
NBER WORKING PAPER SERIES

THE UNREASONABLE EFFECTIVENESS OF ALGORITHMS

Jens Ludwig
Sendhil Mullainathan
Ashesh Rambachan

Working Paper 32125
http://www.nber.org/papers/w32125

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
February 2024

This is a longer version of a paper forthcoming in the 2024 American Economic Association 
Papers & Proceedings. Thanks to Alejandro Roemer and Josh Schwartzstein for invaluable 
assistance; to Nathan Hendren, Paul Goldsmith-Pinkham, Greg Stoddard, Crystal Yang and 
participants in our AEA session for valuable comments; and to the Center for Applied AI at the 
University of Chicago and the University of Chicago Crime Lab for financial assistance. Any 
errors and all opinions are our own. The views expressed herein are those of the authors and do 
not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2024 by Jens Ludwig, Sendhil Mullainathan, and Ashesh Rambachan. All rights reserved. 
Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission 
provided that full credit, including © notice, is given to the source.



The Unreasonable Effectiveness of Algorithms
Jens Ludwig, Sendhil Mullainathan, and Ashesh Rambachan
NBER Working Paper No. 32125
February 2024
JEL No. C45,C54,D61,H40,I00,K00

ABSTRACT

We calculate the social return on algorithmic interventions (specifically their Marginal Value of 
Public Funds) across multiple domains of interest to economists—regulation, criminal justice, 
medicine, and education. Though these algorithms are different, the results are similar and 
striking. Each one has an MVPF of infinity: not only does it produce large benefits, it provides a 
“free lunch.” We do not take these numbers to mean these interventions ought to be necessarily 
scaled, but rather that much more R&D should be devoted to developing and carefully evaluating 
algorithmic solutions to policy problems.

Jens Ludwig
Harris School of Public Policy
University of Chicago
1307 East 60th Street
Chicago, IL 60637
and NBER
jludwig@uchicago.edu

Sendhil Mullainathan
Booth School of Business
University of Chicago
5807 South Woodlawn Avenue
Chicago, IL 60637
and NBER
sendhil.mullainathan@gmail.com

Ashesh Rambachan
Department of Economics
MIT
Cambridge, MA
ashesh.a.rambachan@gmail.com



3 

I. Introduction  
 

Are algorithms getting too much attention within economics? Bubbles arise when 

valuation exceeds fundamentals, when enthusiasm for what might be overtakes what actually is. 

Especially with the hype around large language models, are we gripped by, as Keynes might put 

it, “algorithmic spirits?” 

To answer this question we look, just as we would with a stock, at the fundamentals: 

what tangible value do algorithms create in addressing economic issues? To answer this question 

we focus on their effectiveness in addressing public policy problems—the sort of algorithm that 

is migrating from the online world to real-world domains of traditional interest to economists. 

Public finance provides a direct way to measure these fundamentals: the ratio of net benefit to 

society by the net cost to the government. Formalized as Marginal Value of Public Funds 

(MVPF), these calculations have proven helpful not just in guiding policy but also in guiding 

policy R&D (Hendren and Sprung-Keyser 2020, 2022). 

For example, encouraging results from a small-scale pilot study of class size reduction in 

Indiana led to the large-scale randomized controlled trial (RCT) of Tennessee STAR (Mosteller, 

1995). Enthusiasm about the Perry Preschool pilot study helped motivate Congress in 1998 to 

support a large-scale national RCT of Head Start.1  For the early stages of the ‘R&D pipeline’—

interpreting pilots to decide what is worth a large-scale RCT, for example—these calculations 

need only direct us to policies that have high potential upside, worthy of further exploration. 

In this paper, we consider MVPFs for algorithmic interventions to similarly provide 

guidance on how much effort we should be putting into exploring algorithmic solutions to policy 

                                                 
1 https://www.brookings.edu/articles/does-head-start-work-the-debate-over-the-head-start-impact-study-explained/ 
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problems.2 For example, Bergman et al. (2023) study a potential source of inefficiency in college 

course selection: if a course is too hard the student might drop out, but if it’s too easy it’s a waste 

of the student’s time and money. Using an algorithm to predict course success improves course 

selection, so much so that the MVPF of this intervention is infinite—the policy not only 

generates large benefits, it is also a “free lunch” to the government.  

