CPS students who took the tests in the spring were therefore slightly older and 
had more completed schooling than the norming sample of students. The average 
baseline test scores of students in our study samples were 8 to 15 percentile points 
lower than the CPS average, but similar to the average test scores of other ninth and 
tenth grade students in the study schools. This contrasts with many studies of “no 
excuses” charters where applicants tend to have slightly higher baseline scores than 
other students in the same school system (e.g., Angrist, Pathak, and Walters 2013).

Table 2 shows that the study 1 sample was split about evenly between Black and 
Hispanic youth. Almost 90 percent were eligible for subsidized lunch. The average 
GPA the year before our study was 2.11 on a 4-point scale. The study 2 sample was 
similar on these characteristics but included more Black and fewer Hispanic stu-
dents and also included female students. Randomization appears to have been suc-
cessful. We carried out an F-test of the null hypothesis that baseline characteristics 
are jointly the same for treatment and control by regressing a treatment-group indi-
cator against all of our baseline covariates, controlling for randomization blocks. 
The p-values are 0.798 for study 1 and 0.273 for study 2.

D. Analysis Plan

Given our randomized design, the analysis plan is straightforward. We estimate 
both the ITT effect and the effect of TOT. The ITT estimate comes from estimating 
equation (1):

(1)	​​ Y​i​​  = ​ π​0​​ + ​π​1​​  ​Z​i​​ + ​X​i​​ ​π​2​​ + ​B​i​​ + ​ε​i​​,​

where ​​Y​i​​​ is an outcome for student ​i​ measured after random assignment, ​​Z​i​​​ is an 
indicator for having been offered Saga tutoring, ​​B​i​​​ is a full set of randomization 
block fixed effects, ​​ε​i​​​ is a random error term, and ​​X​i​​​ is a set of baseline controls to 
improve precision.12 To ensure our standard errors are not misleadingly small as 
an artifact of finite sampling issues (Young 2019), we also report p-values from a 

12 These include sociodemographics, average prerandomization test scores, and previous year GPA, days 
absent, days out-of-school suspension, disciplinary incidents, an indicator for having any arrests, and number of 
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Table 1—Baseline Test Score Comparison of Study Samples versus All Chicago 
Public School (CPS) Students

Sample N Mean

Panel A. Study 1 sample: prerandomization math scores (school year 2012–2013)
All CPS ninth/tenth grade boys 31,064 44.76
All study school ninth/tenth grade students 4,406 35.40
All study school ninth/tenth grade boys 2,434 35.22
All randomized students 2,633 37.12
All participating treatment students 526 32.20

Panel B. Study 2 sample: prerandomization math scores (school year 2013–2014)
All CPS ninth/tenth grade students 61,824 48.73
All study school ninth/tenth grade students 5,068 34.89
All randomized students 2,645 33.56
All participating treatment students 571 30.05

Notes: This table shows how the baseline characteristics of our high-dosage tutoring study 
samples compare to those of other students in the CPS system as a whole, as well as other 
students in the study subjects’ schools specifically. These are percentile scores in the national 
test score distributions for the EXPLORE and PLAN tests in the 2012–2013 year and the 
Northwest Evaluation Association, EXPLORE, and PLAN tests in the 2013–2014 school year.

Table 2—Baseline Characteristics for High-Dosage Tutoring Study 1 and Study 2 Cohorts

Study 1, N  =  2,633 Study 2, N  =  2,710

Variable
Control 
mean

Treatment/control 
contrast

Control 
mean

Treatment/control 
contrast

Panel A. Demographic
Age 14.807 −0.036 (0.025) 14.430 0.007 (0.022)
Female 0.002 0.000 (0.001) 0.307 0.012 (0.007)
Black 0.461 −0.003 (0.011) 0.643 −0.006 (0.012)
Hispanic 0.487 0.011 (0.013) 0.326 −0.001 (0.013)
Other 0.052 −0.008 (0.008) 0.031 0.007 (0.007)

Panel B. Education
Free/reduced lunch recipient 0.871 0.002 (0.013) 0.902 −0.019 (0.012)
Has individualized education plan (IEP) 0.167 0.012 (0.015) 0.159 −0.002 (0.014)
Grade at study start 9.441 0.008 (0.014) 9.072 0.010 (0.008)
Math test score (CPS-wide z-score) −0.357 −0.021 (0.034) −0.465 −0.033 (0.032)
Reading test score (CPS-wide z-score) −0.455 0.006 (0.033) −0.465 −0.032 (0.034)
GPA 2.109 0.009 (0.036) 2.386 −0.043 (0.031)
Days absent 20.551 0.329 (0.838) 15.901 −0.332 (0.724)

Panel C. Disciplinary
Out-of-school suspensions 1.612 −0.005 (0.165) 1.197 0.050 (0.147)
Disciplinary incidents 1.242 0.000 (0.101) 0.786 0.002 (0.082)

Panel D. Arrest
Number of arrests for violent crimes 0.131 0.007 (0.021) 0.117 −0.014 (0.019)
Number of arrests for property crimes 0.090 −0.016 (0.017) 0.067 −0.006 (0.015)
Number of arrests for drug crimes 0.070 −0.004 (0.014) 0.046 −0.009 (0.011)
Number of arrest for other crimes 0.226 −0.015 (0.032) 0.190 −0.036 (0.031)
Ever arrested for any crime 0.187 −0.009 (0.014) 0.148 0.008 (0.014)

Notes: F-test for treatment-control comparison for all baseline characteristics: study 1: p  =  0.798; study 2: 
p  =  0.273; pooled study 1 and 2: p  =  0.525. All tests control for randomization block fixed effects, which were 
defined at the school-grade level in study 1, which only included boys, and at the school-grade-gender level in study 
2. Randomization block fixed effects do not perfectly predict gender because of differences in the administrative 
records at the time of randomization and the time baseline covariates were pulled. The study 2 sample was 30.8 
percent female. Average test scores are averaged across all assessments taken in the baseline year. For each assess-
ment, test scores are standardized and converted to z-scores within grade among all CPS students that took that 
assessment. The 2013–2014 and 2014–2015 school years included 178 and 180 days of school, respectively. Some 
students (N  =  65) were randomized into study 2 twice. Both observations and treatment assignments are retained 
in the table above. Heteroskedasticity robust standard errors, clustered by individual in study 2, are in parentheses.
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nonparametric permutation test (Efron and Tibshirani 1993). We randomly reassign 
the treatment indicator 100,000 times, storing the t-test statistic (T  ) in each repli-
cation, then calculate the share of replications where this exceeds the t-test statis-
tic from using actual treatment assignment, ​​T​​   ∗​​, or ​​ 1 _ p ​ ​∑ i=1​ 

p  ​​ 1​{​|​T​i​​|​  > ​ |​T​​   ∗​|​}​​. We also 
show that our results are robust to clustering by math teacher.

