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Chapter 1

Introduction to the λ-calculus.

1.1 Preamble.

This chapter is an introduction to the λ-calculus, which is a basic tool needed for much of the
rest of this book. We begin by presenting the λ-calculus as a language for talking clearly about
functions and their application to arguments, and go on to present the λ-calculus as something
more like a programming language. We develop some of the basic mathematical ideas of both
the typed and untyped λ-calculus. More sophisticated versions of the λ-calculus are presented in
subsequent chapters, but the core ideas of these more sophisticated versions remain largely the
same as those of the simple version presented in this chapter.

1.2 Functions and λ-abstraction.

Almost all of mathematics revolves around the manipulation of functions. Mathematicians con-
stantly apply functions to inputs to obtain outputs, and combine simple functions in various ways
to obtain more complicated functions. Mathematics contains familiar notations for expressing
such things. Given a unary function f and an input i, we write f(i) to indicate the value of the
function f at i. Given two unary functions f and g, we write f(g(i)) to indicate the function in
which g is applied to the input i first, and then f is applied to the result. Generalizing, combining,
and iterating these notations, mathematicians end up writing down complex expressions such
as f(g(g(x, y), h(z))) to denote functions. This notation is perfectly adequate for most ordinary
purposes.

Still, in certain situations this sort of notation can be a bit ambiguous. Consider a binary func-
tion f(x, y). One can think of this function as some sort of process that on two inputs i and j

produces an output f(i, j). But a different point of view is also possible. When a computer ap-
plies a binary function f(x, y) to inputs i and j, it might first replace x with i, and then y with
j. This ordered replacement of x with i and then y with j is actually a somewhat subtle process.
Replacing x with i, we end up with a unary function f(i, y) of y. We may then replace y with j
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in this expression to obtain the final value f(i, j). What we are doing here is treating f(x, y) as a
unary function of x, that takes an input i for x, and outputs the unary function f(i, y) of y. We can
then of course evaluate this function f(i, y) for some value j of y.

Consider for example the function f(x, y) = x + y on natural numbers. We may think of this
as a function of x that, when input with the number 3, outputs the function 3 + y of y. Instead
of thinking of addition a binary function, we are thus thinking of it as a unary function that given
any number x as input, outputs the unary function x+ y of y. If we so desire, we can in this way
redescribe any binary function as a unary function.

Of course, we could equally well think of x + y as a unary function of y that takes a natural
number y as input, and outputs the unary function x + y of x. On this point of view, when input
with the number 3, f outputs the function x+ 3 of x. We thus have two different ways of treating
x+y as a unary function. They will both give us the same result for any ordinary addition problem
such as 2+3, but these two different ways of treating x+y as a unary function nevertheless describe
two quite distinct processes.

An expression such as x+y can thus be viewed in several different ways as a unary function. It
can be viewed as a unary function of x that always outputs a function of y, or as a unary function
of y that always outputs a function of x. In ordinary mathematical situations this ambiguity does
not really matter, and we can just casually think of f as a binary function of x and y. But in
other contexts (for example, in describing the step-by-step operation of a computer program) we
sometimes must be more careful.

A notation that is very useful for resolving such ambiguities is that of λ-abstraction. To indicate
that x+y is to be viewed as a unary function of x, we use the notation λx(x+y), and to indicate that
x+y is to be viewed as a unary function of y, we use the notation λy(x+y). More generally, given
any expression E and a variable z, λz(E) refers to the expression E viewed as a unary function
of z. (If z does not occur free in E, then this will just be a constant function, as we will see later.)
Thus the λ operator ‘abstracts’ from an expression, allowing us to view it as a unary function of a
particular, single variable.

Definition 1.1: λ-abstraction.

If E is an expression and z a variable, λz(E) is the expression E viewed as a function of z.

Using this notation, the expression λx(x+ y) is then the expression x+ y viewed as a (unary)
function of x, which on any input i returns the function i + y of y. By contrast, the expression
λy(x + y) is the expression x + y viewed as a (unary) function of y, which on any input j returns
the function x+ j of x.

Most importantly, we can iterate the λ notation to write expressions such as

λx(λy(x+ y)). (1)

Because λy(x+ y) is the expression x+ y viewed as a function of y, we can then think of (1) as just

λx (x+ y viewed as a function of y)
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which we can in turn think of as

(x+ y viewed as a function of y) viewed as a function of x.

This is a function of x, which on input i, returns i + y viewed as a function of y. This of course
is just the way of thinking about addition described earlier, in which x + y is viewed as a unary
function of x that returns a unary function of y. The expression

λy(λx(x+ y)) (2)

is, on the other hand, a way of thinking about addition in which x+y is viewed as a unary function
of y that returns a unary function of x. In a sense, (1) and (2) describe the same function imple-
mented in two different ways. Thus, although (1) and (2) are in some sense the same function, our
new notation allows us to distinguish a point of view from which they are different. This will be
useful in what follows.

To improve readability, we will often drop parentheses and just write λxλy(x+y) or λyλx(x+y)
instead of (1) and (2) where there is no risk of ambiguity.

Some further terminology will also be useful. Just as in ordinary quantificational logic we talk
about free and bound variables, we also say that in the expression λy(x + y), the variable x is
free and the variable y bound. More specifically, we say that the bound variable y that occurs in
λy(x + y) has been bound by the operator λy. An expression with no free variables is closed, and
an expression with free variables is open. So for example, λxλy(x + y) is closed, while λx(x + y),
λy(x+ y) and x+ y are open. Although the notions of free and bound variables can be given more
rigorous definitions, an intuitive understanding of them will suffice in what follows.

Exercises for Section 1.2

1. The expression λx(x× y) has the form λx(E), and is thus a unary function of x. What is its
output when 7 is substituted for x? (Here ‘×’ refers to multiplication.)

2. What is the output of the function λy(x× y) when given the input 7?

3. Using λ-notation, write a unary function that when given an input x, outputs x× 2.

4. Using λ-notation, write a unary function that when given an input x, outputs a unary
function that when given an input y, outputs x× y.

5. Using λ-notation, write a unary function that when given an input x, outputs a unary
function that when given an input y, outputs a unary function that when given an input z,
outputs x+ (y × z).

6. Are the following terms open or closed? What are their free variables, if they have any?

(i) λy(x× y) (ii) λxλyλz(x+ y + z)

(iii) λxλyλz(x+ y) (iv) λxλy(x+ y + z)
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1.3 The untyped λ-calculus

In this section, we introduce the simplest version of the λ-calculus. The λ-calculus comes in many
different versions, and we consider several throughout this book. The first version we will con-
sider is an example of a so-called untyped λ-calculus. (What the word ‘untyped’ is doing here will
only become clear later on when we introduce the ‘typed’ lambda-calculus with which it can be
contrasted.) The first version of the untyped lambda calculus we will consider consists of expres-
sions such as

λx(λy(x(x(y))))

x(λx(y(x)))

λy(x(λx(y(x))))

(3)

These expressions are all known as λ-terms. Assuming we have some list x, y, ... of variables, the
rules of formation for λ-terms are as follows:

Definition 1.2: Simple untyped λ-terms.

(i) Any variable x, y, z, ... is a λ-term.
(ii) If M and N are λ-terms, then so is M(N).
(iii) If M is a λ-term and x a variable, then λx(M) is a λ-term.

You should note how these rules can be combined to generate terms such as those in (3). For ex-
ample, the variables x and y are λ-terms by (i). Applying (ii) gives that y(x) is a λ-term. Applying
(iii) then gives that λx(y(x)) is a λ-term, and applying (ii) again gives that x(λx(y(x))) is a λ-term.

Note that operations like ‘+’ and ‘×’ that appeared in the previous section are not officially
part of our language, and thus do not appear in simple untyped λ-terms. While for explanatory
purposes it was useful earlier to write expressions such as λx(λy(x + y)), such terms are not
officially part of the simplest version of the untyped λ-calculus we are considering here.

Those who have seen the λ-calculus before will note that the conventions for parentheses given
here are different from some other texts. We will discuss this in a little more detail shortly.

What do our λ-terms refer to? We will think of all λ-terms as unary functions. They are unary
functions which, when given an input – which will also always be a unary function – output a
unary function. This unary function can in turn be applied to another input – which will itself be
a unary function – yielding yet another unary function as output.

More specifically, given two λ-terms M and N , we think of M(N) as the result of applying
the unary function M to the unary function N . Rule (ii) above states that whenever we have two
λ-terms M and N , we can apply the function M to N , obtaining M(N). Now M(N) is itself a
λ-term and thus a unary function, and so using rule (ii) again it can be applied to any λ-term O

to obtain M(N)(O). This λ-term can likewise be applied to any λ-term P to obtain M(N)(O)(P ),
and so on.

This sort of behavior might seem odd. One might expect such a process of applying functions
to inputs to eventually ‘bottom out’ with some sort of value or result which is not itself a function.
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But in the simplest version of the λ-calculus that we are considering here, computations never
‘bottom out’ in anything that is not a function – all λ-terms are unary functions, the outputs of
which are unary functions, and the outputs of those unary functions are further unary functions,
and so on and so forth, ad infinitum.

On this point of view, even our variables x, y, z, ... will be viewed as unary functions. So if x
and y are variables, then they are both λ-terms and thus unary functions, and the result of applying
the unary function x to the input y is just the λ-term x(y). We can iterate this sort of process using
rules (i) and (ii) to obtain λ-terms x(y), x(x), x(y)(z), x(y(z)), x(x(y)(y)), each of which denotes a
distinct unary function.

Let us turn our attention to rule (iii) and the associated concept of λ-abstraction. As an exam-
ple, consider a term like x(y). Using rule (iii), we can perform two different types of ‘abstraction’
over this term, by viewing it is a function of x, and writing λx(x(y)), or by viewing it as a function
of y, and writing λy(x(y)). As an exercise, let us consider the meaning of each of these expressions
in turn.

We begin with the expression λx(x(y)), in which x(y) is viewed as a function of x. This function
takes an input f for x, and outputs f(y). That is to say, the function λx(x(y)) transforms a unary
function f into its value f(y) at y. So λx(x(y)) may be described as the function ‘evaluate the
function on input y’. The process of evaluating a function at y may thus be redescribed as the
application of the λ-term λx(x(y)) to that function.

Consider next the expression λy(x(y)), in which x(y) is viewed as a function of y. This function
takes an input c for y, and outputs x(c). That is to say, the function λy(x(y)) transforms an input c
into x(c). So λy(x(y)) may be described as the function ‘apply the function x to the input’. This is
of course just a fancy way of redescribing the function x itself. The activity of applying a function
x to an input may thus be redescribed as applying the λ-term λy(x(y)) to that input.

Given any λ-term M and variable x, rule (iii) allows us to form the term λx(M), in which M
is viewed as a (unary) function of x. Typically, this will be most useful when M contains a free
occurrence of the variable x. However, we do not require x to appear free in M , and so rule (iii)
allows us to construct λ-terms such as λx(y(y)). It also allows us to abstract over the same variable
twice, as in the λ-term λx(x(λx(x(y)))). We discuss the meaning of these terms shortly.

Because too many parentheses can sometimes impair readability, we will sometimes drop
parentheses where there is no risk of ambiguity or the intended reading is obvious from context.
So for example, the expression xy will be an abbreviation for x(y) (i.e., x applied to y), and the
expression λvE will be an abbreviation for the function λv(E). To minimize the number of paren-
theses, we will also assume association to the left - so for example, the term wxyz will denote
w(x)(y)(z), and not w(x(y(z))). The difference between these two sorts of expressions is impor-
tant. The expression w(x)(y)(z) is the function w, applied to x, the output of which is a function
which is then applied to y, the output of which is a function which is then applied to z. By con-
trast, the expression w(x(y(z))) is the function w, applied to the result of applying the function x
to the result of applying the function y to the function z. You should think about the difference
between these two terms and the way in which it is expressed in the placement of parentheses.

As mentioned already, we will sometimes omit parentheses between adjacent λ-abstractions,



12 CHAPTER 1. INTRODUCTION TO THE λ-CALCULUS.

and so instead of writing λx(λy(E)) we will sometimes just write λxλy(E). Combining these
conventions, instead of writing

λx(λy(x(x)(y)))

we will generally just write
λxλy(xxy)

For further compactness, we will sometimes express two (or more) consecutive λ abstractions
λxλy(...) as just λxy(...). Thus, our term can also be written

λxy(xxy).

If you read other texts on the λ-calculus, you will quickly discover that different textbooks use
different conventions for parentheses. Older books often also introduce a complex set of conven-
tions involving dots in order to eliminate the need for parentheses altogether. Such conventions
are perhaps useful for designing lean, efficient programs for manipulating λ-terms, but as that
is not our goal we will let ourselves be guided instead by a desire to produce the most readable
expressions possible. In this regard, note that our notational conventions overlap somewhat with
ordinary mathematical practice. In particular, when a λ-term f is applied to an object c (which
is of course another λ-term), the result in our notation is f(c), which is a very familiar way of
expressing the evaluation of a function.

At first, the λ-calculus might seem bizarre, and one might wonder what sorts of mathematical
objects λ-terms really are. Some practice is required to get the hang of how the λ-calculus works
– this will be provided in the next sections and the exercises. At the beginning, it is useful just
to think of the untyped λ-calculus as a type of highly abstract formalism, and worry later about
what sorts of mathematical objects λ-terms denote.

In order to talk a little more abstractly about the λ-calculus, it will help to introduce yet further
notation. A λ-term like λx(xxyx) is xxyx viewed as a unary function of x, and so one would
expect that applying λx(xxyx) to a term t should produce ttyt. More generally, for any λ-term
c, the function λx(M) applied to input c should have the value M ′, where M ′ is obtained by
substituting c for every free occurrence of x in M . We will use the notation M [c/x] to indicate the
expression in which every free occurrence of x inM is replaced by c. (Note: a minority of texts use
the notationM [x/c] for this.) So for example, xxyx[t/x] is ttyt, and xxyx[t/y] is xxtx. The function
λx(M) applied to input c will then have the value M [c/x]. For some more examples, the function
λx(y(x)) on input c is y(x)[c/x] which is y(c), and the function λx(x(x)) on input c is x(x)[c/x]
which is c(c). In summary:
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Definition 1.3: Substitution notation.

The function λx(M) applied to c has the the value M [c/x], where M [c/x] is the expression in
which every free occurrence of x in M is replaced by c.

There are actually some subtleties involved in this process of substitution, but these will be dealt
with in the next sections.

It is important to emphasize that the substitution notation M [c/x] is just a way for us to indi-
rectly describe λ-terms built up using Definition 1.2. We are not here adding a clause to Definition
1.2 that says that if M and c are λ-terms and x is a variable, then M [c/x] is a λ-term. The notation
M [c/x] is simply notation we use in talking about λ terms, but it is not part of the official syntactic
structure of λ-terms themselves.

Manipulating some simple examples of λ-terms can help give a feel for their meaning. Let us
begin with a very simple but central example; the term

λx(x).

On any input c, this evaluates to x[c/x], which is of course c. Thus λx(x) is a function whose
output is always identical to its input, and so is just the identity function. Note however that this
is a very abstract and powerful sort of identity function, which returns itself on literally any input.
In particular, consider the term:

λx(x)(λx(x)). (4)

This is the identity function applied to the identity function, which using our substitution rule
is easily seen to simplify to the identity function λx(x) itself. In more detail, because (4) is the
function λx(x) applied to λx(x), it has the value

x[λx(x)/x]

i.e., the expression x with every free occurrence of x replaced with λx(x). This is just λx(x).
Of course, the idea of applying the identity function to itself is problematic from a set theoretic

point of view, because insofar as we view a function as a set of ordered pairs, no function can
take itself as an input. There is a sense then in which the functions we can define in the untyped
λ-calculus are more general than anything that can be defined from a set-theoretic point of view.

For another example, consider the closed term

λx(xx).

If one includes all parentheses, this term is λx(x(x)). This term describes a function that takes x to
x(x) – that is, this term describes a function that takes an expression into that expression composed
with itself. To see this more carefully, note that we have:

λx(x(x))(f) = x(x)[f/x]



14 CHAPTER 1. INTRODUCTION TO THE λ-CALCULUS.

= f(f)

Note however that this is quite different from composing a function with itself in the tradi-
tional sense. Given a function f : R → R such as f : x → sin(x), we can of course consider
the function g : x → sin(sin(x)), which is, in a sense, f composed with itself. However, this sort
of self-application is not what we mean when we write a λ-term like f(f). When we evaluate
sin(sin(x)) in traditional mathematics, we apply the sin function to some number sin(x), where we
are thinking of x as having being given. We are not applying the sin function to the sin function
itself - that would be meaningless, as the sin function acts only on elements of R, and not on func-
tions. In contrast, when we write f(f) in the λ-calculus, we are thinking of f as a function, and
are applying this function to the function f itself. This is a very different (and less familiar) type
of self-application. This must be kept in mind to avoid confusion.