We find similarly high MVPFs in all the other cases we study: algorithms used to make 

pretrial release decisions within the justice system, refer medical patients for testing, and guide 

workplace safety inspections. All these algorithms produce infinite MVPFs and are also a free 

lunch. Compared to other  policies, these MVPF values all fall in the top 15% of the Policy 

Impacts MVPF library.3 

The cost-effectiveness numbers for algorithms are not just remarkably large; they might 

even seem unreasonably large. Two reasons suggest that such large MVPF values are plausible, 

however. 

The first reason stems from the logic of ranking problems, which are at the heart of so 

many economically important decisions (whom to hire, admit, give a loan, detain awaiting trial, 

etc.). The usual logic of policy interventions assumes there is some downward-sloping marginal 

benefit schedule and that the government has already capitalized on many of the highest-benefit 

cases, so expansions of the policy serve marginal cases with (relatively speaking) lower benefits, 

                                                 
2 Asking about the cost-effectiveness of algorithms as a category is, in one sense, about as sensible as asking about 
the cost-effectiveness of “drugs.”  The answer of course depends on which drug, to what purpose.  It is well 
understood by now that poorly designed algorithms used for wrong purposes can produce negative and sometimes 
disastrous outcomes. Here we focus on the set of algorithms that are carefully constructed, properly aligned with the 
objectives of policymakers, and ideally also rigorously evaluated. 
3 As of this writing there are 130 policies for which Policy Impacts reports MVPF values in the library, of which 19 
have estimated MVPF values of infinity. 
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as shown by the Harberger triangle in the left-hand panel of Figure 1.4 That logic assumes the 

government has properly rank-ordered cases by marginal benefit. But, as a large body of research 

now shows, government agencies and decision-makers regularly misrank. The algorithm, by 

improving rank-ordering of cases by marginal benefit, yields a steeper social returns schedule 

and a sizable reduction in deadweight loss as shown on the right in Figure 1 between the flatter 

and steeper schedule. 

The second key reason algorithms can yield such high MVPFs is because they operate at 

scale. One of the key challenges with traditional policies is the scale-up problem. As the 

distinguished sociologist Peter Rossi described it: “Given that a treatment is effective in a pilot 

test does not mean that when turned over to YOAA [Your Ordinary American Agency], 

effectiveness can be maintained … There is a big difference between running a program on a 

small scale with highly skilled and very devoted personnel and running a program with the lesser 

skilled and less devoted personnel that YOAA ordinarily has at its disposal” (Rossi, 1987). In 

contrast, algorithms are software and can be run over and over again at low marginal cost 

without loss of fidelity. There is not the same problem of diminishing marginal returns with scale 

that we typically face with so many “traditional” policies (Davis et al., 2017; List, 2022). 

Of course, these encouraging results are not without caveats. For example, we do not 

know how decision-makers will respond to algorithms in a given context. But recall our goal. 

We are not arguing that the government should start scaling algorithms with high MVPFs. We 

are arguing instead that these algorithmic policies are worth further exploration and R&D, since 

these are at least as promising as other policies economists work on. The caveats now serve a 

                                                 
4 Figure 1 is inspired by the frameworks in Baicker et al. (2015) and Handel and Schwartzstein (2018). It can be 
microfounded by a simple model in which a policymaker selects between two imperfect predictors of true value, a 
noisy human versus a more precise algorithm. We are grateful for Josh Schwartzstein for helpful discussions. 
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useful purpose: they point to what should be carefully tracked and measured as part of the next 

stage of R&D. So, is there too much attention being paid to algorithms?  These calculations 

suggest that—at least within policy applications—algorithms are receiving too little attention.  

We begin in Section II with a case study of an algorithm applied to pretrial release 

decisions within the criminal justice system; when we calculate the different components of the 

MVPF we get an estimated value of infinity. We then show in Section III that the remarkable 

MVPF of the New York City pre-trial algorithm is not a “unicorn,” by considering a number of 

additional algorithmic policy interventions as well. Each of their MVPF values is also infinity. 

These figures compare favorably to the catalog of MVPF values for traditional policies that has 

been assembled by Policy Impacts.5 However, as we note in section IV, there remain a number 

of important conceptual and econometric problems that remain to be solved for both the 

algorithmic R&D pipeline and efforts to take algorithms to scale as policies. Section V 

concludes. 