To estimate the TOT effect we use random assignment (​​Z​i​​​) as an instrumental 
variable for participation (​​D​i​​​), as in equations (2) and (3) (Angrist, Imbens, and 
Rubin 1996; H. Bloom 1984). The first-stage equation is

(2)	​​ D​i​​  = ​ γ​ 0​​ + ​γ​ 1​​  ​Z​i​​ + ​X​i​​ ​γ​ 2​​ + ​B​i​​ + ​μ​i​​,

​where ​​D​i​​​ is an indicator for having participated in Saga tutoring (defined as having 
participated in at least one Saga tutoring session), the ​γ​s are parameters to be esti-
mated, ​μ​ is a random error term, and all other variables are defined as above. The 
relationship of interest is

(3)	​​ Y​i​​  = ​ β​ 0​​ + ​β​ 1​​  ​​D ˆ ​​i​​ + ​X​i​​ ​β​ 2​​ + ​B​i​​ + ​ϑ​i​​.​

The identifying assumption here is that treatment assignment has no effect on the 
outcomes of those assigned to treatment who do not participate. Below we discuss 
what evidence we have about one potential threat to this, the stable unit treatment 
value assumption (SUTVA).

Another methodological issue has to do with statistical inference in the pres-
ence of multiple testing. We grouped our outcomes into four different “families” 
that we expect to be affected in a similar way by the intervention: (i) mathematics 
achievement; (ii) achievement in other academic subjects, which could be improved 
if tutoring either improves overall study skills or a student’s commitment to school; 
(iii) school behavior, which could change if students become more committed to 
school or teachers see students differently as a result of higher math or nonmath 
achievement; and (iv) out-of-school behavior (arrests), which previous research 
links to educational attainment (Lochner and Moretti 2004). We calculate the false 
discovery rate (FDR) “q-value,” defined as the share of statistically significant 
estimates within a family that are expected to be false positives (Benjamini and 
Hochberg 1995). The selection of outcome “families” is currently more art than 
science, leaving the door open to multiple testing concerns across not just within 
families. Replication of our results across two experiments provides some additional 
protection against “false positives” in our analysis.

The final analyses presented here deviate slightly from our preanalysis plan in 
two ways. The preanalysis plan specified separate analyses for math achievement 
test scores; arrests for violent, property, drug, and other crimes; and a single index 
of CPS schooling outcomes that consists of the student absentee rate, number of stu-
dent misconducts, total courses failed, and school persistence (enrollment or gradu-
ation status by the end of the academic year).13 One change we have made is to split 

violent, property, drug, and other arrests. Missing values are imputed with zeros and an indicator for missingness 
is included when necessary.

13 AEA RCT Registry ID AEARCTR-0000041 (https://www.socialscienceregistry.org/trials/41). 

https://www.socialscienceregistry.org/trials/41
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out separately the two types of outcomes within the CPS schooling outcome index: 
school behavior (absences, misconducts, persistence) versus course grades (failures 
in all subjects), motivated partly by the observation that the “signal” captured by 
student misconducts has changed over time as CPS relies less on formal disciplinary 
actions (Stevens et al. 2015; Adukia, Feigenberg, and Momeni 2022).14 Of course, 
we recognize that looking at additional outcomes increases the risk of false posi-
tives, so the second change we make is to carry out the multiple testing corrections 
described above, which were not specified in the preanalysis plan. We also again 
view the replication of results across the two large-scale RCTs as some additional 
protection against risk of false positives.

E. Main Results

The rates of participation in at least one Saga tutoring session for the treatment 
group were 40.2 percent in study 1 and 36.9 percent in study 2 (for controls the 
rates were 1.1 percent and 7.8 percent, respectively). The most common reasons 
for nonparticipation were (i) the student did not attend the school expected at the 
time of randomization (20.0 percent of the study 1 sample and 31.1 percent of the 
study 2 sample), or (ii) the student had a scheduling conflict and could not add Saga 
tutoring as a class in their schedule. It was rare for students to decline Saga or ask to 
be rescheduled if Saga tutoring had already been added to their schedule by default.

Table 3 shows the estimated ITT effect in study 1 on math achievement test 
scores (EXPLORE and PLAN tests) was 0.09 SD, with a TOT effect of 0.18 SD. 
A potential concern is that perhaps the tutors were just “teaching to the tests” 
rather than helping students to build broad knowledge. So it is notable that we 
saw changes in math grades as well, with a TOT impact of 0.57 points on a 1–4 
GPA scale, relative to the control complier mean (CCM) of 1.62; this represents 
a change from about a C− to a C+ in the student’s regular math class, which as a 
reminder was taught and graded by a classroom teacher not the Saga tutor.15 We 
also estimated a decline in percent of math courses failed of 48 percent of the CCM  
(−0.086/0.178). Other evidence that our results are not artifacts of tutors teaching 
narrowly to the primary CPS accountability tests is that we found TOT effects of 
0.20 SD on the supplemental math tests administered to students on our behalf by 
ISR, which were low stakes for both students and teachers (and which they did not 
know we would administer, nor did the tutors). These estimated effects are also sta-
tistically significant with respect to the FDR q-value that accounts for the number of 
tests in this family of outcomes.

The second panel of Table 3 shows that tutoring may have had positive spillovers 
on some outcomes in subject areas other than math. Reading test scores did not 
show significant impacts, but the TOT estimates indicate tutoring increased grades in 
nonmath courses by 0.17 points (relative to a CCM of 1.61). Furthermore, the TOT 
estimate implies that tutoring reduced the percentage of courses failed in nonmath 

14 When we analyze the CPS index as originally defined the result is statistically insignificant because while the 
academic coursework component is significant (course failures), the school behavior measures are not—results that 
are consistent with what we report in the tables of this paper.

15 The College Board lists a 1.7 GPA as C−, 2.0 as C and 2.3 as C+. “How to Convert Your GPA to a 4.0 Scale.” 
(https://bigfuture.collegeboard.org/plan-for-college/college-basics/how-to-convertgpa-4.0-scale).

https://pages.collegeboard.org/how-to-convert-gpa-4.0-scale
https://pages.collegeboard.org/how-to-convert-gpa-4.0-scale
https://pages.collegeboard.org/how-to-convert-gpa-4.0-scale
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classes by 26 percent (−0.057/0.221). Both of these impacts are statistically signifi-
cant based on analytic t-statistics and with respect to the FDR q-value. There did not 
seem to be any detectable spillovers to behavioral outcomes, as shown in the final 
two panels of Table 3. However, some of the estimated effects on arrests are large 
relative to the control means, though they are not statistically significant. We do not 
take this as evidence that improved academic outcomes have no impact on crime 
involvement, so much as an indication that arrests are noisy outcomes and our statis-
tical power to detect impacts on these outcomes is somewhat limited. (Survey-based 
measures of risky behavior show a similar pattern; see online Appendix Table 2).

Table 4 shows the test score effects of tutoring were at least as large in study 2 
as in study 1. This suggests the learning gains in study 1 are not statistical flukes 
or the result of unusually good program implementation that cannot be replicated. 
The TOT effects for study 2 were a 0.40 SD increase on the EXPLORE and PLAN 
math tests, a 0.41 point increase in math grades (relative to a CCM of 1.80), and a 43 
percent decline (−0.080/0.185) in math courses failed. There were no statistically 
significant indications of spillovers on nonmath courses or behavioral outcomes in 
study 2 once we account for multiple testing.