Of course, for λ-terms f and x, the λ-term f(f(x)) does denote the function f applied to the
output of the function f on input x. In this way, we can represent the more familiar type of
function composition and iteration in the λ-calculus. We can write the λ-term

λx(f(f(x))) (5)

to denote the function that takes an input c into f(f(c)). To see in more detail that on input c the
expression (5) gives output f(f(c)), note that we have

λx(f(f(x)))(c) = f(f(x))[c/x]

= f(f(c))

We can also write
λyx (y(y(x))) (6)

to denote the function which, when provided with the two inputs f and c (in that order) produces
the output f(f(c)). To see in more detail that on inputs f and c the expression (6) gives output
f(f(c)), note that we have

λyx (y(y(x)))(f) = λx(y(y(x)))[f/y]

= λx(f(f(x)))

That on input c the function λx(f(f(x))) outputs f(f(c)) has already been shown. Thus, the closed
λ-term (6) may be viewed as an abstract description of the process of applying a function to an
argument twice. This more familiar type of iteration of a function f expressed in both (5) and (6)
is quite different from the kind of iteration given by f(f).

What the example of the unusual λ-term f(f) brings out nicely is the fact that λ-terms are
expressions that may be legally applied to any other expression. In this sense, they are quite
unlike functions such as sin that are only defined on a limited domain. We will later put some
restrictions on the λ-calculus to incorporate functions with limited domains, but until we do so,
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we must accept that λ-terms are quite unlike the ordinary mathematical functions with which we
are familiar.

For a final example, consider the λ-term

λx(y(y)). (7)

The free variable x does not appear inside y(y), and so this term is a little unusual. If we input
some c into this function, the output is y(y)[c/x]. This is y(y) with every free occurrence of x
replaced by c. Because there are no free occurrences of x in y(y), this is just y(y). So the output
y(y) of this function is the same for every input x. The function (7) is therefore simply the constant
function whose output is always y(y).

Before moving on, one further definition will be useful. We often want to talk about the sub-
terms of a given λ-term. For example, the subterms of

x(λx(x(y)))

are x, y, x(y), λx(x(y)) and the term x(λx(x(y))) itself. Although an intuitive understanding of this
notion will generally suffice, it is nevertheless useful to define it formally. To this end, we have
the following definition

Definition 1.4: Subterms.

The notion of a subterm of a λ-term is defined inductively as follows

(i) If x is a variable, the only subterm of x is x.
(ii) If M and N are λ-terms, the subterms of M(N) are M(N), the subterms of M , and the

subterms of N .
(iii) If M is a λ-term and x a variable, the subterms of λx(M) are λx(M) and the subterms of

M .

In the λ-term x(y(z)), note that the subterm y is properly contained in the subterm y(z). The sub-
term x is however disjoint from the subterm y(z). In fact, these are in a sense the only possibilities.
More specifically, it is impossible for two subterms to only partially overlap. Formally, we have
the following:
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Lemma 1.5: Subterm Lemma.

If t1 and t2 are distinct subterms of a λ-term s, then either t1 is properly contained in t2, t2 is
properly contained in t1, or t1 and t2 are disjoint.

The proof is left to the exercises. As a consequence of this lemma, all the subterms of a given λ-
term form a treelike structure under the relation of proper containment. For example, the subterms
of x(λx(x(y))) may be represented by the following tree

x(λx(x(y)))

x λx(x(y))

x(y)

x y

where a subterm is located beneath another subterm in this tree iff it is properly contained in it.
Note that there are two distinct subterms x of x(λx(x(y))). In such a situation, to be fully clear we
talk about distinct occurences of the subterm x. Where there is no risk of confusion we simply talk
about subterms simpliciter.

Exercises for Section 1.3

1. What is the value of the closed λ-term

λx(λy(x(x(x(y))))),

when applied to x = f and y = g? Justify your answer in the way shown above, using the
M [c/x] style of notation.

2. What closed λ-term takes expressions f , g and h (in that order) into the expression

(f(g))(f(h))?

3. What function does the λ-term λx(x)(λy(y)) describe?

4. (a) Do the closed λ-terms
λx(λy(x(y)))

and
λx(λy(y(x)))
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describe the same function? (Hint: apply both of these functions to an arbitrary f , and then
apply the result to an arbitrary g. Are the results the same?)
(b) Do the closed λ-terms

λx(λy(x(y)))

and
λy(λx(y(x)))

describe the same function?

5. Are the following true or false? If false, give a counterexample. If true, simply state so.
(a) For any λ-term M , λx(M) is a closed λ-term.
(b) If λx(M) is a closed λ-term and N an arbitrary λ-term, then λx(M)(N) is a closed λ-term.
(c) If M and N are closed λ-terms, then M(N) is a closed λ-term.

6. Prove Lemma 1.5. (Hint: use induction on the construction of s.)

1.4 α-equivalence

We argued earlier that λx(x) represents the identity function. But there is nothing special about
x here. If λx(x) represents the identity function, then surely λy(y) or λz(z) also represents the
identity function. Renaming bound variables should not change a λ-term in any meaningful way.
In this and the next section we make this idea more general and precise. In the course of doing so
some subtleties about the nature of substitution will arise that require careful attention.

The idea we would like to capture is that when a λ-term Y can be obtained from another λ-
term X by renaming bound variables, there is some sense in which the λ-terms X and Y are the
same. In this case, we will say that these terms are α-equivalent, and write

X =α Y.

This of course is not yet a fully precise or adequate definition of α-equivalence. By considering
various problematic and unproblematic examples we will move towards a more rigorous defini-
tion of α-equivalence that we will write down shortly.

As a straightforward example, we will have

λx(x) =α λy(y). (8)

Another simple example is
λx(zxw) =α λy(zyw) (9)

and a further example is
λx(z(x(λy(y)))) =α λu(z(u(λv(v)))) (10)

where in (10), two bound variables have been renamed.
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We must however be a little careful. Consider the λ-term

λx(y) (11)

If we replace the bound variable x with y, we get the term

λy(y) (12)

The term (11) is the constant function which always returns the value y, and (12) is the identity
function. We do not want to say that the terms (11) and (12) are the same, and thus do not want to
say that these terms are α-equivalent.

The problem here is of course that starting with the term (11), we are trying to replace a bound
variable x with a variable y that already appears free in the original term (11). Nothing like this
happens in examples (8), (9) or (10), which are entirely unproblematic.

With this in mind, we define α-equivalence more carefully as follows. Given a term λu(E)

and a variable v which does not appear free in E, we say that the terms λu(E) and λv(E[v/u]) are
α-equivalent. So for example, we have

λx(x) =α λy(x[y/x]) = λy(y)

which gives us (8), and
λx(zxw) =α λy(zxw[y/x]) = λy(zyw)

which gives us (9).
Let us make two further stipulations. First, we stipulate that the relation =α is transitive. That

is to say, we stipulate that for any λ-terms x, y and z, if x =α y and y =α z, then x =α z.
Second, we stipulate that replacing a subexpression of a term with an α-equivalent subexpres-

sion gives an α-equivalent term. More precisely, if a term t contains a term s as a subexpression
and s =α s

′, then if t′ is the result of replacing the subexpression s of t with s′, then t =α t
′. So for

example, because λx(x) =α λy(y), we have

z(λx(x)) =α z(λy(y))

(where we have let t = z(λx(x)), s = λx(x), s′ = λy(y) and t′ = z(λy(y))), and

λv(z(λx(x))(x(y))) =α λv(z(λy(y))(x(y)))

(where we have let t = λv(z(λx(x))(x(y))), s = λx(x), s′ = λy(y) and t′ = λv(z(λy(y))(x(y))).)
Armed with all this, we then have for example

λx(z(x(λy(y)))) =α λx(z(x(λv(v))))

and
λx(z(x(λv(v)))) =α λu(z(u(λv(v)))).

From transitivity we then have (10).
We thus define α-equivalence rigorously as follows



1.4 α-EQUIVALENCE 19

Definition 1.6: α-equivalence.

Two λ-terms t and t′ are α-equivalent iff there is a sequence of λ-terms s0, ..., sn such that

(i) t = s0 and t′ = sn, and
(ii) each si+1 may be obtained from si by replacing some subexpression λv(E) of si with the

expression λw(E[w/v]), where w does not appear free in E.

Note that we regard every term as a subexpression of itself, so that for any λ-term E, E is a
subexpression of E. Also note that the transitivity of =α is not built into this definition, but is an
easy proven consequence of it. In fact, it can easily be shown that =α is an equivalence relation –
that is, it can easily be shown that for any λ-terms x, y and z, (i) x =α x, (ii) if x =α y then y =α x,
and (iii) if x =α y and y =α z, then x =α z. The argument for this is left to the exercises.

Using this definition we can show (10) by setting

s0 = λx(z(x(λy(y))))

s1 = λx(z(x(λv(v))))

s2 = λu(z(u(λv(v))))

It is conventional to regard α-equivalent terms as notational variants of each other. Thus, it is
conventional to think of λx(x) and λy(y) as the same λ-term, just written in two different ways.
When we talk about λ-terms, we will therefore technically be talking about an equivalence class
of terms or expressions, each of which is just a notational variant of the other in which bound
variables are renamed. So for example, when we talk about the identity function, we may well
write down λx(x) to notationally represent it, but what we really mean is the class of mutually
α-equivalent λ-terms

{λx(x), λy(y), λz(z), ...}

Because talking about classes of α-equivalent λ-terms is cumbersome, we will follow tradition by
abusing notation, and will generally state our results in terms of individual λ-terms. This cuts
down on what would otherwise be an excess of notation. The reader concerned with such details
should easily be able to distinguish when we are talking about individual λ-terms and when we
are really talking about equivalence classes of λ-terms under the relation of α-equivalence.

Because we regard λx(x) and λy(y) as the same term, we will also regard things out of which
they are built – e.g., z(λx(x)) and z(λy(y)) – as the same term. Thus we will have

z(λx(x)) =α z(λy(y))

in accordance with Definition 1.6.
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Exercises for Section 1.4

1. Are the following true or false?
(a) x(x) =α y(y)

(b) x(λx(x)) =α x(λy(y))

(c) x(λx(x)) =α y(λy(y))

2. Which of the following six expressions are α-equivalent?

λx(xλx(x)) λx(xλy(y)) λx(yλy(y))

λz(xλz(x)) λz(xλz(z)) λz(xλx(z))

Where two or more expressions are α-equivalent, justify your answer using Definition 1.6.

3. Show that =α is an equivalence relation. That is, show that for any λ-terms x, y and z

(i) x =α x

(ii) if x =α y then y =α x, and
(iii) if x =α y and y =α z, then x =α z.

4. Show that if E is a λ-term and v is a variable that does not appear free in E, then there is
a λ-term E′ such that E =α E

′ and v does not appear at all in E. (Hint: use induction on the
construction of E.)

5. Consider the following alternative to Definition 1.6

Two λ-terms t and t′ are α-equivalent iff there is a sequence of λ-terms s0, ..., sn
such that

(i) t = s0 and t′ = sn, and
(ii) each si+1 may be obtained from si by replacing some subexpression λv(E)

of si with the expression λw(E[w/v]), where w does not appear at all (either
free or bound) in E.

Are there terms that are α-equivalent according to Definition 1.6, but not this definition, or
vice versa? Either give an argument that these definitions agree in all cases, or give an exam-
ple of a λ-term on which they differ.

1.5 Substitution Re-examined

One might have worries about the definition of α-equivalence given in the previous section. In
particular, it looks like this definition entails the following

λx(λy(x)) =α λy(λy(x)[y/x]) = λy(λy(y)) ? (13)
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Note that y does not appear free in λy(x), so this renaming of bound variables is legitimate. But
λx(λy(x)) is a function which, on any input x, returns the constant function that always outputs
x. On the other hand, λy(λy(y)) is a function that, on any input y, always outputs the identity
function. These are different functions, and so should not be α-equivalent.

To resolve this problem, we must examine the nature of substitution more carefully. This will
be the task of this section.

Let us start by considering the λ-termM = λx(xy). This has y as a free variable. Let us consider
what happens when we substitute x for y; that is, let us calculate M [x/y]. Proceeding naively and
replacing every free occurrence of y with x, it looks like we should get M [x/y] = λx(xx). This is
a closed λ-term representing a function that takes a function x to xx - i.e., the application of x to
itself.

However, M = λx(xy) is the same term as M ′ = λz(zy), as these terms are α-equivalent. But
note that when we substitute x for the free variable y in M ′, we find that M ′[x/y] is λz(zx). This is
not even a closed λ-term. We are left with the very awkward situation in which terms M and M ′

that we want to regard as the same (because they are α-equivalent) return different values when
the same thing (namely, x) is substituted for the same free variable (namely, y) in each. This is
unpleasant. How should we resolve this problem?

Note that there is something peculiar about the expression λx(xy)[x/y] insofar as x plays two
different roles in it - first, it is something that we are substituting for y, and second, it is a variable
that is already bound by λx in λx(xy). Because of this, the variable x that we substitute, while
free on its own, is ‘captured’ and becomes a bound variable in the final expression λx(xx). More
generally, when evaluating λx(xy)[E/y] in a case in which E contains x as a free variable, when
E is substituted for y in λx(xy) the free variable x in E is ‘captured’ by the λx and becomes a
bound variable. This seems undesirable, and is the source of the unpleasantness described in
the previous paragraph. The natural thing to do is to prohibit this, and insist that in evaluating
λx(xy)[E/y] we substitute E for all free ocurrences of y in a representation of λx(xy) in which
this sort of capturing does not happen. If for example we rewrite λx(xy) as the α-equivalent term
λz(zy) and then do the substitution in question, we get λz(zy)[x/y], which becomes λz(zx), and x
remains free.

More generally, we will say that when evaluating N [E/y] where y is a free variable in N , we
must substituteE for y in a termN ′ α-equivalent toN such that no ‘capturing’ of free variables oc-
curs. In particular, we must choose some N ′ which is α-equivalent to N such that no free variable
of E becomes bound when E is substituted for every free occurrence of y in N ′. The term N [E/y]

is then the result of substituting E for every free occurrence of y in such an N ′. Even though dif-
ferent choices of N ′ are possible, it is easily seen that the final results are all α-equivalent. So for
example, we could have chosen λw(wy) instead of λz(zy) for N ′ in our above example, in which
case λx(xy)[x/y] would become λw(wx) instead of λz(zx). That is fine, as λw(wx) and λz(zx) are
α-equivalent, and are thus merely different representations of the same term.
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Definition 1.7: Capturing.

When performing the substitutionN [E/y], a free variable x occurring in E is captured if some
free occurrence of y in N occurs inside the scope of a λx operator – that is, if N has a subex-
pression of the form λx(...y...), where this occurrence of y is free in N .

Definition 1.8: Substitution.

The λ-termN [E/y] is the termN ′ with every free occurrence of y replaced byE, whereN ′ is a
λ-term α-equivalent to N such that no free variable of E is captured during this substitution.

That such an appropriate termN ′ always exists is something you will demonstrate in the exercises.
Of course, in many cases where there is no risk of capturing we may calculate N [E/y] naively

by substituting E for y without carefully finding an appropriate N ′. It is nevertheless important
to know how to proceed when this is not the case.

Let us return now to (13). Note that in the term λy(x)[y/x], if we naively substitute y for every
free occurrence of x, we get λy(y), and the variable y has been captured. Replacing λy(x) with
the α-equivalent term λz(x), the substitution λz(x)[y/x] gives the result λz(y), and there is no
capturing. So λy(x)[y/x] is λz(y) (up to α-equivalence.) Thus, equation (13) is incorrect, and must
be replaced by

λx(λy(x)) =α λy(λy(x)[y/x]) = λy(λz(y)) (14)

which is unproblematic. A correct understanding of substitution therefore saves our definition of
α-equivalence from the unpleasant example in question.

Another unusual case worth discussing is that of terms in which the same variable is bound
multiple times. Consider for example the term

λx(xλx(x
↑
∗

y)) (15)

This term contains λx twice. Consider the x labelled by ∗ in the above expression. Which λx

should we regard this as bound by? By applying Definition 1.6, we see that (15) is α-equivalent to

λx(xλz(zy)),

and the x in question has become a z. This shows us that in (15), we must regard the x in question
as bound by the rightmost λx, and not the leftmost λx. (Note that we cannot apply Definition
1.6 to argue that (15) is α-equivalent to λz(zλx(zy)), and so there is no analogous argument for
regarding the x in question as bound by the leftmost λx.) In general then, any bound variable x
which occurs in the scope of multiple λx abstractions will be bound by the λx that occurs closest
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to the left of it. Note then that on input c, the function (15) outputs the value (xλx(xy))[c/x], which
is cλx(xy), and not cλx(cy) or xλx(cy).