 

II. Pretrial Release 

We begin with a detailed case study of an algorithm applied within the criminal justice 

system, to judges’ decisions about whom to release from jail awaiting trial. Police in the US 

make something like 10 million arrests each year. After a defendant is arrested they go before a 

judge within 48 hours, whose job it is to decide where they await trial—at home or in jail.6 By 

law, that decision is supposed to be based on the judge’s prediction of the defendant’s risk of 

                                                 
5 https://www.policyimpacts.org/ 
6 Technically the judge typically has multiple options: release without conditions; release with conditions; or set 
bail. In practice, most people who have bail set on them will spend at least some days in jail (and many will spend 
their whole pretrial term in jail) even if the bail amount is only a few hundred dollars. For the sake of simplicity, we 
discuss this as a release-detain decision. 
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skipping court or re-offending, based on factors like the charge for which the defendant was 

arrested or their prior criminal record (Dobbie and Yang, 2021). 

Kleinberg et al. (2018) note that these predictions could in principle be made by an 

algorithm instead. This application has all the key ingredients that make it suitable for 

construction of an algorithmic decision aid: a large number of cases; a great deal of information 

available about each case; and a socially important decision that hinges on a predictive inference. 

This application also nicely illustrates both the benefits of re-ranking infra-marginal 

cases. Using data from New York City, Kleinberg et al. show that though a very large share of 

defendants present close to zero risk, judges send about 10% of these cases to jail.7 Conversely, 

there are some cases with a predictable ex ante risk of failure as high as four in five, yet judges 

let nearly 50% of these cases go. Of course there are ongoing debates about whether anyone 

should be detained pretrial, with many calling for major overhauls to the system. But with the 

existing system in place for the foreseeable future, re-ranking cases by more accurate risk 

predictions creates the potential for sizable benefits to society from both fewer jail spells and 

fewer crimes and failures to appear (FTA) in court. 

Our goal here is to go from evidence of human mis-ranking to a calculation of the MVPF, 

defined by Hendren and Sprung-Keyser (2020) as the benefit to society divided by net cost to 

government or MVPF = ΔW / (ΔE - ΔC), where ΔW is the value of policy impacts on affected 

people (willingness to pay), ΔE is the up-front change in government expenditures (for example, 

to build and deploy some new algorithm) and ΔC is any savings to government spending 

                                                 
7 In New York State, the law says judges are supposed to only focus on the risk of failure to appear in court (FTA) 
not on risk of re-arrest or violence. 
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achieved by the policy.8 This calculation involves at least three sources of uncertainty that are 

difficult to quantify absent data from a deployed algorithm. 

The first source of uncertainty comes from quantifying the benefits of the algorithm, both 

to the population (the public and defendants alike), ΔW, and as savings to the government, ΔC. 

Many papers provide proof of concept of the potential gains from an algorithm by comparing 

hypothetical algorithmic decisions with actual human decisions using retrospective data from 

past cases. But that means that outcomes measuring pre-trial failure (like re-arrest or FTA) can 

only be observed for defendants the judges decided to release, the so-called ‘selective labels’ 

problem (Kleinberg et al., 2018a, Rambachan et al., 2023). Even in cases where this problem can 

be overcome, retrospective data can’t tell us anything about human compliance with any new 

algorithmic decision-aid. That can’t be known until the algorithm is actually deployed.9  

A second source of uncertainty comes from the cost of building the algorithm, ΔE. This 

also cannot be directly quantified absent an algorithm that’s been built in the real world. 

A third source of uncertainty comes from the fact that ultimately the government has the 

choice of points in the tradeoff space. For example, in the case of improved ranking of 

defendants for pretrial release decisions, it is possible to take the potential gains all in the form of 

reduced crime and FTA (holding the detention rate constant relative to status quo), or all in the 

form of reduced detention rates (holding crime and FTA constant), or as some combination of 

                                                 
8 For a discussion of the MVPF versus other candidate social welfare criteria, see Hendren and Sprung-Keyser 
(2020, 2022) and Garcia and Heckman (2022). 
9 There are of course a number of other key issues that arise as well, like the challenge of knowing whether the 
algorithm has improved the utility of the decision-maker given that objective is usually left implicit rather than 
directly observed; the so-called ‘omitted payoffs’ problem (Kleinberg et al., 2018a, Rambachan, 2023); and the 
possibility that bias in the underlying criminal justice data can lead to bias in the algorithmic decision-aid itself, 
although how that compares to whatever bias a human would add when based with the same biased data is an 
application-specific empirical question (Kleinberg et al., 2018b, Obermeyer et al., 2019). We background those 
issues here not because they are unimportant, but rather because they are so important they warrant more extensive 
discussion in papers that focus explicitly on these key evaluation issues. 
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reduced crime and FTA and jail. This decision is relevant for the MVPF calculation because it 

can determine how the benefits of the policy are distributed, not just across different groups 

within the population but between the public versus the government budget. This also highlights 

that even the shift to algorithmic policy tools does not eliminate the room for (even the need for) 

policymakers to decide key normative policy questions.10 

Despite these sources of uncertainty, progress in calculating MVPFs for algorithms is 

often still possible because even conservative estimates typically yield quite favorable figures. 