Table 3—Estimated Effects of High-Dosage Tutoring on Academic and Behavioral Outcomes in 
Study 1, Year 1

Outcome N
Control 
mean ITT estimate TOT estimate

Control 
complier 

mean
FDR 

q-value

Panel A. Mathematics outcomes
CPS-administered math test (study sample Z) 1,852 0.000 0.091 (0.035) 0.179 (0.066) −0.111 0.009
Math GPA 2,215 1.760 0.279 (0.040) 0.571 (0.079) 1.617 0.001
Math courses failed (percent) 2,215 0.191 −0.042 (0.013) −0.086 (0.026) 0.178 0.002
Research team-administered math test (study sample Z) 617 0.000 0.116 (0.056) 0.199 (0.090) −0.102 0.029

Panel B. Nonmath academic outcomes
CPS reading test (study sample Z) 1,851 0.000 0.017 (0.039) 0.033 (0.074) −0.135 0.657
Nonmath GPA 2,244 1.739 0.083 (0.033) 0.173 (0.068) 1.611 0.018
Nonmath core courses failed (percent) 2,244 0.210 −0.027 (0.011) -0.057 (0.022) 0.221 0.018

Panel C. Disciplinary outcomes
Disciplinary incidents 2,494 1.513 0.082 (0.104) 0.189 (0.235) 1.505 0.631
Days absent 2,633 23.182 0.180 (0.812) 0.441 (1.960) 23.971 0.823
Out-of-school suspensions 2,494 1.515 0.184 (0.153) 0.424 (0.345) 1.562 0.631

Panel D. Arrest outcomes
Number of arrests for violent crimes 2,633 0.086 −0.016 (0.015) −0.038 (0.035) 0.104 0.624
Number of arrests for property crimes 2,633 0.061 −0.010 (0.010) −0.025 (0.025) 0.056 0.624
Number of arrests for drug crimes 2,633 0.057 0.019 (0.013) 0.047 (0.032) -0.003 0.624
Number of arrests for other crimes 2,633 0.178 −0.002 (0.022) −0.005 (0.053) 0.121 0.929
Ever arrested for any crime 2,633 0.176 −0.007 (0.013) −0.018 (0.031) 0.148 0.825
Number of arrests for any crime 2,633 0.382 −0.008 (0.036) −0.021 (0.087) 0.279 0.929

Notes: This table shows the impact of high-dosage tutoring on academic and behavioral outcomes in the first 
postrandomization school year for study 1. Nonmath GPA is calculated using grades in all nonmath courses in core 
subject areas (English, science, social science). All regressions control for randomization block fixed effects and 
baseline covariates, including sociodemographics; average prerandomization test scores; and previous year GPA; 
days absent; days out-of-school suspension; disciplinary incidents; an indicator for ever having been arrested; and 
number of violent, property, drug, and other arrests. Missing baseline covariate values are imputed zeros with indi-
cators for missing covariates included. Only observations with observed outcomes are included. False discovery 
rate (FDR) q-values are the smallest level at which we can control the share of false positives in a family of out-
comes and still reject the null for that outcome (Benjamini and Hochberg 1995). Families are defined by panels of 
the table. Heteroskedasticity robust standard errors are in parentheses.
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Table 5 reports the results of pooling together the year 1 data from studies 1 and 
2 to improve statistical power, which is particularly useful for examining impacts 
on outcomes that were not the main focus of the intervention (such as nonmath out-
comes). In the pooled sample, the TOT estimate was a 0.28 SD increase in math test 
scores, a 0.52 point increase in math GPA relative to a CCM of 1.68, and a decline 
of 0.09 in the share of math courses failed, equal to 47 percent of the CCM. These 
effects remain statistically significant when inference is based on analytic stan-
dard errors (Table 5), standard errors clustered by math teacher (online Appendix 
Table 3), or a permutation test (online Appendix Table 4), and even using the FDR 
q-values from each of these variants to account for multiple testing. Even with the 
added power of the pooled sample we cannot detect effects on reading test scores or 
arrests and out-of-school suspensions (despite the large size of the TOT effects in 
proportional terms), although we do detect a 0.18 point increase in nonmath GPA, 
and a decline of 0.05 in share of nonmath courses failed.

The study 1 cohort was able to participate in up to two years of the interven-
tion, which raises the question of whether the gains from tutoring each year are 

Table 4—Estimated Effects of High-Dosage Tutoring on Academic and Behavioral Outcomes in 
Study 2, Year 1

Outcome N
Control 
mean



ITT estimate TOT estimate

Control 
complier 

mean
FDR 

q-value

Panel A. Mathematics outcomes
CPS math test (study sample Z) 1,865 0.008 0.135 (0.036) 0.398 (0.105) −0.172 0.001
Math GPA 2,061 1.859 0.144 (0.043) 0.412 (0.122) 1.795 0.002
Math courses failed (percent) 2,061 0.149 −0.028 (0.013) −0.080 (0.037) 0.185 0.029

B. Nonmath academic outcomes
CPS reading test (study sample Z) 1,865 0.007 0.002 (0.039) 0.005 (0.115) −0.069 0.965
Nonmath GPA 2,110 1.936 0.063 (0.034) 0.181 (0.100) 1.823 0.208
Nonmath core courses failed (percent) 2,110 0.138 −0.010 (0.010) −0.030 (0.028) 0.165 0.434

Panel C. Disciplinary outcomes
Disciplinary incidents 2,474 1.556 −0.012 (0.139) −0.037 (0.437) 1.762 0.933
Days absent 2,710 20.748 0.570 (0.789) 1.899 (2.625) 22.536 0.713
Out-of-school suspensions 2,474 0.733 0.065 (0.092) 0.206 (0.288) 0.569 0.713

Panel D. Arrest outcomes
Number of arrests for violent crimes 2,710 0.104 −0.011 (0.016) −0.038 (0.052) 0.137 0.559
Number of arrests for property crimes 2,710 0.072 −0.027 (0.017) −0.090 (0.056) 0.137 0.219
Number of arrests for drug crimes 2,710 0.051 0.001 (0.012) 0.003 (0.040) 0.033 0.950
Number of arrests for other crimes 2,710 0.225 −0.048 (0.028) −0.160 (0.092) 0.333 0.219
Ever arrested for any crime 2,710 0.164 −0.018 (0.013) −0.059 (0.043) 0.194 0.255
Number of arrests for any crime 2,710 0.452 −0.086 (0.045) −0.286 (0.151) 0.640 0.219