Finally, while a more intuitive grasp of substitution suffices for the ordinary manipulations of
λ-terms encountered in much of this book, on occasions it is useful to work with a more rigorous
definition of substitution, which we now present. This can safely be skipped on a first reading. In
this rigorous definition, N [E/v] is defined inductively as follows:

(i) v[E/v] is E
(ii) if x is a variable distinct from v, then x[E/v] is x

(iii) N(N ′)[E/v] is N [E/v](N ′[E/v])

(iv) λv(N)[E/v] is λv(N)

(v) if x is a variable distinct from v, and either x does not occur free in E or v does not appear
free in N , then λx(N)[E/v] is λx(N [E/v])

(vi) if x is a variable distinct from v, and x occurs free inE and v occurs free inN , then λx(N)[E/v]

is λz(N [z/x][E/v]), where z is a variable that does not appear free or bound in N or E.

Of course, this definition only generates one of the set of α-equivalent terms representing N [E/v].
Note that by relabeling the bound variable x of λx(N), case (vi) can always be avoided. How-

ever, if it seems circular to make use of the notion of replacement of bound variables in the defi-
nition of substitution, clause (vi) may be included, and no reference to the notion of relabeling of
bound variables is then necessary.

As an example, we evaluate λr(r(λs(t)))[r/t] using these rules.

Starting with λr(r(λs(t)))[r/t]

Applying rule (vi), we get λz(r(λs(t))[z/r][r/t])

Applying rule (iii), we get λz(r[z/r](λs(t)[z/r])[r/t])

Applying rules (i) and (v), we get λz(z(λs(t[z/r]))[r/t])

Applying rule (ii), we get λz(z(λs(t))[r/t])

Applying rule (iii), we get λz(z[r/t](λs(t)[r/t]))

Applying rule (ii) and (v), we get λz(z(λs(t[r/t])))

Applying rule (i), we get λz(z(λs(r)))

Thus λr(r(λs(t)))[r/t] evaluates to λz(z(λs(r))), as expected.
Using this definition of substitution, facts such as the following can be rigorously proven:

Theorem 1.9: Substitution Theorem.

If x and y are distinct variables and x does not occur free in P , then

N [M/x][P/y] is identical with N [P/y][M [P/y]/x]

The proof is left to the exercises.
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Exercises for Section 1.5

1. Simplify the following expressions as far as possible, making sure to respect the require-
ment that free variables not be captured in substitutions. Here x, y and z are to be understood
as distinct variables. (You do not have to evaluate these expressions using the more rigorous
definition of substitution presented at the end of the section; instead argue more informally.)

(i) x(x)[y/x]
(ii) y(x)[y/x]
(iii) λx(y)[y/x]
(iv) λx(yx)[y/x]
(v) λx(yx)[x/y]
(vi) xλx(yx)[x/y]
(vii) x(λy(xy))[λx(xy)/x]
(viii) x(λy(xy))[λy(xy)/x]

2. Given any λ-terms N , E and a variable y, show that there is a term N ′ α-equivalent to N
such that no free variable of E is captured in the substitution N ′[E/y].

3. Shown that = α is an equivalence relation. That is, show that for any λ-terms x, y and z, (i)
x =α x, (ii) if x =α y then y =α x, and (iii) if x =α y and y =α z, then x =α z.

4. Perform the substitutions of problem 1. (iv), (v), (vi) and (vii) using the rigorous definition
of substitution presented at the end of the section.

5. Prove Theorem 1.9. (Hint: use induction on the construction on N . When considering the
case in which N has the form λz(N), you may assume by relabelling of bound variables that
z is distinct from x and y, and that z does not appear free in M or P .)

6. Show that if x and y are distinct variables and x is allowed to occur free in P , then we do
not necessarily have that N [M/x][P/y] is identical with N [P/y][M [P/y]/x].

1.6 β-reduction and Equivalence

In the λ-calculus, λx(M) is the expressionM viewed as a function of x. This means that it takes the
input N to the output M [N/x]. But the application of the function λx(M) to N can also be written
as the expression λx(M)(N). The expression λx(M)(N) should therefore simplify (in some sense)
to M [N/x]. We call the act of simplifying

λx(M)(N)

to
M [N/x]
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β-reduction, and say that λx(M)(N) β-reduces to M [N/x]. The expression λx(M)(N) is sometimes
called a β-redex, or just a redex (i.e., something that can be reduced.) The act of β-reducing a redex
is really nothing more than the act of evaluating a function on a given input.

For example, consider the term
λx(x(x))(λz(z)).

This has the form λx(M)(N) with M the expression x(x) and N the expression λz(z). It there-
fore β-reduces to x(x)[λz(z)/x], which is just λz(z)(λz(z)). This resulting term also has the form
λz(M)(N) withM the expression z andN the expression λz(z). It therefore β-reduces to z[λz(z)/z],
which is just λz(z). When A β-reduces to B and B β-reduces to C, we also say that A β-reduces to
C. Thus λx(x(x))(λz(z)) β-reduces to λz(z).

We will allow β-reduction to be performed on a redex inside a term. Thus, the term

τ1 λx(M)(N) τ2

β-reduces to
τ1 M [N/x] τ2.

where τ1 and τ2 are sequences of symbols. For example, consider the term

λy(λx(x(x))(λz(z))(y))

This has the form τ1 λx(M)(N) τ2 with τ1 the sequence of symbols λy(, andM the expression x(x),
and N the expression λz(z), and τ2 the sequence of symbols (y)) – i.e.,

λy(

τ1

λx(x(x)

M

)(λz(z)

N

) (y))

τ2

It therefore β-reduces to
λy( x(x)[λz(z)/x] (y))

which is
λy(λz(z)(λz(z))(y)).

This in turn has the form τ1 λz(M)(N) τ2 with τ1 the expression λy( and M the expression z and
N the expression λz(z) and τ2 the expression (y)) – i.e.,

λy(

τ1

λz(z

M

)(λz(z)

N

) (y))

τ2

It therefore β-reduces to
λy( z[λz(z)/z] (y))

which is
λy(λz(z)(y)).
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You should be able to see that by similar reasoning, this β-reduces to λy(y), which cannot be
β-reduced any further. Thus the original expression λy(λx(x(x))(λz(z))(y)) β-reduces to λy(y).

One must be careful here and pay very close attention to the presence or absence of parenthe-
ses. In order to apply β-reduction within a term, the overall term just have the exact form

τ1 λx(M)(N) τ2.

In particular, there must a set of parentheses immediately surrounding bothM andN as depicted,
and nothing between (M) and (N). With this is mind, consider the exaxmple:

y(λx(x))(z).

We cannot apply the function λx(x) to z and β-reduce the whole expression to yz, letting τ1 be y(
and M be the expression x and N be the expression z and τ2 the empty expression – i.e.,

λy(

τ1

λx(x
M
))(z

N
)

because (M) does not sit immediately next to (N), due to the intervening ). The λ-term y(λx(x))(z)

in fact contains no redexes, and thus cannot be β-reduced in any way.
Determining whether it is correct to perform a β-reduction can sometimes be confusing when

have used our conventions to abbreviate expressions and remove parentheses. To check whether
one can apply β-reduction within a term, it is often best to restore any missing parentheses first,
just to be sure. Paying attention to possibly suppressed parentheses is especially important also
because of the failure of associativity of the λ-calculus: the λ-terms x(yz) and (xy)z are not in
general the same in the λ-calculus, and so the placement of parentheses can completely change
the meaning of a λ-term. You will explore this point in the exercises.

When a λ-term A reduces to B by a single β-reduction, we write A →β B. When A reduces
to B by a sequence of β-reductions (this includes the possibility that the sequence consists of just a
single β-reduction), we write A↠β B. So we have just seen that

λy(λx(x(x))(λz(z))(y)) ↠β λy(y).

We also write A↠β A for any term A, thinking of there as being a ‘0 step’ β-reduction of A to A.
We summarize these definitions as follows.

Definition 1.10: β-reduction.

An expression of the form λx(M)(N) (where x is a variable and M , N are λ-terms) is called
a β-redex (or just a redex). We have:

(i) A→β B iff A has the form τ1 λx(M)(N) τ2 and B has the form τ1 M [N/x] τ2.

(ii) A ↠β B (A β-reduces to B) iff for some sequence X0, X1, ..., Xn of λ-terms we have that
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A = X0, B = Xn, and X0 →β X1 →β ... →β Xn. This includes the degenerate case in which
A and B are identical.

The set of rules of formation of λ-terms along with the rule of β-reduction just given can be
thought of as a system of rules for manipulating terms constructed in a certain sort of way. This
system is typically called the untyped λ-calculus. We will also call it λ0, to easily distinguish it from
expansions of the untyped λ-calculus that we consider later.

Definition 1.11: Rules of the Untyped λ-calculus λ0.

Rules of λ-term formation

(i) Any variable x, y, z, ... is a λ-term.
(ii) If M and N are λ-terms, then so is M(N).

(iii) If M is a λ-term and x a variable, then λx(M) is a λ-term.

Rule of β-reduction

(i) λx(M)(N) →β M [N/x]

Note that for compactness, in the above definition we state only the simplest form of the rule of
β-reduction, with it being understood that β-reduction may be performed on redexes inside terms.

We now have the following important definition

Definition 1.12: β-normal form.

A term X is in β-normal form just in case no β-reduction may be performed on it – that is, just
in case it contains no subexpression of the form λx(M)(N).

For example, λy(y) is in β-normal form. By performing a sequence of β-reductions, we reduced
λy(λx(x(x))(λz(z))(y)) to the β-normal form term λy(y). One might hope that starting with any
term and continually β-reducing it, one will eventually arrive at a term in β-normal form. Unfor-
tunately this is not the case. For example, consider the term

λx(x(x))(λx(x(x))).

We have

λx(x(x))(λx(x(x))) →β x(x)[λx(x(x))/x]

= λx(x(x))(λx(x(x)))

Although the term λx(x(x))(λx(x(x))) is not in β-normal form, the only act of β-reduction that
may be performed on it does not simplify the original term, but rather just returns the term itself.
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There is thus no sequence of β-reductions that begins with this term and ends with a term in
β-normal form.

A yet further complication that needs to be considered is that there are λ-terms on which
there are multiple β-reductions that can be performed, because they contain multiple redexes. For
example, consider the term

λx(x)(y(y))(λz(z)(y))

If we perform a β-reduction on the redex λx(x)(y(y)), this redex becomes y(y), and so the whole
term β-reduces to y(y)(λz(z)(y)). This in turn β-reduces to y(y)(y) (i.e., yyy), which is in β-normal
form.

However, we can also perform a β-reduction on the redex λz(z)(y) first. Doing so, the entire
term is β-reduced to λx(x)(y(y))(y), which in turn β-reduces to y(y)(y) (i.e. yyy.)

In this case, even though there are different ‘orders’ in which we can β-reduce our given term,
different β-reductions ultimately give the same β-normal term. Is this true in general? It turns out
that it is. This is a consequence of the following important general fact:

Theorem 1.13: The Church-Rosser Theorem for β-reductions in λ0.

In the untyped λ-calculus λ0, if X ↠β Y1 and X ↠β Y2, then there is a term Z such that
Y1 ↠β Z and Y2 ↠β Z.

This theorem is often depicted as follows:

X

Y1 Y2

Z

This theorem tells us that if different sequences of β-reductions take a term X to different terms
Y1, Y2, then further β-reductions can take Y1 and Y2 back to a common term Z. So any distinct
sequences of β-reductions can be ‘reunited’, forming the diamond shape shown above.

It follows from this that when a term X can be reduced to a β-normal form Y , this Y is unique
(up to α-equivalence). That is to say, it follows that different chains of β-reductions cannot take us
from an X to two distinct β-normal forms Y1 and Y2. To see why, suppose to the contrary that two
different chains of β-reductions take us from a termX to two β-normal forms Y1 and Y2. It follows
from the Church-Rosser Theorem just stated there is a term Z such that Y1 ↠β Z and Y2 ↠β Z.
But if Y1 and Y2 are in β-normal form then they cannot be reduced any further, and so we must
have that Y1 and Z are the same term (up to α-equivalence) and Y2 and Z are the same term (up
to α-equivalence). By transitivity of α-equivalence, it follows that Y1 and Y2 are also α-equivalent.
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So if different chains of β-reductions take us from X to distinct β-normal forms Y1 and Y2, then Y1
and Y2 are α-equivalent.

The proof of the Church-Rosser Theorem is perhaps surprisingly complex. We include it in the
appendix to this chapter.

Intuitively, β-reduction should be thought of as a process taking a λ-term into another λ-term
referring to the same entity. Consider then the following ‘symmetrical’ version of one-step β-
reduction:

Definition 1.14: The relation ∼β .

X ∼β Y if either X →β Y or Y →β X

We have X ∼β Y iff there is a one-step β-reduction from one of X or Y to the other. If X ∼β Y ,
then X and Y should refer to the same entity. Because ‘referring to the same entity’ is surely a
transitive relation, we should then have that if X0 ∼β X1, X1 ∼β X2, ..., Xn−1 ∼β Xn, then X0 and
Xn ‘refer to the same entity’. With this in mind, we define the relation of β-equivalence as follows:

Definition 1.15: The relation U =β V .

U and V are β-equivalent (in symbols, U =β V ) iff one of the following holds:

(a) U and V are the same term (up to α-equivalence), or
(b) for some sequence of terms X0, X1, ..., Xn−1, Xn with U = X0 and V = Xn,

X0 ∼β X1, X1 ∼β X2, ..., Xn−1 ∼β Xn.

Although when U and V are β-equivalent we regard them as referring to the same thing, this does
not mean that we regard them as the same expression. (This is a common feature of any language.
In English the terms ‘Prince Charles’ mother’ and ‘Queen Elizabeth II’ refer to the same person,
even though they are different expressions.) In this sense, what is being said here is different from
what was said about α-equivalence, where certain distinct lexical items were regarded as literally
the same expression. We do not want to make that move here, as we want it to be possible for
syntactically distinct terms to have a common referent.

The following is a useful corollary of the Church-Rosser Theorem
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Corollary 1.16

In λ0, U =β V iff there is a term Z such that U ↠β Z and V ↠β Z.

You will prove this in an exercise. This corollary tells us that two λ-terms are β-equivalent iff they
can be β-reduced to a common term.

A final fact about β-reduction that is occasionally useful is the following

Lemma 1.17:

For any λ0-terms U , V , t and variable x, if U →β V then U [t/x] ↠β V [t/x]

The proof is also left to the exercises.

Exercises for Section 1.6

1. Reduce each of the following lambda terms into β-normal form. In all cases, if an expres-
sion is already in β-normal form, you simply need to point this out and do nothing further.
Here, x, y, z, u and v are to be understood as distinct variables.

(i). λx(x)(y)
(ii). λx(E)(z) (Here E is a term that contains no free occurrence of x.)
(iii). λx(x)(λy(y(y)))
(iv). λx(x)(λy(y(y))(λz(z)))
(v). λx(y(λy(z)))
(vi). λx(λy(xy))(u)
(vii). λx(λy(xy))(λu(u(v)))
(viii). λx(λy(xy))(λu(λv(u(v))))

2. In this exercise, we show that the application of λ-terms is not associative. In particular, we
show that it is not the case that for all λ-terms a, b and c, a(b)(c) and a(b(c)) are β-equivalent.
Let x and y be distinct variables, and let a be λx(y), b be y, and c be y. Show that a(b)(c)
β-reduces to y(y) and a(b(c)) β-reduces to y. Because both y and y(y) are in β-normal form
and are different terms (i.e., not α equivalent), it follows that y and y(y) are not β-equivalent
terms.

3. In spite of the previous exercise, the λ-calculus captures the fact that function composition
is associative. Given functions (i.e., λ-terms) f and g, define [f ◦ g] to be λx(f(g(x)). Show
that the terms [f ◦ g](h(x)) and f([g ◦ h](x)) are β-equivalent. How are the results of this and
the previous exercise compatible? Doesn’t one exercise show that function composition is
associative, and the other show that it is not?
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4. Argue that if s is a closed λ-term and s ↠β t, then t is a closed λ-term. (A closed term is
one with no free variables.)

5. Argue that every β-normal closed term can be written in the form

λx1...λxn(x(M1)...(Mm))

where n > 0,m ≥ 0, x and the xi are (not necessarily distinct) variables, and the Mi are all in
β-normal form. (Hint: prove this by induction on the construction of λ-terms.)

6. Using the Church-Rosser Theorem, prove Corollary 1.16.

7. Show that there is a λ-term τ which has a non-terminating β-reduction sequence - i.e.,
an infinite sequence τ →β τ1 →β τ2 →β τ3 →β · · · - as well as a terminating β-reduction
sequence - i.e., a finite sequence τ →β σ1 →β σ2 →β · · · →β σi for some finite i, where σi is in
β-normal form.

8. Find terms X and Y such that neither X nor Y has a β-normal form, but X(Y ) has a
β-normal form.

9. Let Y be the term λx(λy(x(yy))(λy(x(yy)))). For every term E, show that

E(Y (E)) =β Y (E).

Thus, Y (E) is a ‘fixed point’ of E.

10. Show that the term Y of the previous problem does not have a β-normal form. Show that
in fact for any term Y ′ such that for every term E, E(Y ′(E)) =β Y

′(E), Y ′ does not have a
β-normal form. (Hint: let x be a variable that does not appear free in Y ′, and consider the
fact that x(Y ′(x)) =β Y

′(x).)