Kleinberg et al. (2018) present a policy simulation showing that letting the algorithm rather than 

the judge make release decisions could allow for up to 40% fewer pretrial detentions with no 

increase in pretrial failure rates (crime or FTA). Because this policy simulation holds pretrial 

failure rates constant, in terms of the public’s willingness to pay for the algorithm, call this ΔWP, 

we argue that this should be positive (or at least non-negative) for all population sub-groups even 

if we cannot directly quantify these values. The other population whose willingness to pay is 

relevant is the defendants who would have been detained absent the new algorithm and now get 

to go home instead. We estimate the value of freedom and higher labor market earnings together 

equal $3,200 per jail spell averted.11 Note these benefits accrue disproportionately to the socially 

disadvantaged groups currently greatly over-represented in New York jails: Black defendants 

(57% of jail inmates; Kleinberg et al. 2018) and Hispanic defendants (32%). If we conservatively 

assume judges using the algorithm yield one-quarter the benefits of the algorithmic decisions 

                                                 
10 Thanks to our discussant, Paul Goldsmith-Pinkham, for highlighting this point. 
11 Abrams and Rohlfs (2011) estimate the typical defendant would pay $1,000 in 2003 dollars to avoid a jail spell of 
90 days. Adjusting for inflation to bring this up to 2023 dollars,assuming willingness to pay scales linearly in the 
length of the jail spell, and prorating this to match the 115 day average spell in Rikers Island, we estimate $2,200 in 
current dollars per NYC jail spell averted. The causal effect of a jail spell on earnings from Dobbie et al. (2018) are 
somewhat imprecisely estimated but the point estimates, taken at face value, imply that avoiding a jail spell leads to 
about $1,000 higher income in the formal labor market by three or four years afterwards, a sizable change relative to 
a control mean of only around $6,000. (Note that accounting for the additional tax revenue from this increase in 
earnings would serve to further increase the value of government savings, ΔC.) 
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themselves,12 with 20,000 arraignments per year and assuming a 50% release rate for the type of 

cases still eligible for bail hearings in New York this implies 1,000 fewer detentions and a 

numerator for the MVPF of (ΔWP + $3.2 million). 

Our best estimate for ΔC from 1,000 fewer detentions is savings to the government on the 

order of $34.5 million per year, calculated as follows: 

● The average jail spell on Rikers Island has been reported to be 115 days,13 while the 

average cost per person per day in jail has been reported to be on the order of $1,500.14 

● Of course the marginal cost will be far below the average cost. As the Rikers Island jail 

population has plummeted over time, for example, the size of the jail staff has not 

declined commensurately; in fact, staffing has hardly changed. We use an estimate from 

the Vera Institute that marginal costs in the criminal justice system in general may be on 

the order of 20% of average costs.15  

● Together these figures imply a reduction in government spending for each averted jail 

spell that equals $34,500. (Note this is a lower-bound estimate in that it excludes the 

additional tax revenues derived from increased earnings from those who would have been 

detained absent the algorithm, but now are freed instead). 

Putting this together implies the MVPF will be infinite so long as the costs of the 

algorithm, ΔE, are less than the government savings, ΔC=$34.5 million: 

MVPF = (ΔWP + $3.2m) / (ΔE - $34.5m)  

                                                 
12 Albright (2023) studies how judges respond to an algorithmic decision aid in the Kentucky pretrial release 
system, finding that algorithmic recommendations raise release rates by 15 percentage points. 
13 https://gothamist.com/news/detainees-spend-an-average-of-115-days-at-rikers-4-times-the-national-average 
14 https://comptroller.nyc.gov/newsroom/comptroller-stringer-cost-of-incarceration-per-person-in-new-york-city-
skyrockets-to-all-time-high-2/ 
15 https://www.vera.org/downloads/publications/marginal-costs-guide-fact-sheet.pdf 

https://gothamist.com/news/detainees-spend-an-average-of-115-days-at-rikers-4-times-the-national-average
https://comptroller.nyc.gov/newsroom/comptroller-stringer-cost-of-incarceration-per-person-in-new-york-city-skyrockets-to-all-time-high-2/
https://comptroller.nyc.gov/newsroom/comptroller-stringer-cost-of-incarceration-per-person-in-new-york-city-skyrockets-to-all-time-high-2/
https://www.vera.org/downloads/publications/marginal-costs-guide-fact-sheet.pdf
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While these results come from a proof-of-concept policy simulation from Kleinberg et al. 