Notes: This table shows the impact of high-dosage tutoring on academic and behavioral outcomes in the first 
postrandomization school year for Study 2. Nonmath GPA is calculated using grades in all nonmath courses in core 
subject areas (English, science, social science). All regressions control for randomization block fixed effects and 
baseline covariates, including sociodemographics; average prerandomization test scores; previous year GPA; days 
absent; days out-of-school suspension; disciplinary incidents; an indicator for ever having been arrested; and num-
ber of violent, property, drug, and other arrests. Missing baseline covariate values are imputed zeros with indica-
tors for missing covariates included. Only observations with observed outcomes are included. False discovery rate 
(FDR) q-values are the smallest level at which we can control the share of false positives in a family of outcomes 
and still reject the null for that outcome (Benjamini and Hochberg 1995). Families are defined by panels of the 
table. Some students (N  =  65) were randomized into study 2 twice. Both observations and treatment assignments 
are retained in the table above. Heteroskedasticity robust standard errors, clustered by individual, are in parentheses.
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cumulative.16 Because we did not randomly assign the number of years students 
were offered tutoring we cannot cleanly distinguish the effects of receiving tutor-
ing for one versus two years. Nevertheless, Angrist and Pischke (2009) show that 
if we use an average causal response model by adjusting equations (2) and (3) so ​​
D​i​​​ is defined by years of participation instead of any participation, we can interpret 
the TOT estimate for study 1 youth in their second postrandomization school year,  
​​​β​ 1​​ ̃ ​​, as a weighted average of the persistent impact of the first year of participation, 
call this ​​Δ​1​​​, and the impact of a second year of participation, ​​Δ​ 2​​​. While we cannot 
separately identify ​​Δ​1​​​ and ​​Δ​ 2​​​ with a single randomization, the weights are equal to 
the first-stage impact on the probability of having at least one year of participation 

16 Even though students were offered a second year of tutoring as an option, take-up rates were fairly low for 
reasons that we believe are more relevant for questions about maximum possible dosage rather than maximum pos-
sible scale. Specifically, while Math Lab is a credit-bearing course in the CPS system for students, CPS also has a 
set of specific course requirements students need to take for graduation as well, and so while students could replace 
one elective in one year with Math Lab, that was difficult to do for two years in a row and still complete all the other 
courses that would be required for graduation.

Table 5—Estimated Effects of High-Dosage Tutoring on Academic and Behavioral Outcomes, 
Pooling Study 1 and 2

Outcome N
Control 
mean ITT estimate TOT estimate

Control 
complier 

mean
FDR 

q-value

Panel A. Mathematics outcomes
CPS math test (study sample Z) 3,717 0.004 0.119 (0.025) 0.282 (0.059) -0.143 0.001
Math GPA 4,276 1.803 0.217 (0.029) 0.516 (0.069) 1.675 0.001
Math courses failed (percent) 4,276 0.173 −0.036 (0.009) −0.086 (0.022) 0.184 0.001

Panel B. Nonmath academic outcomes
CPS reading test (study sample Z) 3,716 0.003 0.008 (0.028) 0.019 (0.065) −0.104 0.774
Nonmath GPA 4,354 1.825 0.076 (0.024) 0.184 (0.058) 1.699 0.005
Nonmath core courses failed (percent) 4,354 0.178 −0.020 (0.007) −0.048 (0.018) 0.198 0.012

Panel C. Disciplinary outcomes
Disciplinary incidents 4,968 1.533 0.042 (0.086) 0.111 (0.230) 1.612 0.631
Days absent 5,343 22.054 0.403 (0.564) 1.144 (1.598) 23.188 0.631
Out-of-school suspensions 4,968 1.162 0.129 (0.089) 0.343 (0.238) 1.078 0.449

Panel D. Arrest outcomes
Number of arrests for violent crimes 5,343 0.094 −0.012 (0.011) −0.035 (0.031) 0.117 0.287
Number of arrests for property crimes 5,343 0.066 −0.018 (0.010) −0.050 (0.028) 0.091 0.287
Number of arrests for drug crimes 5,343 0.054 0.010 (0.009) 0.027 (0.025) 0.014 0.287
Number of arrests for other crimes 5,343 0.200 −0.024 (0.018) −0.068 (0.051) 0.214 0.287
Ever arrested for any crime 5,343 0.171 −0.011 (0.009) −0.030 (0.025) 0.164 0.287
Number of arrests for any crime 5,343 0.414 −0.044 (0.029) −0.125 (0.083) 0.436 0.287

Notes: This table shows the impact of high-dosage tutoring on academic and behavioral outcomes in the first 
postrandomization school year pooling both studies. Nonmath GPA is calculated using grades in all nonmath 
courses in core subject areas (English, science, social science). All regressions control for randomization block 
fixed effects and baseline covariates, including sociodemographics; average prerandomization test scores; and pre-
vious year GPA; days absent; days out-of-school suspension; disciplinary incidents; an indicator for ever hav-
ing been arrested; and number of violent, property, drug, and other arrests. Missing baseline covariate values are 
imputed zeros with indicators for missing covariates included. Only observations with observed outcomes are 
included. False discovery rate (FDR) q-values are the smallest level at which we can control the share of false pos-
itives in a family of outcomes and still reject the null for that outcome (Benjamini and Hochberg 1995). Families 
are defined by panels of the table. Some students (N  =  65) were randomized into study 2 twice. Both observations 
and treatment assignments are retained in the table above. Heteroskedasticity robust standard errors, clustered by 
individual, are in parentheses.
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or having exactly two years of participation, normalized by the first-stage impact on 
the overall years of participation.

The TOT estimate of the effect per year of tutoring participation on math test 
scores at the end of the second year is 0.23 SD (see Table 6, panel B). The first 
stage impacts shown in Table 6, panel A imply the weights on ​​Δ​1​​​ and ​​Δ​ 2​​​ are 0.75 
(0.42/0.56) and 0.25 (0.14/0.56), respectively. Assuming both of these effects are 
nonnegative, we can estimate an upper bound for ​​Δ​1​​​ by assuming ​​Δ​ 2​​  =  0​, i.e., that 
all of the observed impacts at the end of year 2 are persistent effects from the first 
year of participation, so ​0  ≤ ​ Δ​1​​  ≤ ​​ β​ 1​​ ̃ ​/​w​1​​​. Table 6, panel B shows that the upper 
bound of this persistent effect is 0.31 SD. The final column shows the analogous 
upper bound for ​​Δ​ 2​​​, assuming that all of the observed impacts at the end of year 2 
are the result of participating in two years of tutoring with no persistent effect from 
the students who participated in the first year but not the second, is 0.84 SD.

We also find that the effects of tutoring seem to persist over time. Table 7 pools 
together data from studies 1 and 2 (for improved power) and examines impacts for 
students as measured in what would be each student’s eleventh grade year if they 
were not retained in a grade. Interpretation of these results could be complicated if 
there are treatment-control differences in being held back in school, but we can rule 
out effects on grade retention larger than plus or minus 3 percentage points in ITT 
terms. We find TOT effects on math test scores in eleventh grade of 0.23 SD, similar 
to the pooled impact measured at the end of tutoring, while the TOT effect on math 
grades is 0.25 GPA points, just under half of the short-term effect.