11. Prove Lemma 1.17. (Hint: by α-equivalence, you may assume that neither x nor any free
variable of t is bound in V .)

12. Is it true that for any λ-terms U , V , t and variable x, if U →β V then U [t/x] →β V [t/x]?

1.7 η-reduction and Extensionality

Suppose E is a term in the λ-calculus that does not contain x as a free variable. Consider the term
E∗ = λx(E(x)). On any input c, we have

E∗(c) = λx(E(x))(c)

=β E(x)[c/x]

= E(c)

As functions, E∗ and E produce the same outputs on the same inputs. It is thus tempting to think
of them as the same function.
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Note that if we do not require that E does not contain x as a free variable, then E∗(c) is not
necessarily β-equivalent to E(c). To see this, let x and y be distinct variables, and let E just be the
variable x. Then E(y) is x(y), but E∗(y) is λx(x(x))(y), which β-reduces to y(y), and so E(y) and
E∗(y) are not β-equivalent.

Suppose then that E does not contain x as a free variable, so that E∗ and E produce the same
outputs on the same inputs. In spite of this, nothing we have said so far forces us to identify E∗

and E in any sense. Consider for example the special case in which E is just the variable y. In
this case, E∗ is λx(yx). Both y and λx(yx) are terms in β-normal form, and are not α-equivalent.
Thus, they are not β-equivalent either. So E∗ and E are not equivalent in any formal sense we
have identified yet.

In the λ-calculus as we have developed it thus far, we do not necessarily treat a pair of functions
as identical just because they always give the same outputs on the same inputs. Is this a defect or
a virtue? Consider the following principle

Definition 1.18: Principle of Extensionality.

If two terms λ-terms U and V have the property that for every λ-term c, U(c) and V (c) are
the same, then U and V are the same.

This principle is not fully precise, insofar as the term ‘same’ has not yet been defined. However, if
by ‘same’ we mean β-equivalent, then we have seen that this principle fails.

Perhaps this is not worrisome. One might, after all, have reservations about the Principle
of Extensionality. Must we really identify two functions or algorithms that each return the same
output on the same inputs? Two algorithms that always return the same output on the same inputs
might still be different in many other respects - one algorithm might require significantly more
time or memory to produce an output than the other, for example. Whether this sort of distinction
matters will depend on our purposes. If we are interested in implementations of functions on
real physical computers, such distinctions may well be important. If by contrast we are only
interested in functions from a very abstract mathematical point of view, such distinctions may
well not matter. There is no right or wrong answer as to whether we must endorse the Principle of
Extensionality. It simply depends on whether doing so is useful to our ends, whatever those are.

Suppose however that we are atttracted to the Principle of Extensionality, and are interested
in articulating a notion of sameness according to which it holds. How might we proceed? To start
with, for any term E we will want to identify λx(E(x)) (where x is not free in E) with E. To
this end, we introduce a new reduction rule - the rule of η-reduction - according to which the term
λx(E(x)) (with x not free in E) can be reduced to E, as follows

If x not free in E, then λx(E(x)) →η E.

In this definition, we are of course free to use any variable in place of x. The expression λx(E(x))

is sometimes called an η-redex, or just a redex. As with β-reduction, we allow ourselves to apply
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η-reductions to η-redexes within terms. In this way, the term

τ1 λx(E(x)) τ2

also η-reduces to
τ1Eτ2

(where τ1 and τ2 are sequences of symbols, and x is not free in E.)
We thus regard both β-reduction and η-reduction as valid ways of simplifying terms. In this

spirit, we define X →βη Y iff X →β Y or X →η Y , and X ↠βη Y iff some sequence of β or η
reductions takes X to Y (where again, this includes the degenerate ‘0 step’ reduction in which X
and Y are α-equivalent.) More formally, we have the following definitions:

Definition 1.19: η-reduction, βη-reduction, and βη-equivalence

An expression of the form λx(E(x)) (where x is a variable and E a λ-term such that x does
not appear free in E) is called an η-redex (or just a redex). We have:

(a) A →η B iff A has the form τ1 λx(E(x)) τ2 and B has the form τ1 E τ2 for expressions
τ1, E, τ2, and x is not free in E.

(b) A→βη B iff A→β B or A→η B.

(c) A↠βη B (A βη-reduces to B) iff for some sequence X0, X1, ..., Xn of λ-terms we have that
A = X0, B = Xn, and X0 →βη X1... →βη Xn. This includes the degenerate case in which A
and B are identical.

(d) X and Y are βη-equivalent (in symbols, X =βη Y ) iff one of the following holds:

(i) X and Y are the same term (up to α-equivalence), or
(ii) for some sequence of terms X0, X1, ..., Xn−1, Xn with U = X0 and V = Xn,

X0 ∼βη X1, X1 ∼βη X2, ..., Xn−1 ∼βη Xn.

In fact, βη-reduction and βη-equivalence have many of the same important properties that
β-reduction and β-equivalence have. For example

Theorem 1.20: The Church-Rosser Theorem for βη-reductions in λ0.

In the untyped λ-calculus λ0, if X ↠βη Y1 and X ↠βη Y2, then there is a term Z such that
Y1 ↠βη Z and Y2 ↠βη Z.

Again, the proof of this result is left to the appendix. As before, the following corollary is easy:
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Corollary 1.21

In λ0, U =βη V iff there is a term Z such that U ↠βη Z and V ↠βη Z.

We also have the following definition

Definition 1.22: βη-normal form.

A term X is in βη-normal form just in case no β-reduction or η-reduction may be performed
on it – i.e., just in case it contains no subexpression of the form λx(M)(N) or of the form
λx(E(x)), where x is not free in E.

Corollary 1.21 then shows that βη-equivalent terms can be βη-reduced to a common term. It also
follows from Theorem 1.20 as before that when a term can be reduced to a term in βη-normal form,
this term in βη-normal form is unique (up to α-equivalence.)

In analogy with Lemma 1.17, a further useful fact about η-reduction is the following

Lemma 1.23:

For any λ0-terms U , V , t and variable x, if U →η V then U [t/x] ↠η V [t/x[

The proof is also left to the exercises.
An interesting technical property of βη-reductions is that whenever an η-reduction is followed

by a β-reduction, there is a sense in which the order of these reductions can be reversed, so that
the β-reduction comes before the η-reduction. More precisely, we have the following lemma

Lemma 1.24: η-reduction postponement in λ0.

For all λ-terms X,Y, Z, if X →η Y →β Z in λ0, then there is a λ-term Y ′ such that X ↠β

Y ′ ↠η Z (where ↠η is a sequence of η-reductions.)

You will prove this in the exercises. As a consequence, it can be shown that if a term can be reduced
to βη-normal form, then there is a way of reducing it to βη-normal form that involves performing
a sequence of β-reductions followed by a sequence of η-reductions.

All things considered, the notion of βη-equivalence is a natural notion with many pleasing
properties. In fact, the notion of βη-equivalence provides us with a notion of ‘sameness’ which
it turns out is sufficient to demonstrate the Principle of Extensionality. In particular, we have the
following
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Theorem 1.25: Principle of Extensionality for βη-equivalence.

In the untyped λ-calculus λ0, if two terms λ-terms U and V have the property that for every
λ-term c, U(c) =βη V (c), then U =βη V .

Proof

Suppose we have λ-terms U and V such that for every λ-term c, U(c) =βη V (c). Let z
be a variable that does not appear free in U or V . Then U(z) =βη V (z). In an exercise,
you will show that if E1 and E2 are λ-terms such that E1 =βη E2 and z is a variable, then
λz(E1) =βη λz(E2). We therefore have that λz(U(z)) =βη λz(V (z)). Because λz(U(z)) =η U

and λz(V (z)) =η V , combining these and using the symmetry and transitivity of =βη gives
U =βη V .

The relation =βη is therefore a notion of sameness of λ-terms for which the Principle of Extension-
ality holds.

There is room to wonder whether the Principle of Extensionality as stated in Definition 1.18
adequately captures the intuitive idea that functions which give the same outputs on the same
inputs are the same function. For instance, it might be suggested that we should be willing to
identify λ-terms U and V for which U(c) and V (c) are the same for every closed λ-term c. Or per-
haps we should identify λ-terms U and V for which U(c) and V (c) are the same merely for every
closed λ-term c in β-normal form. This would lead to various modifications of the Principle of
Extensionality. Whether new reduction rules can be found that render the corresponding modi-
fied versions of Theorem 1.25 true is not clear. More generally, whether we should be content with
Definition 1.18 and Theorem 1.25 as a statement of the ‘extensionality’ of our system is a question
we shall have to leave open.

At this point, we have two independent notions of reduction available to us: β-reduction and
η-reduction. We also have the notion of reduction that consists of their combination, namely, βη-
reduction. All three of these notions of reduction satisfy the Church-Rosser Theorem, and so they
have much in common. In most texts, β- and βη-reduction are the most closely studied. The
notion of β-reduction is especially natural given the interpretation of λ-terms as functions which
can operate on arguments, and the notion of βη-reduction is natural because of the way it ensures
a type of extensionality. Both notions will be important in what follows. We will expand and
explore these notions of reduction further in following chapters.

Exercises for Section 1.7

1. Reduce each of the following terms to βη-normal form, or argue that they cannot be re-
duced to βη-normal form. Here, x and y are distinct variables.



36 CHAPTER 1. INTRODUCTION TO THE λ-CALCULUS.

(i). λx(x(x))(λx(y(x)))
(ii). λx(y(x))(λx(x(x)))
(iii). λx(y(x))(λx(y(x)))
(iv). λx(x(x))(λx(x(x)))

2. Prove that ifE1 andE2 are λ-terms such thatE1 =βη E2 and v is a variable, then λv(E1) =βη

λv(E2). (Hint: use induction on n, where X0, X1, ..., Xn−1, Xn is a sequence of λ-terms with
U = E1 and V = E2 such that X0 ∼βη X1, X1 ∼βη X2, ..., Xn−1 ∼βη Xn.)

3. Prove that no λ-term has an infinite η-reduction sequence. That is to say, prove that there
is no sequence of terms X0, X1, X2, ... such that X0 →η X1 →η X2 →η ....

4. Prove Lemma 1.24. (Hint: suppose the term X contains an η-redex λx(E(x)) which is η-
reduced to E in the expression Y . We are supposing that Y then contains a β-redex λy(F )(G)
which when β-reduced gives Y →β Z. From the Subterm Lemma (Lemma 1.5), in the term
Y either the subterms E and λy(F )(G) are identical, one is properly contained in the other,
or they are disjoint.

We thus have the following cases to consider:
Case (i): E and λy(F )(G) are identical subterms of Y . This means that X has the form

X = ... λx(λy(F )(G)(x)) ...

Case (ii): In the term Y , the subterm E is properly contained in the subterm λy(F )(G). This
means that in the term Y , (a)E is the term λy(F ), (b)E is contained in F , or (c)E is contained
in G. In subcase (a), this means that X has the form

X = ... λx(λy(F )(x))(G) ...

In subcase (b) this means that Y has the form

Y = ...λy(...E...)(G) ...

and so X has the form
X = ...λy(...λx(E(x))...)(G) ...

and in subcase (c), this means that X has the form

X = ...λy(F )(...λx(E(x))...) ...

Case (iii): In the term Y , the subterm λy(F )(G) is properly contained in the subterm E. This
means that X has the form

X = ... λx(...λy(F )(G)...(x)) ...
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Case (iv): E and λy(F )(G) are disjoint subterms of Y . Then it is easily argued that λx(E(x))

must also be disjoint from λy(F )(G) in X , and so X has the form

X = ... λx(E(x)) ... λy(F )(G) ...

Consider all these possible forms for X and show that the result holds in each case.)

5. Using Lemma 1.24, prove the following generalization of Lemma 1.24

For all λ-terms X and Z, if X →βη Z, then there is a λ-term Y such that X ↠β Y ↠η Z.

6. Prove that if a term has an infinite βη-reduction sequence, then it also has an infinite
β-reduction sequence. (Hint: use the result of the previous exercise.)

7. (i) Show that if X →η Y and X is in β-normal form, then Y is in β-normal form. (ii) Give
an example of X →η Y in which Y is in β-normal form, but X is not in β-normal form.

8. In contrast with (ii) of the previous exercise, show that if X →η Y and Y is in β-normal
form, then X has a β-normal form.

9. Prove that if a term has a β-normal form, then it has a βη-normal form.

10. Prove that if a term has a βη-normal form, then it has a β-normal form.

11. Prove Lemma 1.23.

1.8 The untyped λ-calculus as a model of computation - I

By now you should have some confidence with the manipulation of λ-terms. Still, at this point
all these manipulations might seem like pure formalism. λ-terms themselves are functions, but
they are very strange sorts of functions that take any other function as a possible input, and so
are quite different from the sorts of functions of everyday mathematical practice. What is then the
mathematical point of this strange system?

For our purposes, one of the main points of the λ-calculus is that it is a very powerful program-
ming language. In this section, we will show how certain traditional calculations or computations
with which you are familiar can be interpreted as λ-calculus manipulations. In the next section,
we will talk more abstractly about the λ-calculus as a programming language or framework for
computation.

As our first example of the utility of the λ-calculus, let us focus on the manipulation of truth
values. We begin by noting that both the terms λx(λy(x)) and λx(λy(y)) are in β-normal form
and so cannot be simplified any further by β-reduction. Let us think of the former as denoting the
truth value T and the later as denoting the truth value F:

T ≡ λx(λy(x)), F ≡ λx(λy(y)). (16)

Consider then the function λs(λt(stF)), which we denote AND:

AND ≡ λs(λt(stF)).
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One can then verify the following:

AND (T)(T) ↠β T AND (T)(F) ↠β F

AND (F)(T) ↠β F AND (F)(F) ↠β F

For example,

AND (T)(F) = λs(λt(stF))(T)(F)

→β λt(TtF)(F)

→β TFF (i.e., T(F)(F).)

= λx(λy(x))(F)(F)

→β λy (F)(F)

→β F (because F has no free variables, and so λy(F)(t) →β F for any t.)

As an exercise in λ-calculus manipulations, you should verify the remaining three claims.
What this shows is that the λ-term AND ‘computes’ conjunction - that is to say, given two

truth values v1 and v2, the term AND(v1)(v2) (more typically written AND v1v2) β-reduces to
the truth value of the conjunction of v1 with v2. One can define similar λ-terms for other logical
connectives - for example:

OR ≡ λs(λt(sTt)) NOT ≡ λs(sFT)

By combining these λ-terms in various ways we can of course construct more complicated con-
nectives. What this means is that the manipulation of truth values can be interpreted as a type of
manipulation (more specifically, β-reduction) of λ-terms.

The λ-calculus allows us to do far more than manipulate truth values. We can also encode
the manipulation of natural numbers in the λ-calculus. Just as we began our discussion of the
manipulation of truth values by encoding the truth values T and F with closed λ-terms, so too
we will begin our discussion of the manipulation of natural numbers by encoding the natural
numbers with closed λ-terms. Just as in the case of truth values, the coding is somewhat arbitrary,
and there is no unique choice. The following coding of the natural numbers is most common:

0 ≡ λx(λy(y)), 1 ≡ λx(λy(x(y))), 2 ≡ λx(λy(x(x(y)))), ... (17)

The terms in (17) are sometimes called the Church numerals.
In general, we will represent the natural number n as:

n ≡ λx(λy(xny))

where xny is x(x(...(x(y))...)) with n occurrences of x. (Note the placement of parentheses.) Using
this notation, you should be able to see that xn(xmy) is just xn+my.
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With this convention, it is possible to define all sorts of complicated functions on the natural
numbers. Consider, for instance, the λ-term λuλxλy(x((ux)y)), which we denote succ. This acts
on natural numbers in the following way:

succ (n) ≡ λuλxλy(x((ux)y))(n)

→β λxλy(x((nx)y))

→β λxλy(x(x
ny)) (using(nx)y →β x

ny)

→β λxλy(x
n+1y)

≡ n+ 1

Thus we have succ n →β n+ 1, and so we may think of succ as a λ-term that ‘computes’ the
successor function.

For another example, define add to be the λ-term λuλvλxλy[u(x)(v(x)(y))]. Then we have:

add(n)(m) ≡ λuλvλxλy[u(x)(v(x)(y))](n)(m)

→β λxλy[n(x)(m(x)(y))]

→β λxλy[n(x)(x
my))] (using m(x)(y) →β x

my)

→β λxλy[λy(x
ny)(xmy)] (using n(x) →β λy(x

ny))

→β λxλy[x
n(xmy)]

→β λxλy[x
n+my]

≡ n+m

Thus, add represents the function of addition. It is a relatively mechanical matter to generalize
these ideas to construct λ-terms that compute multiplication and exponentiation. You will explore
this in the exercises.