(2018), we can validate some of the key parameters in this case because there is a real-world 

instantiation of this algorithm that was actually deployed. Specifically, a few years ago the 

research center run by one of us (Ludwig), the University of Chicago Crime Lab, was asked by 

the Mayor’s Office of Criminal Justice (MOCJ) in New York City to help update the city’s 

algorithmic decision aid for judges making pretrial release decisions.16  

One key source of uncertainty is what judges do with the new algorithmic tool. While the 

formal evaluation of the new algorithm is still in progress, some initial descriptive statistics let us 

ballpark the potential impact for now: 

● If we take the previous algorithm, which New York City had been using since 2003, and 

run it through more up-to-date data, it recommends 31.7% of Black defendants for 

release and 41.1% of white defendants. 

● The new risk tool applied to those data recommends 83.9% of Black defendants for 

release and 83.5% of white defendants for release (set to maximize the release rate 

subject to not increasing the pretrial failure rate). 

Given that the share of defendants recommended for release increases by 40 or 50 

percentage points with the introduction of the new algorithm, the assumption of a 10% (or 5 

percentage point) change in release rates seems reasonable, if not conservative. As noted above, 

this implies something like 1,000 fewer jail detentions each year in New York City and an 

estimate of ΔC equal to $34.5 million per year. 

We next consider ΔE, the direct cost of building and deploying the algorithm. Most of the 

relevant costs were for labor: 

                                                 
16 The project team at the Crime Lab was led by Greg Stoddard, carried out in partnership with MOCJ, the Criminal 
Justice Agency (New York City’s pre-trial organization), and Marie Van Nostrand and her team at Luminosity. 
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● Software engineers helped extract individual-level records from the New York State 

Division of Criminal Justice Services, linked to court records from the Office of Court 

Administration and pre-trial information from New York City’s Criminal Justice Agency. 

● Data scientists prepared the data for analysis, trained several candidate machine learning 

models, and helped identify tradeoffs between predictive accuracy and explainability.17  

● Program managers coordinated among the different organizations involved, and helped 

organize meetings to solicit feedback from external stakeholders (including judges, 

prosecutors, defense lawyers, civil rights advocates, and police leadership).  

● Data scientists and software engineers at what was then called the New York City 

Department of Information Technology and Telecommunications (DOITT, now called 

the Office of Technology and Innovation) created the ‘piping’ to connect the live 

criminal justice data feeds to the court to calculate pretrial risk scores for defendants in 

real time. 

● Training and education was required for the practitioners involved in court proceedings. 

News accounts reported the algorithm cost $2.7 million to build and deploy.18 It is very 

possible these figures under-estimate costs given the intrinsic difficulties of accounting for the 

opportunity cost of the time of public-sector workers who were involved, including MOCJ staff 

time to manage the project, DOITT staff time and the various public-sector stakeholders who 

provided feedback and devoted time to training to use the new tool. We conservatively assume 

the true cost is approximately 50% higher than news reports claim, or about $4 million. 

                                                 
17 Ideas42, a behavioral science non-profit co-founded by Mullainathan, helped design the user interface for the 
tool. 
18 https://www.wsj.com/articles/algorithm-helps-new-york-decide-who-goes-free-before-trial-11600610400 

https://www.wsj.com/articles/algorithm-helps-new-york-decide-who-goes-free-before-trial-11600610400
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One final question for our MVPF calculation is how often the algorithm would need to be 

retrained to account for ‘data drift’ (changes in the underlying data generating process). The 

most conservative assumption we could make would be to assume the algorithm has to be rebuilt 

every year, so the city gets only one year’s worth of use out of each algorithm build. To see just 

how conservative this is, we note that in practice the algorithm was first deployed in 2019 and as 

of this writing (early 2024) the same algorithm is still in use in every New York City courtroom. 

Using the data from the case study to verify and/or fill in parameters from the policy simulation 

leads to a MVPF estimate of: 

MVPF = (ΔWP + $3.2m) / ($4m - $34.5m) = infinity   

Note the literal value of this social welfare calculation (infinity) is sensitive to the 

functional form assumption behind the MVPF formula, which is constructed to heavily weight 

the net cost to the government. If we used alternative social welfare measures like net benefits or 

a benefit-cost ratio, the values would not be infinity but the figures would nonetheless be large 

both absolutely and relative to other candidate policies. That is, the conclusion of very favorable 

cost-effectiveness does not hinge on the choice of any particular social welfare metric. 