Table 7 also shows that the estimated TOT effect on graduating on time from high 
school, pooling the study 1 and 2 samples again, is 1.3 percentage points relative 
to a CCM of 78.3 percent, but is imprecisely estimated. The standard error of 3.2 
percentage points means we cannot rule out a decline in graduation rates as large as 
−5.0 percentage points or an increase as large as +7.6 points.17 The point estimate 
for the effects of tutoring on graduation is close to the effect we might expect from 
higher math test scores alone. This comes from multiplying the experimental impact 
on math test scores (0.28 SD, Table  5) by the coefficient of a nonexperimental 
regression of graduating on time on ninth grade math test scores controlling for 
student characteristics, which suggests higher test scores would boost graduation by 
3.2 percentage points—well within the confidence interval of our estimated effect 
of tutoring on graduation.18

F. Robustness Checks and Extensions

The estimated effects on our main outcomes are robust to a range of estimation 
decisions. Online Appendix Table 6 shows what happens when we change the set of 
baseline covariates we control for in our regression, while online Appendix Table 7 
shows the results if we drop from the analysis sample students we thought would 
be in our study schools during the summer months when we carried out random 

17 Results for the study 1 and 2 cohorts separately are in online Appendix Table 5. 
18 That regression uses data on N  =  24,782 students in ninth grade in AY2013–14 for whom we have valid test 

scores and later graduation outcomes (82 percent of the total cohort of AY2013–14 ninth graders). The coefficient 
on ninth grade math scores in that regression equals 0.116.
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Table 6—Estimated Effects of High-Dosage Tutoring on Academic and Behavioral Outcomes in 
Study 1, Year 2

Outcome N

Explanatory variable: 
year 1 assignment to 
high-dosage tutoring

Panel A. First stage impacts
Years of high-dosage tutoring 2,633 0.563 (0.020)
1 or more years of high-dosage tutoring 2,633 0.423 (0.014)
2 years of high-dosage tutoring 2,633 0.139 (0.010)

Outcome N
Control 
mean

Explanatory variable: 
years of tutoring

Explanatory variable: at 
least 1 tear of tutoring

Explanatory variable:  
2 years of tutoring

Panel B. Mathematics impacts
CPS math test (study sample Z) 1,640 0.000 0.228 (0.050) [0.001] 0.305 (0.067) [0.001] 0.835 (0.189) [0.001]
Math GPA 1,841 1.879 0.180 (0.065) [0.012] 0.243 (0.088) [0.012] 0.630 (0.230) [0.013]
Math courses failed 1,841 0.295 −0.080 (0.035) [0.021] −0.109 (0.047) [0.021] −0.281 (0.123) [0.023]
Research-team administered math  
  test (study sample Z)

878 0.000 0.139 (0.059) [0.021] 0.188 (0.080) [0.021] 0.512 (0.223) [0.023]

Notes: This table shows the impact of high-dosage tutoring on academic and behavioral outcomes in the second 
postrandomization school year for study 1. Panel A shows the first-stage impacts on years of participation, having at 
least one year of participation, and having two years of participation. Panel B shows the impacts on our main mathe-
matics outcomes. The first set of results uses years of schooling as the endogenous variable in equations (2) and (3). 
The second and third sets of results show the upper bound on the impact of having at least one year of participation 
and of having two years of participation, respectively. See text for details. All regressions control for randomization 
block fixed effects and baseline covariates, including sociodemographics; average prerandomization test scores; 
and previous year GPA; days absent; days out-of-school suspension; disciplinary incidents; an indicator for ever 
having been arrested; and number of violent, property, drug, and other arrests. Missing baseline covariate values 
are imputed zeros with indicators for missing covariates included. Only observations with observed outcomes are 
included. False discovery rate (FDR) q-values are shown in brackets. These are the smallest level at which we can 
control the share of false positives in a family of outcomes and still reject the null for that outcome (Benjamini and 
Hochberg 1995). Families are defined by panels of the table.

Table 7—Estimated Effects of High Dosage Tutoring on 11th Grade Outcomes and High School 
Graduation

Outcome N
Control 
mean

ITT
 estimate

TOT
 estimate

Control 
complier 

mean
FDR 

q-value

Panel A. 11th grade outcomes
11th grade CPS math test (study sample Z) 2,973 0.006 0.099 (0.028) 0.232 (0.065) −0.147 0.001
11th grade math GPA 3,019 1.993 0.109 (0.037) 0.251 (0.086) 1.837 0.004

Panel B. High school graduation outcomes
Graduated on time 3,594 0.761 0.005 (0.012) 0.013 (0.032) 0.783 0.677
Graduated ever 3,614 0.831 0.000 (0.011) 0.000 (0.029) 0.865 0.996

Notes: This table shows the impact of high-dosage tutoring on long-run academic outcomes pooling both studies.  
All regressions control for randomization block fixed effects and baseline covariates, including sociodemographics; 
average prerandomization test scores; and previous year GPA; days absent; days out-of-school suspension; dis-
ciplinary incidents; an indicator for ever having been arrested; and number of violent, property, drug, and other 
arrests. Missing baseline covariate values are imputed zeros with indicators for missing covariates included. Only 
observations with observed outcomes are included. False discovery rate (FDR) q-values are the smallest level 
at which we can control the share of false positives in a family of outcomes and still reject the null for that out-
come (Benjamini and Hochberg 1995). Families are defined by panels of the table. Some students (N  =  65) 
were randomized into study 2 twice. Both observations and treatment assignments are retained in the table above. 
Heteroskedasticity robust standard errors, clustered by individual, are in parentheses.
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assignment but wound up not enrolling at those schools in the fall. Online Appendix 
Table 8 shows the results using multiple imputation for missing outcomes, which 
assumes outcomes are missing at random, and, for continuous outcomes, quantile 
regression where missing values are imputed with arbitrarily low (in this case, zero) 
values, given baseline data suggesting those with missing tests are disproportion-
ately students with low baseline test scores and grades. Online Appendix Table 9 
shows Lee bounds (Lee 2009) of the impacts on our main outcomes include only 
beneficial impacts, except the lower bound on math test scores in study 1 is −0.008 
and the lower bound on nonmath GPA in study 2 is −0.009.

As noted above, study 1 was part of a 2 × 2 factorial design. Including indicators 
into our estimating equation for BAM assignment does not materially change our 
tutoring effect estimates (see online Appendix Table 10). The same online Appendix 
exhibit shows that estimating the interaction between the academic and nonacademic 
interventions yields coefficients of 0.08, −0.04, and 0.004 on math test scores, math 
GPA, and math course failures. These interactions are imprecisely estimated and 
are statistically insignificant at conventional levels. Replication of study 1’s tutoring 
impacts in the study 2 sample (which did not have any BAM randomization) provides 
further confirmation that the study 1 results are not influenced by BAM interactions.

Online Appendix Table 11 shows results for ninth graders, for whom the coun-
terfactual for tutoring was typically a second period of “double dose” algebra while 
online Appendix Table 12 shows results for tenth graders, for whom the counterfac-
tual was an elective course a student would have chosen to take. The similarity in 
results for ninth and tenth graders is consistent with Nomi and Allensworth’s (2009) 
findings that CPS double dose algebra has limited benefits.

The comparison of year 1 impacts of study 1 versus study 2 is complicated 
somewhat by the fact that study 2 includes female as well as male students. Online 
Appendix Table 13 shows that the results for female students were not so different 
from those of the full study 2 results that pool males and females together. The 
racial/ethnic composition of the study 1 sample (46 percent Black students) was 
also somewhat different from the study 2 sample (64 percent Black students). 
We tested the interaction of treatment with student race/ethnicity but did not see 
detectably different effects for Black and Hispanic students (see online Appendix 
Table 14).