In fact, more general results are possible, though they require significant effort to prove. Call
a function f defined on some subset of the natural numbers partial recursive if it corresponds to
the output of some Turing machine – that is to say, if there is some Turing machine such that for
any n, if this Turing machine running on input n eventually terminates with a numerical output
m, then f is defined on n and f(n) = m, while if this Turing machine running on input n does
not eventually terminate with a numerical output (either because it does not terminate at all, or
because it terminates with a non-numerical output on its tape), then f is undefined on n. (For a
more general introduction to Turing machines and the theory of recursive functions, see chapter 3
and onwards of [3].)

For each partial recursive function f it can be shown that there is a closed λ-term Θf such that
for all natural numbers n, Θf (n) may be reduced to a term in β-normal form iff f(n) is defined.
Furthermore, in the case in which f(n) is defined,

Θf (n) ↠β f(n).

(Here, f(n) is the Church numeral corresponding to the natural number f(n).) Thus, not only are
there ways of representing the successor function, addition, multiplication and exponentiation
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in the untyped λ-calculus λ0, but also ways of representing any ‘algorithmic’ numeric function
whatsoever. This result may also be straightforwardly generalized to partial recursive functions
of more than one variable. For a fuller discussion and proof of this result, see chapter 4 of [4].

Exercises for Section 1.8

1. Verify that NOT (T) ↠β F and NOT (F) ↠β T.

2. Construct a λ-term ENT satisfying the following axioms for entailment:

1. For any λ-term s, ENT(s)(T) ↠β T (i.e., everything entails T),
2. For any λ-term s, ENT (F)(s) ↠β T (i.e., everything is entailed by F),
3. ENT (T)(F) ↠β F.

You should verify that the term you construct has these three properties.

3. Define mult to be the λ-term λuλvλx(u(vx)). Verify that mult(n)(m) = p where n×m = p.

4. Construct a λ-term exp such that exp(n)(m) = p where nm = p. Verify that the term you
have constructed has this property.

1.9 The untyped λ-calculus as a model of computation - II

The discussion of the previous section shows that the λ-calculus λ0 may be thought of as a model
of computation, as powerful as any other model of computation. Just as the way in which in a Tur-
ing machine computation is implemented by a device moving along a tape, printing and deleting
symbols according to definite rules, or the way in which in a modern computer computation is im-
plemented by the manipulation of bits by logic gates, in the λ-calculus computation is modeled by
β-reduction. In this way, the λ-calculus gives us an alternative way of thinking about the funda-
mental building blocks of computer programs. In particular, we can now think of all computation
as ultimately reducible to the manipulation of terms in the λ-calculus, with the process of compu-
tation itself just becoming the process of β-reduction (or βη-reduction, if one wishes.) This gives a
different and powerful way of thinking about the theoretical basis of computer programming.

There are texts devoted to so-called ‘programming in the λ-calculus’, that show how lists,
more complex data structures, binary tree searches, recursion and so on can all be implemented
in the λ-calculus. Indeed, the λ-calculus is perhaps the simplest example of a so-called functional
programming language, a powerful and distinctive way of thinking about computation different
from that given in the perhaps more familiar imperative programming languages. We will not discuss
this in detail here. The interested reader should look at [6] or section 5.2 of [8] for fuller discussions.

There are several important differences between the λ-calculus viewed as a programming lan-
guage and other more traditional programming languages. We can of course view any λ-term E

as a program, either by (i) thinking ofE itself as the starting point of a computation that terminates
once we have reduced E to β-normal form, or (ii) by thinking of E as a (partial) function which on
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input c – where c is yet another λ-term – produces the output corresponding to the β-normal form
of E(c). Much like other models of computation, in each case there is of course no guarantee that
the program will halt, as not all terms have β-normal forms. But putting this to the side, regard-
less of whether we adopt point of view (i) or (ii), a curious difference with more familiar computer
programs is that the outputs of these computer programs are not so much definite values, but
rather λ-terms which are themselves further computer programs. This is different from more fa-
miliar computer programs where the output is generally some specific object, such as a number or
string of characters. Still, as we have seen in the previous section, we can recover more traditional
computer programs by identifying certain basic λ-terms with specific mathematical objects such
as the truth values or the natural numbers, as in (16) or (17).

There are however further even deeper differences between the λ-calculus viewed as a pro-
gramming language and more traditional programming languages. In a traditional computer
program, a computer executes a sequence of instructions step by step. When one instruction is ex-
ecuted, there is no question what the next instruction to execute is - it is simply the next instruction
on the list, or the next instruction as determined by some sort of rule in the presence of loops or
other such programming structures. The process of β-reduction is however not like this. We have
seen, after all, that some λ-terms can be β-reduced in different ways (though as the Church-Rosser
Theorem shows, this does not mean that the program can produce different results.) So we can
think of λ-terms as programs such that we sometimes have multiple choices as to the direction in
which the program can proceed. Sometimes this is called an ‘indeterminstic’ program. When we
call λ-terms ‘programs’, they should be understood as programs in this sense.

We saw earlier that there are λ-terms such that some ways of β-reducing them lead to infinite
loops, and other ways of β-reducing them terminate in a term in β-normal form. The Church-
Rosser Theorem guarantees that all chains of β-reduction that terminate yield the same result,
but that of course does not mean that all chains of β-reductions terminate. One might worry that
in this sense the β-reduction of λ-terms is quite unlike traditional computing, in that we must be
clever and β-reduce in just the right way, lest our program not terminate at all. But it turns out that
this worry can be averted by following certain protocols when faced with the decision of how to β-
reduce. For example, one can always perform the β-reduction for the redex λx(E1)(E2) for which
the λ is leftmost out of all redexes. It turns out that if one follows this protocol, it will terminate
if there is any terminating sequence of β-reductions at all. (Demonstrating that this is so is non-
trivial. See chapter 13 of [1], and in particular section 13.2 for a detailed discussion and proof.)
There are other such protocols as well with this remarkable property. So long as one follows such
a protocol (which can be done mechanically), the term in question reduces to a β-normal term
if there is any such reduction at all, and one has something more like a ‘deterministic’ model of
computing. A curiosity worth noting is that there are also protocols which are unterminating so
long as there is some unterminating sequent of β-reductions!
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1.10 Typed Computation.

We may view terms in the λ-calculus λ0 as functions that act on each other, including themselves.
As we have noted already, this is somewhat different from the ordinary functions mathematicians
or computer programs typically manipulate. An ordinary mathematical function like f(x) = 2x

takes natural numbers or perhaps real numbers as inputs, but does not take itself as input. We do
not ordinarily talk about doubling f itself, except as an indirect way to refer to something quite
different, namely the function f(f(x)) = 4x. Likewise, ordinary computer programs might take
as an input some natural number or string of characters, but a typical computer program does not
take itself as an input.

Mathematical functions or computer programs typically act on data of a specific form and
output data of a specific form. We are all familiar with functions that take natural numbers into
natural numbers, or real numbers into real numbers, or vectors into real numbers, or matrices into
ordered pairs of natural numbers, and so on. In each of these cases the input of the function must
be of a specific form in order for the function to be applicable, and so long as the input has that
specific form, the output will also have some fixed (though possibly different) form.

Given this, it is very natural to want to distinguish functions based on the structure or form of
the data they input and output. A function that takes a natural number as an input and outputs a
natural number is a very different sort of thing from a function that takes some sort of function as
an input, and produces an ordered triple of natural numbers as an output. The untyped λ-calculus
has no principled way of drawing these sorts of distinctions. We seek a type of formalism in which
such distinctions may be drawn easily.

We begin then with the notion of a type. Loosely speaking, a type is some sort of domain on
which a function acts, corresponding to data with some particular structure. The natural numbers
N is a very simple example of a type. Sometimes people refer to the type of individuals, where
an individual is something which is not a function. Another very useful type is the type of truth
values, which consists of the two objects T and F. This is sometimes denoted B. One can also build
types from other types - so we can consider the type of ordered pairs, the first element of which is
an element of N and the second element of which is an element of B, or the type of functions from
elements of N to elements of B. This somewhat informal understanding of the notion of a type
will suffice for now.

The functions mathematicians and computer scientists work with typically not only have some
sort of type as their domain, but also as their codomain. So a function from N to B has the type N
as its domain, and the type B as its codomain. Consider a predicate such as ‘x is an even number’.
This may be viewed as a function that takes an element of N as an input, and returns an element
of B as an output. Thus, it may be viewed as a function from the type N to the type B. (For this
reason, open sentences are sometimes called propositional functions.)

Typical computations then are typed – they take input of a certain type into outputs of a certain
type. In addition, in typical computations quantities that appear as intermediate steps in deter-
mining the output are also typed. For example, in the course of evaluating some function f that
takes N to N on some particular input, we might end up with some variable which always takes on
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a value from B, and some other variable which always takes on a value from N, both of which end
up being manipulated in a certain way to calculate the eventual output. The entire computation is
then a manipulation of variables, each of which is typed. We call the sort of computation in which
not only the input and output but also any intermediate quantities have types typed computation.

The untyped λ-calculus gives us a useful model for computation in general. Is there any similar
formalism that can be used to give a model of typed computation? It turns out that there is
indeed a variant of the untyped λ-calculus that can be used to give some sort of model of typed
computation; it is unsurprisingly called the typed λ-calculus. However, perhaps unlike the case of
computation in general, what counts as a typed computation and what algorithms can be captured
by typed computations very much depends on how much structure one is willing to include in
the class of types. In this chapter we will present the simplest version of the typed λ-calculus, but
a sequence of richer versions of the typed λ-calculus will be developed in the following chapters,
each version expressively richer than the previous. One might ask how well the typed λ-calculus
and its variants serve as a model of typed computation in general, or whether there even is a most
general model of typed computation in the way that Turing machines or the untyped λ-calculus
λ0 give the most general possible models of general (untyped) computation. But these questions
are hard and we will only be able to partially reflect on them much later.

1.11 Church-style Typed λ-calculus

We begin by presenting the simplest and earliest version of the typed λ-calculus, in the form
roughly originally developed by Church.

To start, we assume that we have some unspecified, infinite set τ1, τ2, ... of fundamental types,
out of which we will build other types. Perhaps our fundamental types consist of N, B, and some
other other naturally occurring types - the exact details will not matter for now, and in what
follows we will simply assume that τ1, τ2, ... is a list of unspecified fundamental types. We will
also assume that more complex types can be built from simpler types in a certain way. To this end,
consider the definition

Definition 1.26: Function Types.

If α and β are types, then α → β (sometimes called the ‘function type from α to β’) is the
type of unary functions that are defined on all objects of type α, and take objects of type α to
objects of type β.

So for example, N → N is the type of functions that take natural numbers to natural numbers, and
N → B is the type of functions that take natural numbers to truth values.

We will assume that whenever we have types α and β, we may form the type α → β. We
will eventually add other mechanisms for building complex types out of simpler types, but the
creation of function types will suffice for now. We then have the following definition
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Definition 1.27: Simple types.

The simple types are those that may be obtained from the fundamental types τ1, τ2, ... under
the operation that takes two types α and β to the type α→ β.

For example, τ1, (τ1 → τ3) and (τ1 → τ5) → (τ1 → τ3) are all simple types.
The nature of variables in the typed λ-calculus requires some discussion. In the untyped λ-

calculus, each variable x, y, z, ... could take any value. In the typed λ-calculus, by contrast, each
variable will be associated with a type. So, for example, the variable xmight represent an arbitrary
element of N, the variable y might represent an arbitrary element of B, and so on. The easy way
to implement this is to take some standard infinite list of variables x, y, z, ... and stipulate that for
each type τ , we have the variables xτ , yτ , zτ , .., where these variables are understood as ranging
over objects of type τ . So the variables xN, xB, and xN→B are all quite different things - the first is
a variable that ranges over elements of N, the second is a variable that ranges over elements of B,
and the third is a variable that ranges over elements of N → B. The fact that they all involve x does
not connect them in any way – they should be thought of as three completely distinct variables
that have nothing more in common than uN, vB andwN→B do. In the typed λ-calculus, all variables
will be typed in this way.

Just as every variable in the typed λ-calculus is typed, so too in fact every expression in the
typed λ-calculus will be typed. The type of an expression will be denoted by a superscript attached
to the expression itself. For example, [E]τ denotes the expressionE, along with the stipulation that
it has type τ . Sometimes for ease of reading we will omit the brackets and simply write Eτ . In full
rigor we then define the set of terms of the typed λ-calculus as follows

Definition 1.28: Simple typed λ-terms.

The set of simply typed λ-terms are defined inductively as follows:

(i) For any variable v and any simple type τ , vτ is a simply typed λ-term of type τ . (To reduce
clutter, we will generally not write this as [v]τ ).

(ii) For simple types α and β, if [M ]α→β and [N ]α are simply typed λ-terms, then
[[M ]α→β([N ]α)]β is a simply typed λ-term.

(iii) For simple types α and β, if [M ]β is a simply typed λ-term and xα a variable, then
[λxα([M ]β)]α→β is a simply typed λ-term.

Terms of the typed λ-calculus then look very much like terms of the untyped λ-calculus, with
superscripts added to each subexpression. Examples of terms in the typed λ-calculus include:

[xα→β(yα)]β

[[λxα(xβ)]α→β(yα)]β

z(α→β)→γ([λxα(xβ)]α→β)

(18)
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The clauses of Definition 1.28 might look complex, but actually express fairly simple ideas.
Clause (i) simply gives us an inexhaustible list of variables of each type. Clause (ii) corresponds
to the idea of application, this time in the context of the typed λ-calculus. In the untyped lambda
calculus, we could apply any function to any input - that is to say, M(N) was always a valid λ-
term for any λ-terms M and N . That however is no longer the case. To apply M to N , M must be
a function and N must be an object of the right type to act as an input to M . More specifically, for
some types α and β, M must be a term of type α → β and N must be a term of type α. In such a
case, the result of applying M to N will have type β. Such a requirement is the idea behind clause
(ii). So for example, if α and β are distinct simple types, the term xα→β(yβ) is not a legal simply
typed λ-term, as it involves trying to apply a function from α to β to an input from β. The term
[xα→β(yα)]β is by contrast acceptable and has overall type β because it is the result of applying a
function of type α→ β to an input of type α, which of course yields an output of type β.

Consider now clause (iii). In the untyped context, the term λx(M) corresponded to treating the
expression M as a function of some variable x. This is a function which on input c yields M [x/c].
Suppose now that x has some type α and M has some type β. Then we can think of M [x/c] as a
function that takes an input of type α and produces an output of type β. Thus, in the typed context
the λ-term λx(M) – written more fully as λxα([M ]β) – has the simple type α→ β. That is the idea
behind clause (iii).

We will often omit not only the brackets [·], but also type symbols when they are obvious or
can be easily inferred from the context. So for instance, rather than writing [[M ]α→β([N ]α)]β , we
will typically just write Mα→β(Nα) (or even just Mα→βNα), as the fact that this term has type β
follows trivially from the fact that it involves applying a function of type α → β to an object of
type α. Likewise, rather than writing [λxα(Mβ)]α→β , we will typically write λxα(Mβ) (or even
just λxαMβ .) The terms (18) can therefore be written more simply:

xα→β(yα)

λxα(xβ)(yα)

z(α→β)→γ(λxα(xβ))

In general, when a λ-term is written out in full it suffices to indicate only the type of each variable,
as the type of any larger expression can then be easily deduced, as seen in our three examples.

In addition, for each bound variable it typically suffices to indicate the type of the variable only
when it is introduced with the corresponding λ-operator. For example, the term λxαλyβ(xαyβ)

can be rewritten λxαλyβ(xy), as the types of x and y have already been stipulated to be α and
β respectively. There are, however, situations where this convention can lead to confusion. For
example, if we were to start with the typed λ-term λxαλxβ(xαxβ) and use the convention in ques-
tion, we would end up with λxαλxβ(xx), which is potentially confusing (what are the types of the
unadorned xs?) This sort of situation can be avoided by renaming variables and working with α-
equivalent terms. So λxαλxβ(xαxβ) is α-equivalent to λxαλyβ(xαyβ), which may be abbreviated
λxαλyβ(xy), and all ambiguity has been removed. In general, we will not omit information when
it could potentially lead to ambiguity.
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With all these conventions in mind, the following may be regarded as fully typed terms:

λxα→β(x(zα))

λxαλyα→β(yx)

λxα→βλz(α→β)→γ(z(λyα(xy)))

In particular, given the type of each free and bound variable in a λ-term, the type of every
subexpression (including the type of the overall term itself) can be determined.

In fact, sometimes even less information is necessary to determine the type of a λ-term and all
its subexpressions. For instance, consider the term

λxα→β(xy).

Here the bound variable x is typed, but the open variable y has not been explicitly typed. How-
ever, from the fact that there is a subexpression of the form xy and x has type α → β, it follows
that the type of y must be α. Thus the expression λxα→β(xy) can be regarded as fully typed, as it
contains enough information for us to deduce the type of every subexpression. Nevertheless, in
order to make things as simple as possible for the reader, we will generally explicitly indicate the
types of all bound and free variables in a typed term, writing for example

λxα→β(xyα).