III. Additional examples   

The pretrial release tool for New York City is an encouraging example and, as we will 

show here, not an isolated one. 

A. Safety regulation 

OSHA regulates workplace safety currently by targeting inspections based on the number 

of workplace injuries at each establishment over the past few years. Johnson et al. (2023) show 

that an algorithm can better predict which work sites are likely to have another injury in the 

future. Targeting OSHA inspections using this algorithm instead is estimated to reduce the 
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number of serious injuries by at least 15,934.19 Multiplying that figure by the estimated cost per 

serious injury (based on the number of days of work missed) implies a benefit to workers from 

fewer injuries equal to at least ΔW=$844 million. 

Since the average federal tax rate for Americans is 24.8%, an algorithm that prevents 

$844 million in lost income leads to an increase in tax revenue collection equal to ΔC= $209.3 

million. Given any plausible figure for the cost of building and deploying this algorithm 

(denominated most likely in the single-digit millions, and certainly not more than a few tens of 

millions), the estimated MVPF of this algorithm is, again, infinity. 

B. Health Care  

Hundreds of thousands of people show up at the emergency room every year complaining 

of chest pain, worried they are having a heart attack. A doctor has to decide whether to refer the 

patient to a follow-up ‘stress test’ to determine whether they are actually having a heart attack. 

Sending a patient for testing who actually just has acid reflux (which can create similar 

symptoms) wastes money and the patient’s time. Not sending a patient for a test who is having a 

heart attack can lead the patient to, in the extreme, die. The current testing decision is made by a 

doctor applying their best judgment to a collection of diagnostic health information (EKG 

results, the patient’s past health history, their description of their current symptoms, etc.)  

As Mullainathan and Obermeyer (2022) show, an algorithm could use those data instead 

to predict patients at highest risk for heart attack—and that one proof-of-concept example of 

such an algorithm seems to predict patient risk far more accurately than the (human) doctors do. 

The effects of this algorithmic re-ranking are shown in the right-hand panel of Figure 1: Doctors, 

by confusing low-risk patients for high-risk ones, and vice versa, essentially create a list of 

                                                 
19 This estimate comes from using machine learning based predictions; using heterogeneous treatment effect 
estimates instead implies 16,524 serious injuries averted. 
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patients rank-ordered by perceived risk of heart attack (which is the marginal benefit of testing in 

this application) that is ‘too flat’ compared to the algorithmic ranking. Doctors make a second 

mistake, besides,which is to use too low of a threshold for the expected health gains needed to 

justify testing. Abstracting for now from whether the doctors would follow the algorithm’s 

recommendations, if we combine the steeper marginal benefit schedule for testing from the 

algorithm’s ranking with a higher marginal cost of testing threshold (consistent with the 

$150,000 per year of life often used in medical cost-effectiveness calculations), the implication is 

that we could reduce testing by 34.7% with no loss in social welfare over Medicare patients.  

If we focus just on those covered by Medicare (a lower bound), the data from 

Mullainathan and Obermeyer (2022) imply there are 50,838 stress tests per month and 34,318 

catheterizations per month. The combination of using the algorithm to re-rank patients and using 

a more appropriate value per life year to set the testing threshold implies 17,640 fewer stress 

tests per month and 11,908 fewer catheterizations per month. The Medicare fee schedule shows 

the cost of a stress test as $4,000 and a catheterization is $28,000. Since these are all Medicare 

patients whose health care costs are borne by the federal government, the new algorithmic testing 

rule reduces testing costs by $406 million per month or ΔC=$4.8 billion per year. The numerator 

ΔW is whatever patients are willing to pay to avoid the time and pain of needless tests. Even if 

(conservatively) the algorithm had to be rebuilt every single year, if the algorithm build cost, ΔE, 

is measured in the millions (or even tens or hundreds of millions), the denominator of the MVPF 

calculation, ΔE - ΔC, will be negative and the MVPF value of the algorithm is infinity.20 

C. Education 

                                                 
20 As with the pretrial release algorithm, we do not know how exactly doctors would respond to the introduction of 
such a heart attack diagnosis tool. Nonetheless, even conservative assumptions about how doctors would respond to 
the algorithm still imply large cost savings by this calculation. 
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Bergman et al. (2023) evaluate an algorithm that screens college students into college 

courses, and in particular the allocation of students to remedial (pre-college-level) courses in 

math and English versus into college-level courses. Under-placing students who are actually 

prepared for college-level work means they spend time and money on courses that earn them no 

college credit when they could instead have been working towards their degrees. Over-placing 

students who are not ready for college classes runs the risk of them wasting time and money on 

classes they fail. The current default targeting uses student scores on an academic assessment. 