Our estimates understate true effects if the SUTVA assumption is violated—e.g., 
if control students benefit from higher-achieving treatment peers. Under the assump-
tion that this attenuation is more pronounced when controls are more exposed to tutor-
ing participants, in online Appendix Figure 1 we plot randomization-block-specific 
TOT effects against block-specific treatment assignment rates. We find the treatment 
effect seemed to increase (rather than decrease) with a larger share of individuals 
within a block randomized to treatment. This is the opposite of what we would 
expect if treatment spillovers were attenuating our estimates.

A final reason we may understate impacts is possible floor effects in achieve-
ment tests.19 To test for floor effects we group students into baseline achievement 

19 For example if a ninth grade student started the intervention year with third grade-level math skills and tutor-
ing increased those skills by three grade levels, we would not measure these learning gains if the tests include no 
items below (say) a seventh or eighth grade level.
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bins in two ways: first, by using the average of every baseline math assessment we 
have for each student (80 percent of all students have results for at least 2 tests); and 
second, by building a machine learning model that predicts achievement at the end of 
the tutoring intervention year as a function of all baseline achievement measures (see 
online Appendix II for details). In the left-hand panel of Figure 1 we plot the point 
estimate and 95 percent confidence interval for the effects on math GPA by baseline 
achievement quartiles under both grouping approaches. The left-hand panel of the 
figure shows that we find positive treatment effects on math GPA for every baseline 
achievement. In contrast, the right-hand panel shows that we find positive treatment 
effects on math test scores for all but the bottom baseline achievement quartile.

This sort of comparison in the magnitude of test score gains across baseline 
achievement quartiles is complicated by the fact that grades and test scores are ordi-
nal not cardinal measures (see for example Bond and Lang 2018). So in online 
Appendix III we show that we get similar results when we anchor test scores in 
adult earnings as in Cunha and Heckman (2008). These findings taken together are 
consistent with floor effects.

III.  Mechanisms

To understand the potential mechanisms through which tutoring may affect 
student learning we develop a simple model in the spirit of Lazear (2001). The 
purpose of the model is to help us understand the relative benefits of putting stu-
dents in a regular classroom with a relatively highly-paid credentialed teacher, 
versus greatly reducing class size in a budget-neutral way by using a lower-paid, 
less-trained instructor. This comparison corresponds roughly to the treatment and 
control conditions in the experiment, thus the model can make predictions about 
conditions that might generate larger versus smaller treatment effects from tutor-
ing. Lazear notes the public good nature of a classroom means class size reduction 
should be relatively more beneficial in settings where the level of behavioral dis-
ruptions is higher. Our model extends this idea by making the frequency of dis-
ruption endogenous to the heterogeneity in student achievement in the classroom. 
If teachers must pick some achievement level to teach to, students further from 
that target achievement level are more likely to create disruptions because they are 
confused or bored, or disrupt regular instruction by asking questions that are not 
relevant for the rest of the class. Therefore the higher the variance in achievement 
in a classroom, the greater the frequency of classroom questions and disruptions. 
Small-group tutoring would therefore generate larger reductions in disruptions, 
and therefore larger learning gains, relative to counterfactual classrooms that are 
more heterogeneous.

A similar mechanism can arise if teachers try to “personalize” instruction by 
working with small groups of similar-ability students in the classroom. The more 
heterogeneous is achievement in the class, the less teacher time each student receives 
(because to personalize instruction to a more heterogeneous classroom, the teacher 
has to create more ability groups). Since each student would receive less direct 
attention from the teacher in more heterogeneous classrooms, the contrast in direct 
instruction time would also be larger and tutoring would generate larger learning 
gains relative to more heterogeneous classrooms.
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To model this situation, we assume a school has ​S​ students and a budget ​M​ to 
spend on ​m​ teachers. Teacher quality depends on the wage according to ​V​(w)​​, 
where ​V ′​(w)​  >  0​. The school can hire ​M/w​ teachers yielding an average class size 
of ​n  =  wS/M​. Each student’s skill level is drawn independently from a distribution  
​N​(μ, ​σ​​  2​)​​. Mirroring Lazear (2001), students only learn when there are no dis-
tractions, which occurs with probability ​​p​​ n​​ (or ​​p​​ wS/M​​  ) where ​p​ depends on class-
room heterogeneity: ​p​(​σ​​ 2​)​  = ​ e​​ −​σ​​ 2​​/​(1 + ​e​​ −​σ​​  2​​)​.​ Alternatively, one could assume 
this is capturing that each student only learns when their teacher is focused on 
their achievement level. The school chooses wages according to the following opti-
mization problem:

	​ ma​x​  w​​ SV​(w)​p​​(​σ​​ 2​)​​​ 
wS/M

​.​

The comparative static of the optimal wage with respect to classroom heterogeneity 
is

	​ ∂  ​w​​ ∗​/∂ ​σ​​ 2​  = ​ 
​{S/M​[1 − p​(​σ​​  2​)​]​}​V​​(​w​​ ∗​)​​​ 2​

   ____________________   
V​(​w​​ ∗​)​V ″​(​w​​ ∗​)​ − V ′​​(​w​​ ∗​)​​​ 2​

 ​ .​

Figure 1. High-Dosage Tutoring Effects on Math Test Scores and Math GPA by Baseline Achievement 
Quartile

Notes: Figure shows the effects of high-dosage tutoring on math GPA (left panel) and CPS-administered math test 
score (right panel) separately for each baseline math achievement quartile, defined in two different ways. First, we 
use the average of all the baseline math test scores we have for each student. Second, we build a machine learn-
ing model to predict end-of-treatment year math test scores for the control group using all the baseline covariate 
information available for students (see online Appendix III). Estimates are from our ITT specification replacing 
treatment assignment with treatment assignment interacted with indicators for each group with appropriate main 
effects added, including block fixed effects and our usual set of baseline covariates. Because we include the full 
set of treatment interactions, estimates are interpretable as the ITT within each group. Error bars show 95 percent 
confidence intervals.
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We show in online Appendix IV that this is negative so long as teacher quality is not 
too convex in wages. This implies a school should trade teacher quality for smaller 
class sizes (that is, shift in the direction of high dosage tutoring) as heterogeneity 
in student achievement increases or, holding wages fixed, that we should see bigger 
benefits from tutoring in classrooms with greater dispersion in students’ baseline 
skills.