As in the untyped λ-calculus, the λ-term λxσ(M τ )(Nσ) simplifies to

M τ [Nσ/xσ].

As before, we will call the act of simplifying λxσ(M τ )(Nσ) to M τ [Nσ/xσ] β-reduction. We use the
same notational conventions as before:

Definition 1.29: β-reduction.

An expression of the form λxσ(M τ )(Nσ) (where xσ is a variable and M τ , Nσ are λ-terms) is
called a β-redex (or just a redex). We have
(i) A→β B iff A has the form τ1 λx

σ(M τ )(Nσ) τ2 and B has the form τ1 M
τ [Nσ/xσ] τ2.

(ii) A ↠β B (A β-reduces to B) iff for some sequence X0, X1, ..., Xn of λ-terms we have that
A = X0, B = Xn, and X0 →β X1...→β Xn. This includes the degenerate case in which A and
B are identical.
(iii) A term A is in β-normal form just in case no β-reduction may be performed on it.

Analogous terminology is used for η-reduction and βη-reduction.
We use the term λ

type
0 to refer to this version of the λ-calculus, with the set of rules of formation

of typed λ-terms and rules of reduction just presented. Sometimes it is also called a Church style
typed λ-calculus. We present its rules together for convenience:
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Definition 1.30: Rules of the typed λ-calculus λtype
0 .

Types
The simple types are those that may be obtained from the fundamental types τ1, τ2, ... under
the operation that takes two types α and β to the type α→ β.

Terms
The set of simply typed λ terms are defined inductively as follows:

(i) For any variable v and any simple type τ , vτ (or [v]τ ) is a simply typed λ-term.
(ii) For simple types α and β, if [M ]α→β and [N ]α are simply typed λ-terms, thenMα→β(Nα)

(or more fully, [[M ]α→β([N ]α)]β) is a simply typed λ-term.
(iii) For simple types α and β, if [M ]β is a simply typed λ-term and xα a variable, then

λxα(Mβ) (or more fully, [λxα([M ]β)]α→β) is a simply typed λ-term.

Reduction Rules

(i) λxσ([M ]τ )([N ]σ) →β [M ]τ [[N ]σ/xσ]

(ii) λxσ([E]τ (xσ)) →η [E]τ , where xσ does not appear free in [E]τ .

The typed λ-calculus is quite different from the untyped λ-calculus in several important ways.
Unlike the untyped λ-calculus λ0, it may be shown that every term of the typed λ-calculus λtype

0 can
be β-reduced to a term in β-normal form (and moreover can be βη-reduced to a term in βη-normal
form.) Recall the problematic untyped λ-term:

λx(x(x))(λy(y(y))).

This untyped term has no β-normal form - when we β-reduce it, we simply get the original term
back. However, there is no term like this in the typed λ-calculus. The sub-term x(x) of our prob-
lematic untyped λ-term has nothing corresponding to it in the typed λ-calculus. In particular, for
any type α, xα(xα) is not a legal term, as it does not conform to the pattern in clause (ii) of the def-
inition of λ-terms in Definition 1.30. In order for xβ(xα) to be a legal term in the typed λ-calculus,
β must have the form α→ γ for some γ. In order for xα(xα) to be a legal term, α itself would then
have to have the form α → γ, and no simple type (or any type we consider in this book) has this
sort of self-referential character.

In the exercises, you will be walked through a proof that each term in the typed λ-calculus λtype
0

has a β-normal form. Actually, it turns out that something stronger is true – for each term in λtype
0

every series of β-reductions eventually terminates with a term in β-normal form. (This property is
sometimes called strong normalization.) That is to say, not only is it the case that for every typed
λ-term of λtype

0 there is some sequence of β-reductions taking it to a term in β-normal form, but in
fact every sequence of β-reductions eventually leads to a term in β-normal form. That is, we have
the following:
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Theorem 1.31: Strong Normalizability of λtype
0 under β-reduction.

There is no infinite sequence τ1, τ2, ... of terms in the typed λ-calculus λtype
0 for which

τ1 →β τ2 →β τ3 →β ...

The proof of this theorem is extremely delicate and is included in the appendix to this chapter. As
before, we also have a version of the Church-Rosser theorem for the typed λ-calculus:

Theorem 1.32: The Church-Rosser Theorem for β-reductions in λtype
0 .

In the typed λ-calculus λtype
0 , if X ↠β Y1 and X ↠β Y2, then there is a term Z such that

Y1 ↠β Z and Y2 ↠β Z.

We also discuss this in the appendix. Analogs of these theorems also hold for βη-reductions in
λ

type
0 . In particular, we have the following

Theorem 1.33: Strong Normalizability of λtype
0 under βη-reduction.

There is no infinite sequence τ1, τ2, ... of terms in the typed λ-calculus λtype
0 for which

τ1 →βη τ2 →βη τ3 →βη ...

(where X →βη Y iff X →β Y or X →η Y .)

Theorem 1.34: The Church-Rosser Theorem for βη-reductions in λtype
0 .

In the typed λ-calculus λtype
0 , if X ↠βη Y1 and X ↠βη Y2, then there is a term Z such that

Y1 ↠βη Z and Y2 ↠βη Z.

Theorem 1.33 actually follows easily from Theorem 1.31, using the fact proved in an earlier exer-
cise that if a term has an infinite βη-reduction sequence, then it also has an infinite β-reduction
sequence. (Although the argument given for this was in the context of the untyped λ-calculus,
the addition of types does not affect the argument.) The proof of Theorem 1.34 requires more
attention, and is left to the appendix.

As before, it follows easily from the Church-Rosser Theorem(s) for λtype
0 that starting with

the same λtype
0 term, different sequences of β-reductions (or βη-reductions) that terminate with
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a term in β-normal form (or βη-normal form) must in fact terminate with the same term (up to
α-equivalence.)

Putting all these results together we have that starting with a fixed term of the typed λ-calculus
λ

type
0 , every sequence of β-reductions (or βη-reductions) eventually terminates, and terminates

with exactly the same β-normal form (or βη-normal form) term.
The fact that every sequence of β-reductions eventually terminates makes the typed λ-calculus

λ
type
0 a very convenient programming language, as we do not have to worry about programs falling

into infinite loops, for example. But this comes at a cost. We cannot hope to simulate all Turing
Machines in the typed λ-calculus, as not all Turing Machines halt. If one thinks that there is some
intuitive sense in which the running of a Turing machine program is an example of typed com-
putation, then one will have to concede that there are examples of typed computation that are not
captured by the typed λ-calculus λtype

0 (or even any of the extensions we will consider in the next
chapters.) Perhaps then the typed λ-calculus λtype

0 should be taken a model of something more
like convergent (i.e., terminating) typed calculation. While there is something right about this, the
typed λ-calculus does not seem to be a ‘universal’ model of even convergent typed calculation
in the way the untyped λ-calculus is something like a universal model of general computation,
as by adding further structure to the types of the untyped λ-calculus (as we will in the following
chapters) we get increasing expressive power. This is unlike the case of the untyped λ-calculus in
which we can already represent all computable functions, and so adding further computational
machinery does not end up increasing expressive power. Indeed, it is not clear at present whether
there is any universal model of typed computation or even typed convergent computation analo-
gous to the universal model of general computation given by Church’s Thesis.

The important point for now is just that the typed λ-calculus λtype
0 , in contrast with the untyped

λ-calculus λ0, is a somewhat limited programming language. The Curry-Howard Correspondence
will reveal even further limitations. Still, the typed λ-calculus λtype

0 is not hopelessly limited, as there
are many aspects of data manipulation that can be captured by it. Moreover, in further chapters
we will add various resources to the typed λ-calculus λtype

0 to significantly expand its expressive
power, while at the same time keeping everything fully ‘typed’. So both in its own right and as
a starting point for further expansion, the typed λ-calculus λtype

0 is both a programming language
and mathematical object of great interest.

Exercises for Section 1.11

1. Say whether the following terms are grammatical or ungrammatical terms of the Church
style typed λ-calculus. For each grammatical term, if it is not already in β-normal form you
should (i) reduce it to β-normal form, and (ii) state what the type of the β-normal form term
is. You should assume that A and B are distinct types.

(i). xA(yB)
(ii). λxA(yB)(zB)
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(iii). λxA(yB)(zA)
(iv). λxA(xA)(λyB(yB))
(v). λxA(xA)(λyA(yA))
(vi). λxA→A(xA→A)(λyA(yA))

(vii). λxA→A(xA→A)(λyA(yA))(zA)

2. (a) Prove that if the type of each free and bound variable in a λ-term M is given, that the
type of every subexpression of M can be determined. (Hint: proceed by induction on the
construction of λ-terms.)
(b) Is it true that if the type of a λ-term M as well as the type of each free variable is given,
that the type of every subexpression of M can be determined? If so, prove this fact. If not,
give a counterexample.
(c) Is it true that if the type of a λ-term M as well as the type of each bound variable is given,
that the type of every subexpression of M can be determined? If so, prove this fact. If not,
give a counterexample.

3. We prove in this exercise that there is a strategy for β-reducing terms in the typed λ-
calculus λtype

0 that always terminates. Thus, every term in the typed λ-calculus has a normal
form. (This is a weaker result than Theorem 1.31, but is easier to prove.)

First of all, we define the complexity c(τ) of a simple type inductively by stipulating that
c(τ) is 0 if τ is one of the fundamental types, and c(τ) is 1 +max{c(σ1), c(σ2)} if τ is a type of
the form σ1 → σ2.

We next associate with each λ-term s a pair of natural numbers n(s) and m(s), where n(s)
is the maximum value of c(τ) for any variable xτ that appears bound in s, and m(s) is the
number of occurrences in s of sub-expressions of the form λxτ (...), where τ is a type with
c(τ) = n(s). So loosely speaking, n(s) is the highest complexity of the type of any bound
variable in s, and m(s) is the number of abstractions in s over a variable whose type has that
maximum complexity.

Argue that if s is a typed λ-term which is not in β-normal form, then there is a term s′ that
may be obtained from s by a single β-reduction (i.e., s→β s

′) such that either (i) n(s′) < n(s),
or (ii) n(s′) = n(s) and m(s′) < m(s). Argue from this that for any typed λ-term s, there is
some sequence of β-reductions beginning with s that terminates. You should in fact be able to
describe an algorithm for the β-reduction of typed λ-calculus terms that always terminates.

4. Can the strategy of the previous problem be adapted to give a strategy for βη-reducing
terms in the typed λ-calculus λtype

0 that always terminates?

1.12 Curry-style Typed λ-calculus

Somewhat confusingly, there are several distinct formalisms that go under the name of the typed
λ-calculus. First, there is the Church-style typed λ-calculus λtype

0 that we have already seen. Second,
there is the so-called Curry-style typed λ-calculus, of which several distinct versions exist. We
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describe one version of the Curry-style typed λ-calculus this section and another in the next.
In the Church-style λ-calculus λtype

0 , each λ-term has a single, unique type. However, in the
first version of the Curry style λ-calculus that we consider, the terms are ordinary terms of the
untyped λ-calculus λ0, each of which is assigned a set of possible types. To see why we might want
to do this, consider the untyped λ-term λx(x). This of course is the identity function. It is built up
from the variable x. If we assign x the type N, then the untyped λ-term λx(x) is transformed into
the typed λ-term λxN(xN) (or λxN(x), using our abbreviations). This of course is just the identity
function that takes an element of N to itself, and has type N → N. It is a term of the Church-style
typed λ-calculus λtype

0 . Likewse, if we think of x as having the type B, then the untyped λ-term
λx(x) is transformed into the typed λ-term λxB(xB) (or λxB(x)), which is the identity function that
takes an element of B to itself, and has type B → B. In general, for any type τ , by thinking of x
as having type τ our original term λx(x) can be ‘typed’ into the term λxτ (xτ ) (or λxτ (x)) of the
Church-style typed λ-calculus λtype

0 , where it acquires the type τ → τ .
Because it is possible to add superscripts to the term λx(x) in different ways to produce dif-

ferent terms of the Church-style typed λ-calculus λtype
0 , we can think of the untyped term λx(x)

as having many possible types. The set of types it is possible for the term λx(x) to acquire in this
way is of course just the set of types of the form X → X .

Just as we can examine the set of possible types a closed λ-term like λx(x) can be given, so
too we can examine the set of possible types an open λ-term can be given. Consider for example
the open untyped λ-term λx(y). By assigning x the type σ and y the type τ , the term λx(y) is
transformed into the term λxσ(yτ ), a term of λtype

0 , which of course has the type σ → τ . In this
way, the set of types it is possible for the term λx(y) to acquire is the set of types of the form
X → Y .

In determining the possible types of an expression, we are constrained by the fact that when a
typed expressionMσ is applied to a typed expressionN τ , the resulting expressionMσ(N τ ) makes
grammatical sense only if σ is of the form τ → γ. As a result of this constraint, the set of possible
types a given untyped term can assume can be empty. For example, if x is a variable, consider the
open term x(x). If we assign x the type σ, it has the form xσ(xσ). But this is ungrammatical; if the
second x has type σ, then the first x needs to have type σ → τ for some τ in order for the whole
expression to make sense. So it is impossible to assign x(x) any type at all in a consistent manner,
and thus its set of possible types is empty. Any untyped term in which x(x) occurs (such as the
closed term λx(x(x))) will also have an empty set of possible types for the same reason.

Let us consider another example. Take the λ-term λx(λy(x)). What types can this be assigned?
Suppose x has type τ , and y has type σ. Then λy(x) is a function from objects of type σ to objects
of type τ , and so is itself a term of type σ → τ . The entire expression λx(λy(x)) is thus a function
which takes an object of type τ into an object of type σ → τ , and so has type τ → (σ → τ). We
have thus shown that the untyped term λx(λy(x)) can be ‘typed’ into the following term of λtype

0

[λxτ (λyσ(xτ ))σ→τ ]τ→(σ→τ)

or more simply,
λxτ (λyσ(x)).
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Although this might seem pedantic, we would like to formalize this sort of reasoning about
which types an untyped λ-term can be assigned. Central to this sort of reasoning will be claims of
the following form, for an untyped λ-term E

Consistent with the constraint that the variables v1, v2, ..., vn (which include all the free
variables of E) be assigned types τ1, τ2, ..., τn respectively, it is possible to type E so
that it becomes a λtype

0 term of type σ.

We express this using the following notation

Definition 1.35: Type Theoretic Sequents.

For an untyped λ-term E and list of variables v1, v2, ..., vn that include (but is not necessarily
limited to) all the free variables of E, we write

v1 : τ1, v2 : τ2, ..., vn : τn ⊢ E : σ

to mean that consistent with the constraint that the free variables v1, v2, ..., vn of E are as-
signed types τ1, τ2, ..., τn respectively, it is possible to type E so that it becomes a λtype

0 term of
type σ.

The claim
v1 : τ1, v2 : τ2, ..., vn : τn ⊢ E : σ

is called a type theoretic sequent (or just a sequent), and its left hand side

v1 : τ1, v2 : τ2, ..., vn : τn

is its context or environment.

A sequent then just says that in a given context, a term may be assigned a given type. The
sequent ⊢ E : σ with empty context then just says that E is a closed term that can be assigned the
type σ – i.e., E has σ among its possible types.

Using this notation, the examples we have give so for in this section may be rewritten

⊢ λx(x) : τ → τ

y : τ ⊢ λx(y) : σ → τ

y : σ ⊢ λx(λy(x)) : τ → (σ → τ)

for any types σ and τ .
Within a context v1 : τ1, v2 : τ2, ..., vn : τn we allow a variable to appear more than once. If it

appears more than once, however, it must be assigned the same type each time. So for example,

x : τ, x : τ, y : σ
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is a grammatical context, but
x : τ, x : σ, y : σ

is not a grammatical context if σ and τ are distinct.
The context can be thought of as consisting of a sequence of ‘variable declarations’. For exam-

ple, we can think of the context:
x : N, y : N → N

as expressing:

x is a natural number, and y is a function from natural numbers to natural numbers.

or, from a computer programmer’s point of view

let x be a natural number, and let y be a function from natural numbers to natural
numbers.

With all this understood, we can then easily write down some ‘laws’ that sequents of the form
v1 : τ1, v2 : τ2, ..., vn : τn ⊢ E : σ must obey. In particular, we have:

Definition 1.36: Rules of the typed λ-calculus TR0.

(i) Γ, v : τ ⊢ v : τ (Var)

(ii) Γ ⊢ E1 : τ → σ Γ ⊢ E2 : τ (App)
Γ ⊢ E1(E2) : σ

(iii) Γ, v : τ ⊢ E : σ
(Abs)

Γ ⊢ λv(E) : τ → σ

where v is a variable, E1, E2 and E are terms of the untyped λ-calculus, σ, τ are types, and
all contexts are assumed to be grammatical.