The study’s estimates for ΔW and ΔC from algorithmic placement come from an RCT:  

An algorithm that considers a broader set of academic background characteristics predicts 

student performance more accurately than the current achievement test, increases placements 

into college-level classes by 2.6 percentage points in math and 13.6 pp in English (and narrows 

disparities across race and ethnic groups) without any decline in course pass rates. Importantly, 

the number of remedial credits attempted reduces by 1.1 credits and the number of college 

credits earned increases by 0.53 credits. The reduction in remedial credits due to algorithmic 

placement saves students, on average, $150, which corresponds to $145,200 savings per cohort 

per college. For the colleges in the experiment, the government subsidizes credit-taking, and the 

net change in credit-taking is estimated to produce $230 in savings per student. The authors 

estimate that the cost of implementing the algorithmic placement is $140 per student. The 

resulting MVPF calculation is then $150/($140 - $230) = infinity. 

IV. Open Questions  

We have intentionally been provocative in highlighting a number of remarkably effective 

algorithms that illustrate the enormous potential of these new technologies for social good. Of 

course there are many traditional policies that also have infinite MVPF values, as shown in 
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Figure 2 (about 15% of the 130 policies included in the Policy Impacts MVPF library).21 While 

it was not particularly hard for us to come up with examples of algorithmic policies that had 

infinite MVPF values, without a more exhaustive effort to comprehensively calculate MVPF 

values for a more comprehensive set of algorithms (and traditional policies too, for that matter), 

it would be premature to claim that algorithms have higher MVPF values on average. Our claim 

here is narrower: We may be leaving many cost-effective policies on the cutting room floor by 

not paying more attention to algorithms as a class of policy intervention to study. We need more 

algorithms to enter into the R&D pipeline. 

But we need another thing beyond more careful pilot studies and RCTs: We need answers 

to a set of fundamental economic and econometric questions that these new algorithmic tools 

raise. Just as the ‘credibility revolution’ raised new questions about heterogeneous treatment 

effects and compliance and local average treatment effects and equilibrium effects, the growing 

attention to algorithms creates new conceptual and empirical problems to solve as well. In what 

follows we highlight three of these key issues, the solutions to which would be of enormous 

value for economists as they work more in this area. 

A. The algorithm’s benchmark: The human  

Most of the high-MVPF algorithms we examine have a key shared feature: The 

alternative to the algorithm is human judgment, with all its imperfections—frequent reliance on 

heuristics and biases (Kahneman, 2011), noise in decision-making (Kahneman et al., 2021), and 

out-group biases (Brewer, 1999). The result is that for a given data frame—a given set of 

observations and variables—the algorithm is able to extract sources of signal that humans often 

                                                 
21 This was the state of the Policy Impacts MVPF library as of January 4, 2024. 
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cannot notice (Ludwig and Mullainathan, 2023; Mullainathan and Rambachan, 2023). Human 

judgment is typically such a low bar that it is easy for algorithms to soar over it. 

However this need not always be the case, since, as Ludwig and Mullainathan (2021) 

note, in principle humans have their own source of comparative advantage over the algorithm: 

People often see additional information that the algorithm cannot. For example, doctors see 

things about patients in person that are not captured in any electronic medical record; judges hear 

courtroom arguments; and teachers interact with their students every day in ways that may 

communicate useful information not reflected in a test score or student writing sample. 

Understanding when people use this extra information as a source of valuable signal versus a 

source of unhelpful distraction is an active area of current research and something about which 

we desperately need to know more.22 

B. Automation vs. Decision Aids  

In many of our back-of-the-envelope MVPF calculations, we have assumed that the 

relevant decision is being automated (the algorithm decides). In that case the key question of 

social benefit hinges on the nature of the algorithm’s predictive advantage over the human. But 

in many policy-relevant applications, the algorithm is not the decider but rather a decision-aid for 

some human decider. The introduction of an algorithm into a decision-making environment 

could in principle have no impact at all if the humans simply ignore it. Or the algorithm could 

even have adverse impact if humans misunderstand their comparative advantage relative to the 

algorithm, and for instance get distracted by irrelevant information. Existing empirical 