Figure 2 shows that the ability of tutoring to help address behavioral disruptions 
does not seem to be a key mechanism behind these effects because impacts do not 
seem to be larger for students whose classroom settings have higher levels of disrup-
tion. One data challenge we face is that CPS accurately records what teacher a given 
student has, but seems to record less reliably which specific section of the teach-
er’s class any given student would have been in. It is not obvious which approach 
to measuring classroom environments is better (assigning the average classroom 
characteristics of all sections taught by a given teacher, or assigning the features 
of a given course section given it might be the wrong section) so we show the esti-
mates both ways. Figure 2 shows the results of re-estimating the TOT model with 
interactions between treatment assignment and prevalence of classroom disruptions 
measured in different ways (misconducts or suspensions). Whether we use math 
GPA (left-hand panel) or math test scores (right-hand panel) as the outcome, the 
coefficients on the interaction term are modest in magnitude with confidence inter-
vals that include zero, whether we assign students to classrooms by either section or 
teacher (see online Appendix Table 15 for more details). The only exception is that 
treatment effects on math test scores are significantly smaller in classrooms with a 
higher percentage of students with any baseline misconduct. This is the opposite of 
what we would expect to find if the ability of tutoring to help address behavioral 
disruptions was a key mechanism driving our effects.

In contrast, Figure 3 suggests that the benefits of assignment to tutoring may be 
larger for students whose classroom environments have higher variance in student 
achievement levels. This comes from re-estimating the TOT model interacting treat-
ment assignment with different measures of heterogeneity in student achievement 
in the classroom environment. The impact of classroom heterogeneity on tutoring 
treatment effects is positive in all but one case, although somewhat imprecisely esti-
mated, whether we measure achievement using either math GPA (left-hand panel) 
or math test scores (right-hand panel). The interaction with math GPA heterogeneity 
is particularly pronounced if we assign students to classroom characteristics based 
on teacher (rather than teacher and section).20 This finding is consistent with the 
importance of personalization of instruction implied by our model, and also with 
the results of Banerjee et al.’s (2007) study of the Pratham NGO in India and Duflo, 
Dupas, and Kremer’s (2011) study of tracking in Kenya.

In further support of personalization being a likely mechanism for the benefits of 
tutoring, we show the results are likely not due to a generic “mentoring” effect that 
arises simply from connecting youth to a prosocial adult for so many hours over 
the school year. In the developing-country context of India, Banerjee et al. (2007) 
found qualitatively similar impacts from Pratham’s tutoring-like intervention and a 

20 See online Appendix Table 15 for more details. Also, online Appendix Figure 4 shows that the classroom 
math heterogeneity measures are almost completely uncorrelated with impacts on reading outcomes. 
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computer-assisted learning intervention, which is more consistent with the influence 
of the two mechanisms highlighted by our model than with a generic mentoring 
effect. In our survey data collected for this study, we find no detectable effects on the 
number of adults students say they have to talk to or who care about them, although 
the confidence intervals do not let us rule out the possibility this has increased by 
one adult (see online Appendix Table 16).21 We also do not see detectable changes 
in the nonacademic or socioemotional skills we might expect any mentoring effects 
to operate through (for example Heller et al. 2017). Our 95 percent confidence inter-
vals let us rule out ITT effects on z-score indices of 0.10 SD for grit, 0.16 SD for 
conscientiousness, and 0.10 SD for locus of control. There would seem to be limited 
scope for these mechanisms to drive sizable test score gains unless there is some 
important interaction effect between any mentoring effect and the academic ele-
ments of tutoring.22

21 Online Appendix Table 16 shows the results from our first wave of ISR surveys done at the end of the first 
program year (2013–2014). These results are comparable to the findings from our second wave of ISR surveys 
administered at the end of the second program year (results for second wave of ISR surveys can be provided upon 
request).

22 For example, the program we study here tries to have students work with the same tutor all year to strengthen 
the relationship; it is possible that rotating tutors across students could lead to smaller impacts. We cannot test that 
possibility with the data we have available here.

Figure 2. Heterogeneity by Classroom Discipline

Notes: Figure shows the coefficient on the interaction between treatment assignment and different measures of het-
erogeneity in baseline classroom behavior for each student in the study sample. The CPS data on classroom assign-
ments for students are noisy for assigning students to a specific classroom or “section,” but we believe are more 
reliable for assigning students at least to the correct teacher. So we replicate the results first defining classroom at 
what we believe to be the actual classroom section (recognizing that is noisy), and then replicate counting all stu-
dents assigned to the same teacher as a “classroom” (recognizing that adds measurement error of a different sort). 
Estimates are from our TOT specification with the interaction between treatment and each measure added along 
with the appropriate main effects. All specifications also control for block fixed effects and our usual set of base-
line covariates. Figure plots the coefficient on the interaction between treatment and the specified measure and 95 
percent confidence intervals.
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IV.  Benefit-Cost Analysis and Scaling

The benefit-cost ratio of Saga tutoring appears to be comparable in magnitude to 
that of the most successful early childhood programs, like the Abecedarian Project 
and the Perry Preschool Program, as well as class size reduction as implemented 
in the Tennessee STAR experiment.23 At the time of our studies (2013–2015) the 
per-pupil cost was approximately $3,500 (defensible range of $3,200 to $4,800).24 
To estimate benefits, we adapt the approach of Kline and Walters (2016) and cal-
culate that the present discounted value of the earnings gains induced by Saga’s 
tutoring is about $11,500 for study 1 and $25,700 for study 2.25 So the implied 

23 Borman and Hewes (2002) show that the Success for All model yields similar math test score gains per 
$1,000 as the model programs discussed here (a 0.04 SD improvement in math per $1,000). Saga also performs 
favorably based on this metric, with math TOT effects per $1,000 of 0.04 to 0.06 in study 1 and 0.08 to 0.12 in study 
2. Success for All, however, also improves reading scores (a 0.09 SD improvement per $1,000).

24 See online Appendix V for a more detailed discussion of the cost estimates.
25 This approach to extrapolating earnings benefits based on test score gains may be conservative. García, 

Heckman, and Ronda (forthcoming) show that this type of approach underestimates the observed long-run benefits 
of the Perry Preschool Program by two-thirds because it ignores the impacts on noncognitive skills.

Figure 3. Heterogeneity by Classroom Math Skills

Notes: Figure shows the coefficient on the interaction between treatment assignment and different measures of het-
erogeneity in classroom math achievement for each student in the study sample. Estimates are from our TOT spec-
ification replacing treatment assignment with treatment assignment interacted with indicators for each group with 
appropriate main effects added, including block fixed effects and our usual set of baseline covariates. Because we 
include the full set of treatment interactions, estimates are interpretable as the TOT within each group. Figure plots 
point estimates and 95 percent confidence intervals. The CPS data on classroom assignments for students are noisy 
for assigning students to a specific classroom or “section,” but we believe are more reliable for assigning students 
at least to the correct teacher. So we replicate the results first defining classroom at what we believe to be the actual 
classroom section (recognizing that is noisy), and then replicate counting all students assigned to the same teacher 
as a “classroom” (recognizing that adds measurement error of a different sort).
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benefit-cost ratios are 2.4–3.6 in study 1 and 5.4–8.0 in study 2.26 (See the online 
Appendix for details). By way of comparison, estimated benefit-cost ratios for 
model early childhood programs are 1.9–2.2 for the Abecedarian Project (Masse 
and Barnett 2002), 3.9–6.8 for Perry Preschool (Heckman et al. 2010), and about 2 
for a 7-student reduction in class sizes in grades K–3 (Krueger 2003).27

The biggest challenge to this scale strategy is likely to be cost, as we can see for 
example in the aftermath of the global COVID-19 pandemic. The US Secretary of 
Education, Miguel Cardona, encouraged districts to support high-dosage tutoring 
with at least part of the $122 billion the federal government provided to overcome 
pandemic-related learning loss (Locke 2022). Even with this one-time infusion of 
resources, however, districts can provide tutoring only to a modest share of all the 
students who would benefit.