‘Var’ is here an abbreviation for variable rule, ‘App’ for application rule, and ‘Abs’ for abstraction
rule. Sometimes these rules are called typing rules, and with this in mind we call the system of
three rules just given TR0. (Other texts sometimes use the name λ→ for this set of rules.) Our first
version of the Curry-style typed λ-calculus is constituted by this set of typing rules.

The (Var) rule states the obvious fact that in some context in which the variable v has been
assigned type τ , τ is a possible type of v. The (App) rule states that if E1 has possible type τ → σ

in some context Γ and E2 has possible type τ in the same context Γ, then in that context E1(E2) has
possible type σ. The (Abs) rule states that if in some context Γ, v : τ the term E has the possible
type σ, then in the context Γ, the term λv(E) has possible type τ → σ. These three rules may
thus be read as statements about the structure of the set of possible types that each term can be
assigned.
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We prove that an untyped λ-term can be assigned a certain type by constructing a ‘proof’ of
this fact using the above rules. More specifically, to show that E can be assigned the type X it
suffices to construct a proof of

Γ ⊢ E : X

in TR0 for some grammatical context Γ.
To take our most basic example, to show that the λ-term λx(x) can be assigned the type τ → τ

for any type τ , we have the following argument:

x : τ ⊢ x : τ (Var)
(Abs)

⊢ λx(x) : τ → τ

Note that while this argument shows that every type of the form τ → τ is a possible type of λx(x),
it does not show that every possible type of λx(x) has the form τ → τ . While true, this latter fact
requires a different sort of argument that we will not consider here.

For another example, to show that the expression λx(λy(x)) can be assigned the type τ →
(σ → τ) for any types τ and σ, we have the following argument:

x : τ, y : σ ⊢ x : τ (Var)
(Abs)

x : τ ⊢ λy(x) : σ → τ
(Abs)

⊢ λx(λy(x)) : τ → (σ → τ)

This argument shows that every type of the form τ → (σ → τ) is a possible type of λx(λy(x)).
For a more complex example, to show that the expression λx(λy(x(xy))) can be assigned any

type of the form (σ → σ) → (σ → σ), we have the following derivation:

x : σ → σ, y : σ ⊢ x : σ → σ

x : σ → σ, y : σ ⊢ x : σ → σ x : σ → σ, y : σ ⊢ y : σ
(App)

x : σ → σ, y : σ ⊢ xy : σ
(App)

x : σ → σ, y : σ ⊢ x(xy) : σ
(Abs)

x : σ → σ ⊢ λy(x(xy)) : σ → σ
(Abs)

⊢ λx(λy(x(xy))) : (σ → σ) → (σ → σ)

Each ‘leaf’ of this tree is of the form (Var). We call arguments like these typing derivations.
In typing derivations, we allow ourselves to ‘silently’ replace untyped λ-terms by α-equivalent

terms, without requiring any explicit step in which the relevant bound variables are renamed. So
for example, consider the untyped λ-term

λx(λx(x)).

As discussed earlier, we regard the innermost (x) as bound by the second λx from the left rather
than the first λx from the left. (In general, when there are multiple options for binding a variable,
the variable is bound by the closest possible binding operator that is grammatically capable of
binding it.) Given this, we should expect that for any types σ and τ this λ-term can be assigned
the type σ → (τ → τ). Proving this is easy:
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x : σ, y : τ ⊢ y : τ (Var)
(Abs)

x : σ ⊢ λy(y) : τ → τ
(Abs)

⊢ λx(λx(x)) : σ → (τ → τ)

where in the last step the untyped λ-term λx(λy(y)) has been silently replaced by the α-equivalent
term λx(λx(x)). You should be able to convince yourself that without silent renaming of this sort,
no proof of the sequent ⊢ λx(λx(x)) : σ → (τ → τ) would be possible.

To avoid having to rename variables in the middle of a proof, it can be useful to start with λ-
terms in which all bound variables have different names, and no variable is both free and bound.
Sometimes this is called the Barendregt variable convention.

Definition 1.37: Barendregt Variable Convention.

Say that a λ-term E obeys the Barendregt variable convention iff all bound variables of E have
different names, and no variable of E occurs both free and bound in E.

Note that sometimes this convention is defined to merely require that no variable ofE occurs both
free and bound in E, but leaves open the possibility that distinct bound variables have the same
name, as in the terms λx(λx(y)) or λx(x)(λx(x)). We formulate the convention in a more strict
way to exclude these possibilities.

Note also that in the Barendregt variable convention, the λ-term E is not being thought of as
an equivalence class of λ-terms, but rather as a particular element from this class, i.e., a specific
expression. This is an example of our casually moving between talk of λ-terms as specific strings
of symbols (syntactic objects) and talk of λ-terms as equivalence classes of such syntactic objects.

The proof of the following theorem is straightforward and is left to the exercises.

Theorem 1.38

If E is a λ-term E obeying the Barendregt variable convention and E′ is a subterm of E, then
E′ obeys the Barendregt variable convention.

Given any λ-term, there is always an α-equivalent λ-term that obeys the Barendregt variable
convention. For instance, in x(λx(x)) there are both free and bound occurrences of x, and in
λx(λx(zx)) we have two declarations of the bound variable x. However, x(λx(x)) is α-equivalent
to x(λy(y)), and λx(λx(zx)) is α-equivalent to λx(λy(zy)), where these later terms obey the Baren-
dregt variable convention. The proof of the following theorem is also left to the exercises.
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Theorem 1.39

For every λ-term E, there is a λ-term E′ which is α-equivalent to E such that E′ obeys the
Barendegt variable convention.

If then instead of typing λx(λx(x)) we type the α-equivalent term λx(λy(y)) that obeys the
Barendregt variable convention, we have the derivation:

x : σ, y : τ ⊢ y : τ (Var)
(Abs)

x : σ ⊢ λy(y) : τ → τ
(Abs)

⊢ λx(λy(y)) : σ → (τ → τ)

where no silent replacement of terms with α-equivalent terms is necessary. We will in fact shortly
see a theorem one of whose consequences is that silent replacement of terms with α-equivalent
terms can be avoided in typing derivations for λ-terms that obey the Barendregt variable conven-
tion.

In all our examples so far, we have proved that τ is a possible type ofE by constructing a proof
of the sequent ⊢ E : τ . That is to say, we have proved that in the empty context E can be assigned
type τ . Is it always true that when E can be assigned type τ , we can prove ⊢ E : τ in our system?

The answer is clearly no. Consider an open λ-term such as the variable x. This term can be
given any type τ we please. However, for no τ can we prove ⊢ x : τ . For it is clear that the final
step in such a proof could not be (App) or (Abs), as these rules produce conclusions Γ ⊢ E : τ

in which E is complex – in any application of (App), E will have the form E1(E2), and in any
application of (Abs), E will have the form λv(E) – while the variable x is simple. The last step of
the proof must therefore be a leaf of the form (Var). However all leaves in TR0 have non-empty
contexts and thus a leaf on its own cannot constitute a proof of ⊢ x : τ .

On the other hand, the proof consisting of nothing other than the leaf x : τ ⊢ x : τ shows that
in some context (namely, the context x : τ ), x has the possible type τ . The following theorem tells
us more generally that typing derivations for untyped open λ-terms always involve non-empty
contexts in which the type of each free variable is declared

Theorem 1.40

In any proof of Γ ⊢ E : X in TR0, for every free variable v of E the context Γ contains a
declaration of the form v : τ for some τ .

The proof is a straightforward induction on the construction of typing derivation in TR0 and is
left to the exercises. As a kind of converse of this result, it can also easily be shown that if there is
any typing derivation whose conclusion is of the form Γ ⊢ E : X , then there is a typing derivation
whose conclusion has the form Γ′ ⊢ E : X , where the context Γ′ consists of nothing but variable
declarations for the free variables of E. In fact, we will show something stronger. First, consider
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the following theorem, which tells us that typing derivations for terms that obey the Barendregt
variable convention may be assumed to have a very well behaved structure.

Theorem 1.41

Suppose E is a λ-term obeying the Barendregt variable convention, and that Γ ⊢ E : X in
TR0. Then there is a proof of Γ′ ⊢ E : X in TR0 for some Γ′ ⊆ Γ such that (i) there is no silent
replacement of λ-terms by α-equivalent terms in this proof, (ii) the variables whose types are
declared in Γ′ are precisely the free variables of E, (iii) all the elements of Γ′ are distinct, and
(iv) every variable declaration in the proof is either an element of Γ′, or has the form v : τ

where v is a bound variable of E.

The proof of this theorem is again is a straightforward induction on the typing derivations of TR0

and is left to the exercises. We then have the following corollary.

Corollary 1.42

Suppose there is a typing derivation of Γ ⊢ E : X in TR0 (where E does not necessarily obey
the Barendregt variable convention.) Then there is a typing derivation Γ′ ⊢ E : X in TR0

such that Γ′ has the form v1 : τ1, v2 : τ2, ..., vn : τn, where v1, ..., vn are the free variables of
E. (Note that there is no repetition.) Moreover, in this typing derivation there is at most one
silent replacement of a λ-term by an α-equivalent term, and it occurs in the last step.

Proof

Suppose we have a typing derivation T0 whose conclusion is a sequent Γ ⊢ E : X in TR0,
and let E′ be a term α-equivalent to E that obeys the Barendregt variable convention. By
silently replacing E with the α-equivalent term E′ in the last step of T0, we can construct a
typing derivation T1 of Γ ⊢ E′ : X . Applying Theorem 1.41, we then have a typing derivation
T2 of Γ′ ⊢ E′ : X such that Γ′ is a list of typing declarations for all the free variables of E′

(and no others) without repetition, and such that there is no silent replacement of λ-terms by
α-equivalent λ-terms in T2. Note that the free variables ofE andE′ are the same. If in the last
step of T2 we introduce a silent replacement of E′ with E, we then have a typing derivation
T3 whose conclusion is Γ′ ⊢ E : X in TR0. In T3, Γ′ consists only of typing declarations for
all the free variables of E (and no others) without repetition. There is also at most one silent
replacement of λ-terms by α-equivalent terms in this proof, and it occurs in the last step.

This tells us that even typing derivations for terms that do not obey the Barendregt variable con-
vention may be assumed to have a well behaved structure.
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We now turn to the question of in what sense TR0 allows us to prove all the basic facts about
typing that we might want to prove. Indeed, there is a sense in which TR0 is sound and complete.
This is captured by the following theorem:

Theorem 1.43: Soundness and Completeness of TR0.

SupposeE is an untyped λ0-term whose free variables are v1, ..., vn, and let τ1, ..., τn be simple
types. Then the following are equivalent:

(i) It is possible to assign simple types (i.e., types of λtype
0 ) to all the variables of E in such a

way that the free variables v1, ..., vn of E are assigned types τ1, ..., τn, and E itself has
type X .

(ii) There is a proof of Γ ⊢ E : X in TR0, where the context Γ includes the variable declara-
tions v1 : τ1, v2 : τ2, ..., vn : τn.

A consequence of this theorem is that TR0 proves all true claims of the form

E has X as a possible type in context Γ

for any untyped λ-term E, type X , and context Γ in which types are assigned to all the free vari-
ables of E. In this sense, the system TR0 proves every basic fact we might want to know about
typing.

Unlike many soundness and completeness proofs in logic, the proof of Theorem 1.43 is fairly
straightforward. That (i) entails (ii) (the ‘completeness’ of TR0) can be proven by an easy induc-
tion on the construction of untyped λ-terms E, and uses Theorem 1.41. That (ii) entails (i) (the
‘soundness’ of TR0) can be proven by an easy induction on the construction of proofs of TR0.
The proof is left to the appendix, but you should try proving both directions on your own before
consulting it.

A final important result is the following:

Theorem 1.44: Subject Reduction Theorem for TR0.

In TR0, if Γ ⊢M : σ and M ↠βη N , then Γ ⊢ N : σ.

This theorem tells us that neither β-reduction nor η-reduction decreases the set of possible
types an untyped term may be assigned in the Curry-style typed λ-calculus. The proof of this
theorem is also left to the exercises. Note, however, that reduction can increase the set of possible
types an untyped term can be assigned. You will also demonstrate this in an exercise.

The Curry-style typed λ-calculus is not really a fundamentally different sort of thing from
the Church-style typed λ-calculus. In both cases, we are ultimately concerned with the way in
which untyped λ-terms (that is, terms of λ0) may be typed (that is, transformed into terms of
λ

type
0 .) Church and Curry simply used different formalisms to analyse this basic phenomenon.

Both formalisms will be useful to us in what follows.
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Exercises for Section 1.12

1. Construct typing derivations in TR0 that prove the following.

(i) ⊢ λx(x(λy(y))) : ((σ → σ) → τ) → τ

(ii) ⊢ λxλy(y(x(y))) : ((τ → σ) → τ) → ((τ → σ) → σ)

(iii) ⊢ λxλyλz(x(z)(y(z))) : (σ → (τ → ρ)) → ((σ → τ) → (σ → ρ)).

2. Construct a typing derivation in TR0 proving a conclusion of the form

⊢ λx(x)(λy(y)(λz(z))) : τ

for some τ . Then construct a typing derivation of ⊢ s : τ for the same τ , where s is the
β-normal form of λx(x)(λy(y)(λz(z))).

3. Construct an untyped closed λ-term α such that α cannot be assigned any type in the
Curry-style λ-calculus (and thus there is no proof of ⊢ α : τ for any τ ) , but for some untyped
λ-term α′ with α ↠β α’ the term α′ can be assigned a type in the Curry-style λ-calculus (that
is, there is some proof of ⊢ α′ : σ for some σ.)

4. Construct an untyped closed λ-term α such that α can be assigned a type in the Curry-style
λ-calculus, but for some untyped λ-term α′ with α ↠β α’ the term α′ can be assigned a type
in the Curry-style λ-calculus that α cannot be assigned.

5. Prove Theorem 1.38.

6. Prove Theorem 1.39.

7. Prove Theorem 1.40.

8. Prove Theorem 1.41.

9. Are the following true or false? If true, provide a proof. If false, provide a counterexample
and explain why it is a counterexample.

(i) If Γ ⊢ E : X , v is a variable not declared in Γ, and Y is a type, then Γ, v : Y ⊢ E : X .
(Sometimes this is called weakening.)

(ii) If Γ, v : Y, v : Y ⊢ E : X , then Γ, v : Y ⊢ E : X . (Sometimes this is called contraction.)
(iii) If Γ ⊢ E : X , then every variable declaration in the proof is either an element of Γ, or

has the form v : τ where v is a bound variable of E.
(iv) If Γ ⊢ E : X and there is no silent replacement of λ-terms by α-equivalent terms in this

proof, then E obeys the Barendregt variable convention.
(v) If Γ ⊢ E : X and there is no silent replacement of λ-terms by α-equivalent terms in this

proof, then every variable declaration in the proof is either an element of Γ, or has the
form v : τ where v is a bound variable of E.

10. Prove Theorem 1.44. (Hint: use the Soundness and Completeness Theorem to reduce the
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problem to that of showing that if M →β N , and if consistent with the free variables of M
being assigned certain types, M itself may be assigned the type σ, then consistent with the
free variables of N being assigned those same types, N itself may also be assigned the type
σ.)

1.13 The Bound-typed λ-calculus.

In this section, we describe a second version of the Curry-style λ-calculus that will be used very
frequently in the remainder of the book.

One slight oddity of the terminology

Γ ⊢ E : X

is that it only expresses the idea that under the typing assumptions in Γ, the λ-term E may be
given the type X . This does not mean that E must be given the type X . For example, for any type
A we can easily derive in TR0 that

⊢ λx(x) : A→ A.

For each typeA, this means that the typeA→ A is a type that λx(x) may receive. For no particular
A is A→ A the type that λx(x) must receive.

However, typically in logic the relation Γ ⊢ S denotes a type of necessitation, and says that if Γ
is true, then S must be true. We can bring our notation Γ ⊢ E : X into conformity with this idea of
necessitation by moving to a so-called partially typed λ-calculus, which we now explain.

Consider the following definition

Definition 1.45: Bound-typed λ-terms.

A λ-term is bound-typed if all its bound variables are typed, and all its free variables are un-
typed.

So for example, the following terms are all bound-typed:

λxα(xα),
λxα(yxα),
λxα(xα(λzβ(yzβ))).

Using our former conventions, when there is no ambiguity we can eliminate the type symbols on
bound variables except when they are ‘declared’ immediately next to a λ symbol. For example,
we can write the above three expressions more compactly as follows:

λxα(x),
λxα(yx),
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λxα(x(λzβ(yz))).