                                                 
22 It is also the case that the dataification of so many aspects of modern life mean that simple data tools will also 
inevitably spread over time, so that the benchmark for the algorithm may eventually increasingly be another data 
tool. In the study of college student course placement by Bergman et al. (2023), the alternative to the algorithm was 
a very simple data rule, so the algorithm was able to still generate large relative gains. In contrast, in the study of 
predicting police misconduct by Stoddard et al. (2024), the algorithm has relatively more modest gains relative to a 
very simple count of prior misconduct events for officers. 
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evaluations of the implementation of different pretrial algorithms provide some evidence of each 

type of response.23 

Given the diversity of findings from how humans respond to these new tools in practice, 

it is hard not to believe that the specific design features of these algorithms might contribute to 

the observed variation in algorithmic impacts across settings. Unfortunately very little is 

currently known on this front at present. More generally, much more needs to be known about 

how to help humans recognize their own and the algorithm’s sources of comparative advantage 

in order to optimally decide when to override versus follow the algorithm’s predictions (for 

example, Agarwal et al., 2023; Angelova, Dobbie and Yang, 2023). 

C. Context-dependence  

The degree to which algorithms have favorable values for the MVPF or other social 

welfare metrics will depend on the degree to which the algorithm’s predictions generalize across 

settings versus are highly context-dependent. For New York City the scale of its local criminal 

justice system means that an algorithm with a build cost of $4 million can still easily yield a 

MVPF of infinity. That’s less likely to be true for the much smaller jurisdictions of Scarsdale or 

Fort Lee or Levittown if they had to build their own algorithms from scratch, but could be true 

for them if a single ‘small suburb risk predictor’ worked well across small suburbs.  

A different dimension of context besides geography is time. If the underlying data 

generating process differs substantially across time periods, an algorithm would need to be 

updated relatively more frequently, thereby increasing the build costs to the government. This 

                                                 
23 For example, Stevenson (2018) shows that judges did follow the recommendation of an algorithm in Kentucky, 
releasing more low-risk defendants and detaining more high-risk ones, although over time judge decisions began to 
converge back to their previous patterns—and seem to have not responded at all to the switch in 2013 from the 
state’s previous risk tool to a new one built by Arnold Ventures (see also Albright, 2023). Stevenson and Doleac 
(2022) show that a different algorithm adopted in Virginia has numerous examples of potentially unhelpful judge 
overrides of the new tool, and on net no detectable changes in crime rates or jailing rates. 
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sort of ‘data drift’ is of particular concern when adversarial actors in the world strategically 

respond to the algorithm (Hardt et al., 2016; Bjorkegren et al., 2023). The degree to which this is 

a problem will depend on the application. For example, for the New York pretrial algorithm, the 

main way to ‘game’ the algorithm would be for someone to strategically make their prior record 

or present charge less serious in nature. A synonym for people trying to dial down their crime 

involvement to avoid punishment is “deterrence.” 

Relatively little is currently known about the degree of generalizability with algorithmic 

risk tools across either geography or time, although more information about that important point 

would be invaluable for understanding exactly the scope for social gains from this policy.24 

Relatedly, how to shore up algorithms in the presence of strategic behavior in adversarial settings 

is also poorly understood and is an active area of ongoing research. 

V. Conclusion  

If there is one lesson from the last 20 or 30 years of policy work in empirical economics, 

it is that there is no shortage of problems—just a shortage of solutions. Algorithms provide a 

whole category in which to look for new solutions.  

Our claim is not that they are fool-proof. Nor that they are sure to work. Our claim is 

narrower: they show immense potential. And they deserve far more attention,  in terms of both 

rigorous evaluation and careful design.  

Given that problems are plentiful and solutions are scarce, there is little wonder that 

algorithms are receiving so much attention. They are not just particular solutions to specific 

                                                 
24 An example is the prediction of police misconduct discussed in Stoddard et al. (2024), which finds that the most 
effective predictors of risk in the Chicago Police Department turn out to be the most effective predictors at the New 
York Police Department as well. 
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problems but represent a novel approach to solving many problems. Whether that promise bears 

out or not is yet to be seen. There is only one way to find out. 
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Figure 1: Stylized illustration of the social welfare gains from algorithmic re-ranking of who is 
prioritized for services 
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Figure 2: Comparing MVPF Values for ‘Traditional Policies’ to Those for Algorithms 
 

 
 
Source: Authors’ calculations from MVPF calculations described in text and MVPF values taken 
from Policy Impacts library. 