A related challenge is labor supply. The “great resignation” that has come on the 
heels of the pandemic has made it difficult for school districts around the country to 
recruit core instructional staff like full-time teachers, much less tutors. Obviously, 
this comes back to cost: a high enough wage would lure more tutors but also (hold-
ing the budget fixed) increase per pupil costs and so reduce the number of children 
who could be served. Some districts have responded by, for example, hiring “vir-
tual” tutors, which expands labor supply geographically and also allows schools to 
hire part-time tutors as well. The degree to which virtual versus in-person tutoring 
affects student learning is currently not known. And early feedback from districts 
trying to work with part-time tutors is that scheduling tutors and students together 
can be a challenge.

What the labor supply of potential tutors looks like, and how quickly tutor effec-
tiveness might decline as scale increases, is also an open question. One sugges-
tive data point is that in the literature review of high-dosage tutoring by Nickow, 
Oreopoulos, and Quan (2020), they compare the average effectiveness of tutoring 
carried out with (expensive) full-time, credentialed teachers with tutoring done by 
(less expensive) trained paraprofessionals. We might hypothesize that the difference 
in “quality” between teachers and paraprofessionals could be comparable to how 
quality might change within the pool of paraprofessionals as more and more are 
hired as tutoring expands. The Nickow, Oreopoulos, and Quan (2020) finding sug-
gests paraprofessionals are nearly as effective, if not exactly as effective, as teachers, 
especially for the setting we study here (math instruction, with tutoring delivered 
at high dosages). That is consistent also with the results of Davis et al. (2017), who 
show that over the range of tutors hired by Saga Education in these studies to date, 
we see little difference in effectiveness (or “value added”) between tutors at the top 

26 Alternatively, Hanushek and Woessman (2008) review several studies that consistently find a one standard 
deviation increase in test scores is associated with about a 12 percent increase in earnings. Applying this effect size 
combined with our estimated increase on standardized math test scores to a quadratic wage/salary earnings age 
trajectory estimated using data on Black and Hispanic individuals from Chicago in the 2019 American Community 
Survey (and discounted to age 15 at a 5 percent rate) implies slightly smaller benefit-cost ratios of 1.4 to 2.2 for 
study 1 and 3.2 to 4.8 for study 2.

27 Krueger’s calculation uses a 4 percent discount rate and so would be below 2 with a 5 percent discount rate, 
which is the discount rate used in our calculations and those for Abecedarian and Perry.
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versus bottom of Saga’s ranked hiring list. That is, quality does not decline at the 
prevailing tutor wage at least at the current scale of hiring we have seen.28

One way to expand scale by simultaneously reducing the number of tutors that 
must be hired to serve a given number of students, and reduce cost per student, is to 
incorporate elements of computer assisted learning (CAL) into tutoring. In ongo-
ing work, our team in partnership with CPS and Saga has implemented a “hybrid” 
model in which tutors work with students in person every other day (rather than 
every day), and students spend the off days at a separate desk next to the tutor on 
CAL software. This reduces tutoring costs by about a third and cuts the number of 
tutors that need to be hired in half. In our preliminary estimates, the treatment effects 
of the tutor-CAL hybrid model are similar to those reported here (Bhatt et al. 2022). 
Saga is also now trying a model that increases student-tutor caseloads by 50 percent 
again. To what degree would it be possible to increase student-tutor ratios and incor-
porate more CAL without reducing effectiveness is an open question.

A final thought about scaling is that our target scale will hopefully be somewhat 
lower once we are through the full after-effects of the pandemic. As has been noted 
the consequences of the pandemic for student learning have not only been severe, 
but also widespread. So almost all students would currently benefit from tutoring, 
since so many students are currently behind grade level and so will have trouble 
engaging with grade-level instruction. But eventually the hope would be that more 
students catch up, and so tutoring could be focused just on the students who are 
behind, with just enough tutoring delivered until they can fully engage again with 
regular classroom instruction. Additional discussion about scaling strategies are in 
Ander, Guryan, and Ludwig (2016) and Kraft and Falken (2021).

V.  Conclusion

Fryer (2014) shows that identifying a handful of strategies from “no excuses” 
charter schools and incorporating them into public schools can improve student 
achievement, but many of these changes (like lengthening the school day and year, 
or replacing all the principals and half the teachers) were only possible to implement 
within these particular Houston public schools because they were low-performing 
schools in danger of being taken over by the state. In Fryer’s study some grades but 
not others got tutoring on top of the other “no excuses” changes. Among middle and 
high school students the gains for tutoring and nontutoring grades was 0.61 versus 
0.21 SD, respectively, suggesting that for teens, tutoring might be the most import-
ant component strategy used in no excuses schools.

In the present paper, pooling the two study samples together we find the aver-
age effect of tutoring on high school students’ math test scores is 0.28 SD, not 

28 The study by Davis et al. (2017) was carried out in the context of a tutoring program that provided tutors with 
four weeks of training and gave them access to a high-quality curriculum. There is some suggestion in past work 
that having a structured, quality curriculum can help accommodate tutors with lower levels of pedagogical training 
(see, e.g., Nickow, Oreopoulos, and Quan 2020; Rowan, Camburn, and Correnti 2004), although we have no data 
directly to examine how tutor effectiveness might change as the number of tutors hired increases in a setting with 
less training and a weaker curriculum. The field’s investments in educational technology also raises the possibility 
of a different solution to the curriculum challenge, which is the possibility that tutors and the students they are 
tutoring essentially use a computer assisted learning program (of which there are now an increasing number of 
options) as the tutoring curriculum.
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so dissimilar to Fryer’s implied 0.4 SD effect (0.61–0.21) once we account for 
the standard errors around the estimates. By way of comparison, the gap in math 
test scores for Black and White eighth grade students in the National Assessment 
of Educational Progress is 0.8 SD.29 So even a few years of high-dosage tutoring 
alone could substantially reduce educational disparities. As Nickow, Oreopoulos, 
and Quan (2020) described the results from the two RCTs we report on here, these 
effect sizes are “exceptional relative to the potential alternatives at the secondary 
level” (p. 36). The most important barrier to truly large-scale adoption is likely to be 
cost, despite the fact that a key innovation of the tutoring intervention we study here 
by its developer, Saga Education, is to lower cost by hiring paraprofessionals (rather 
than full-fledged teachers) as tutors.

The lesson is that it is possible to substantially improve academic skills by 
accounting for the challenges of individualizing instruction—among other things—
and that these strategies can be effective even when implemented in traditional pub-
lic high schools to broad, representative samples of students. These strategies seem 
to work even with secondary school students, yielding benefit-cost ratios compara-
ble to promising early childhood programs. Evidently adolescence is not too late to 
realize large social benefits from human capital investment.
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