Some bound-typed λ-terms can have further superscripts added to them and be transformed to a
full λ-term of λtype

0 . In this way, such terms then acquire an overall type. For example, consider
the term λxα(yx) (that is, λxα(yxα).) Given the occurrence of the subexpression yxα, for this to be
transformed into a grammatical λ-term of λtype

0 the variable y must have a type of the form α→ β.
Assuming then that y has type α → β, yxα has type β, and so the bound-typed λ-term λxα(yxα)

is transformed into the λtype
0 term λxα(yα→βxα) with overall type α→ β. The set of possible types

of λxα(yxα) is therefore the set of types of the form α→ β.
As before, we will say that bound-typed λ-terms that are identical up to a renaming of bound

variables are α-equivalent. (All the delicate provisos discussed earlier still apply.) When renaming
bound variables, any types associated with such variables remain fixed. So for example, the terms

λxα(x) λyα(y)

are α-equivalent, but
λxα(x) λyβ(y)

are not.
In the version of the Curry-style typed λ-calculus we develop in this section, we will be as-

signing types to bound-typed terms. We do so by deriving sequents of the form

v1 : τ1, v2 : τ2, ..., vn : τn ⊢ E : σ (19)

whereE is a bound-typed term and the list of variables v1, v2, ..., vn includes (but is not necessarily
limited to) all the free variables of E. As before, this sequent will have the interpretation

Consistent with the constraint that the variables v1, v2, ..., vn of E are assigned types
τ1, τ2, ..., τn respectively, it is possible to type E so that it becomes a λtype

0 term of type
σ.

Note however that the type of a term is completely determined by specifying the types of all its
variables (both free and bound). Because in a bound-typed term the types of bound variables are
already given, it follows that the type of a bound-typed term is uniquely determined by the types
of its free variables. This means, however, that

v1 : τ1, v2 : τ2, ..., vn : τn ⊢ E : σ

will be true for at most one σ. Thus we may interpret (19) as saying

If the variables v1, v2, ..., vn are assigned types τ1, τ2, ..., τn respectively, then E must be
assigned type σ.

In this way, our type-theoretic sequents now make a claim about necessitation, that is, what must
be the case if something else is the case.
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In the version of the λ-calculus we consider here, we will be able to derive sequents such as

y : α→ β ⊢ λxα(yx) : α→ β.

This sequent may be understood as saying that if in λxα(yx) the free variable y gets assigned the
type α→ β, then the entire term λxα(yx) must get assigned the type α→ β.

We will also allow sequents such as

y : α→ β, u : γ ⊢ λxα(yx) : α→ β.

This says that if in λxα(yx) any free occurrence of y gets assigned the type α → β and any free
occurrence of u gets assigned the type γ, then the entire term λxα(yx) must get assigned the type
α→ β. This is trivially true because, in addition to the previous considerations, u does not actually
occur free in the λ-term in question.

We furthermore even allow sequents such as

y : α→ β, x : γ ⊢ λxα(yx) : α→ β.

Such a sequent looks confusing at first, as x appears to be typed differently on the left and right.
However as before we will allow ‘silent’ replacing of λ-terms with α-equivalent λ-terms. This
means that the sequent just written can be re-expressed in a less confusing way as follows

y : α→ β, x : γ ⊢ λuα(yu) : α→ β,

where we have replaced the λ-term λxα(yx) with the α-equivalent term λuα(yu). This later se-
quent is of course entirely unproblematic.

Let us think about the rules that our new system of sequents should obey. First of all, as before
we can keep the (Var) rule

Γ, v : τ ⊢ v : τ (Var)

where v is a variable. The variable v of course a bound-typed λ-term, and thus this axiom just
makes the trivial claim that if among other variable declarations v has been given type τ , then the
bound-typed term v must be given type τ .

Next, the (App) rule can also be used in its familiar form

Γ ⊢ E1 : τ → σ Γ ⊢ E2 : τ (App)
Γ ⊢ E1(E2) : σ

where E1 and E2 are bound-typed terms. For if in context Γ the bound-typed terms E1 and E2

must be assigned types τ → σ and τ respectively, then in this same context Γ the term E1(E2)

(which will also be bound-typed) must be assigned type σ.
The (Abs) rule will clearly require a small modification, as follows

Γ, v : τ ⊢ E : σ
(Absbt)

Γ ⊢ λvτ (E) : τ → σ
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Here E is a bound-typed term. The only difference between this and the previous version of the
(Abs) rule is that in the conclusion, the bound variable v in the λ-term is explicitly assigned type τ .
(We indicate this difference with the superscript bt in Absbt, indicating that it is the ‘bound-typed’
variant of the rule.) Suppose that as stated in the premise of this rule, in the context Γ and under
the assumption that the variable v has type τ , the bound-typed term E must receive the type σ.
This then means that in the context Γ, the bound-typed term λvτ (E) must receive the type τ → γ.

In sum, we have the following typing rules for our system:

Definition 1.46: Rules of the bound-typed λ-calculus TRbt
0 .

(i) Γ, v : τ ⊢ v : τ (Var)

(ii) Γ ⊢ E1 : τ → σ Γ ⊢ E2 : τ (App)
Γ ⊢ E1(E2) : σ

(iii) Γ, v : τ ⊢ E : σ
(Absbt)

Γ ⊢ λvτ (E) : τ → σ

where v is a variable, E1, E2 and E are bound-typed terms of the λ-calculus, σ, τ are types,
and all contexts are assumed to be grammatical.

We call this set of rules TRbt
0 . It is of course simply a trivial variant of TR0, with the obvious types

attached to bound variables in λ-terms where needed.
Even though their interpretations are different, any proof in TR0 can be modified easily to give

a proof in TRbt
0 . For example, the following proof in TR0:

x : σ, y : σ → τ ⊢ x : σ x : σ, y : σ → τ ⊢ y : σ → τ
(App)

x : σ, y : σ → τ ⊢ yx : τ
(Abs)

x : σ ⊢ λy(yx) : (σ → τ) → τ
(Abs)

⊢ λx(λy(yx)) : σ → ((σ → τ) → τ)

can be transformed into the following proof in TRbt
0 :

x : σ, y : σ → τ ⊢ x : σ x : σ, y : σ → τ ⊢ y : σ → τ
(App)

x : σ, y : σ → τ ⊢ yx : τ
(Absbt)

x : σ ⊢ λyσ→τ (yx) : (σ → τ) → τ
(Absbt)⊢ λxσ(λyσ→τ (yx)) : σ → ((σ → τ) → τ)

by typing the bound variables in the λ-terms in the obvious way. One can also go from the TRbt
0

proof to the original TR0 proof by simply removing all types from bound variables. So the struc-
ture of proofs in TR0 and TRbt

0 are for all intents and purposes the same.
As a result, for many theorems of TR0 there is a corresponding theorem about TRbt

0 . For
example, we have the following.
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Theorem 1.47

In any proof of Γ ⊢ E : X in TRbt
0 , for every free variable v of E the context Γ contains a

declaration of the form v : τ for some τ .

Theorem 1.48

Suppose E is a bound-typed λ-term obeying the Barendregt variable convention, and that
Γ ⊢ E : X in TRbt

0 . Then there is a proof of Γ′ ⊢ E : X in TRbt
0 for some Γ′ ⊆ Γ such that (i)

there is no silent replacement of λ-terms by α-equivalent terms in this proof, (ii) the variables
whose types are declared in Γ′ are precisely the free variables of E, (iii) all the elements of Γ′

are distinct, and (iv) every variable declaration in the proof is either an element of Γ′, or has
the form v : τ where v is a bound variable of E.

Theorem 1.49: Soundness and Completeness of TRbt
0 .

Suppose E is a bound-typed λ-term whose free variables are v1, ..., vn, and let τ1, ..., τn be
types. Then the following are equivalent:

(i) If the variables v1, v2, ..., vn are assigned types τ1, τ2, ..., τn respectively, then E must be
assigned type σ.

(ii) There is a proof of Γ ⊢ E : X in TRbt
0 , where the context Γ includes the variable declara-

tions v1 : τ1, v2 : τ2, ..., vn : τn.

Theorem 1.50: Subject Reduction Theorem for TRbt
0 .

In TRbt
0 , if Γ ⊢M : σ and M ↠βη N , then Γ ⊢ N : σ.

These proofs may all be obtained by minor modifications of the proofs of the corresponding theo-
rems for TR0. Verifying this is left to the exercises and the appendix to this chapter.

In the chapters that follow, we will be interested in expanding the system TR0 to richer systems
TR1, TR2, ... in which we reason in more complicated ways about the typing of untyped λ-terms.
As in the case of TR0, trivial modifications of these systems will yield richer systems TRbt

1 , TRbt
2 ,

... in which we reason in more complicated ways about the typing of bound-typed λ-terms.
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Exercises for Section 1.13

1. Construct typing derivations in TRbt
0 that prove the following.

(i) ⊢ λxσ(λyτ (x)) : σ → (τ → σ)

(ii) ⊢ λxσ→(τ→ρ)λyσ→τλzσ(x(z)(y(z))) : (σ → (τ → ρ)) → ((σ → τ) → (σ → ρ)).

2. Prove Theorem 1.47.

3. Prove Theorem 1.48.

4. Prove Theorem 1.50.

1.14 Other Resources

For a basic and very readable introduction to the λ-calculus, see chapters 1 through 4 of Selinger’s
Lecture Notes on the Lambda Calculus [9]. For a more extended treatment, see Hindley and Seldin’s
Lambda-Calculus and Combinators [4]. For an extremely detailed treatment, see Barendregt’s The
Lambda Calculus, Its Syntax and Semantics [1]. Chapters 1 and 2 of Hindley’s Basic Simple Type
Theory [5] also contain a more condensed but very good introduction to the untyped λ-calculus,
and chapters 1 and 3 of Sorenson and Urzyczyn’s Lectures on the Curry-Howard Isomorphism [10]
contains a very good introduction to both the untyped and typed λ-calculus.

For a more general discussion of the themes of the chapter, Barendregt’s The Lambda Calculus,
Its Syntax and Semantics [2] is also worth reading.

1.15 Appendix

In this section, we provide proofs for several results in the main text.

Theorem 1.13: The Church-Rosser Theorem for β-reductions in λ0.

In the untyped λ-calculus λ0, if X ↠β Y1 and X ↠β Y2, then there is a term Z such that
Y1 ↠β Z and Y2 ↠β Z.

Proof of Theorem 1.13.

In this proof, all λ-terms are understood to be terms of the untyped λ-calculus λ0. Without
loss of generality, we assume all terms obey the Barendregt variable convention.

It is useful to begin by defining a more general notion of reduction. Given a λ-term e,
there may be many distinct 1-step β-reductions that could potentially be performed on it,
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each corresponding to a different redex of the form λv(t1)(t2). Given any two distinct redexes
r = λv(t1)(t2) and r′ = λv′(t′1)(t

′
2), they will either be disjoint, r will be a subexpression of r′,

or r′ will be a subexpression of r. The set of redexes contained in e thus form a finite set of
trees under the relation of inclusion which we call the redex trees of e; we assume these trees
are oriented so that redexes containing no other redexes are at the top.

For example, if e is

λx(x)(λy(y)(y)

λy redex

)

λx redex

w(λv(v(λz(z)(z)

λz redex

))(λw(λu(u)(u)

λu redex

λv redex

))) (20)

then there are 5 redexes in e as depicted. The redex trees of e are then as follows

λx redex

λy redex

λv redex

λu redexλz redex

Note that if one redex r′ lies above another redex r = λv(t1)(t2) in the redex trees, then not
only is r′ a subexpression of r, but it is in fact a (not necessarily proper) subexpression of
t1 or t2. This is because r′ is a proper subexpression of r = λv(t1)(t2), and the only proper
subexpressions of λv(t1)(t2) are λv(t1) and the (not necessarily proper) subexpressions of
t1 and t2. The term λv(t1) does not have the form of a redex, and thus r′ must be a (not
necessarily proper) subexpression of t1 or t2.

As a consequence of this, if r′ lies above r and a 1-step β-reduction is performed on r′,
the redex r = λv(t1)(t2) is transformed into a term λv(t∗1)(t2) or λv(t1)(t∗2). Either way, this
still has the form of a redex. Because of this, it is possible to perform β-reduction on as many
(or as few) of the redexes contained in the redex trees of e that we want, so long as we work
from the innermost redexes outwards – that is, so long as we reduce redexes starting with
those uppermost in the redex trees, then continue reducing other redexes in the redex trees
of e, never moving upwards. If doing so produces a term e′, we will say that e ⇒β e

′. If we
reduce all the redexes contained in e (working from the uppermost leaves of the redex trees
and moving downwards), we call the resulting term e∗ (or when there is risk of confusion,
[e]∗), which we call the complete reduction of e. (Note that the order in which we perform
β-reductions associated with disjoint redexes does not matter.) By definition, we then have
e ⇒β e

∗. For example, for the term e∗ given in (20), the complete reduction of e is given by
e∗ = yw(λw(u)(z)). (Note that this term is not necessarily in β-normal form.)

We then have the following sequence of lemmas.
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Lemma 1: For any λ-terms e and e′, e→β e
′ entails e⇒β e

′.
Proof: The reduction e →β e

′ corresponds to the case in which we perform a β-reduction on
only one redex of e, and so e⇒β e

′ is immediate from the definition of ⇒β .
Lemma 2: For any λ-terms e and e′, e⇒β e

′ entails e↠β e
′.

Proof: If e ⇒β e′, the reduction of e to e′ may be thought of as a sequence of β-reductions
(never moving upwards in the redex trees of e), and thus e↠β e

′.
Lemma 3: For any λ-terms s, s′, t, t′, if s⇒β s

′ and t⇒β t
′, then s[t/v] ⇒β s

′[t′/v].
Proof: Assume s ⇒β s′ and t ⇒β t′. The term s[t/v] may be β-reduced to the term s′[t′/v]

as follows. First reduce every occurrence of t that appears as a result for substituting t for v
in s[t/v] to t′ (using t ⇒β t

′), thereby obtaining s[t′/v]. Then perform the same reductions in
s ⇒β s

′ to obtain a β-reduction from s[t′/v] to s′[t′/v]. (The fact that we have substituted t′

for the free variable v has no effect on this sequence of reductions.) The result is a sequence of
β-reductions from s[t/v] to s′[t′/v] which is easily seen to never move upwards in the redex
trees of s[t/v]. Thus s[t/v] ⇒β s

′[t′/v].
Lemma 4: For any λ-terms s and t, if s⇒β t then t⇒β s

∗.
For a λ-term s, let height(s) be the length of the longest branch in the redex trees of s. (For

example, if e is the term given in (20), then height(e) = 2.) The proof of the lemma is then by
induction on height(s).

If height(s) = 0, this means that s contains no redexes, and so s∗ = s. From s ⇒β t, we
must also have t = s. Thus t⇒β s

∗ holds iff s⇒β s holds, which is immediate.
Suppose now that the result holds for terms s′ with height(s′) ≤ l, and consider a term s

with height(s) = l + 1. We begin by considering the case in which s itself is a redex, and so
has the form

s = λx(M)(N),

with height(M),height(N) ≤ l. Note that we have

s∗ =M∗[N∗/x],

because the complete reduction of λx(M)(N) is obtained by completely β-reducing M and
N , and then performing the outmost and final β-reduction on the λx redex.

Suppose next that s⇒β t.There are two cases to consider

(Case 1) In the reduction s⇒β t, the redex s itself is among the redexes that are reduced.
(Case 2) In the reduction s⇒β t, the redex s itself is not among the redexes that are reduced.

We consider these cases in turn. In Case 1, because any redex properly contained in
λx(M)(N) must either be contained in M or contained in N , we know that t has the form

t =M ′[N ′/x] where M ⇒β M
′ and N ⇒β N

′.

By inductive hypothesis, we have M ′ ⇒β M∗ and N ′ ⇒β N∗. From t = M ′[N ′/x],M ′ ⇒β
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M∗, N ′ ⇒β N
∗ and Lemma 3 we then have

t =M ′[N ′/x] ⇒β M
∗[N∗/x] = s∗

so t⇒β s
∗ as desired. Consider now Case 2. In this case, t has the form

t = λx(M ′)(N ′) where M ⇒β M
′ and N ⇒β N

′.

Again, by inductive hypothesis, we have M ′ ⇒β M
∗ and N ′ ⇒β N

∗. From this we have

t = λx(M ′)(N ′) ⇒β M
∗[N∗/x] = s∗

and so t ⇒β s
∗ as desired. So either way, t ⇒β s

∗. This completes the inductive step for the
case in which s is a redex.

If s is not itself a redex and height(s) = l + 1, then s can be written

s = ... r1 ... r2 ... ri ...

where the ri are the redexes at the bottom of the redex trees of s, and for all i, height(ri) ≤ l.
Then we have

s∗ = ... r∗1 ... r
∗
2 ... r

∗
i ...

where the expressions occurring in ... remain unchanged. If s⇒β t, then t may be written

t = ... r′1 ... r
′
2 ... r

′
i ...

where ri ⇒β r
′
i for each i. By inductive hypothesis we therefore have r′i ⇒β r

∗
i , and so

t = ... r′1 ... r
′
2 ... r

′
i ...⇒β ... r

∗
1 ... r

∗
2 ... r

∗
i ... = s∗.

Thus t⇒β s
∗ as desired. This completes the induction and the proof of the lemma.

In what follows, let s[n] be s∗∗...∗ with n asterisks, and let s[0] be s. We then have
Lemma 5: If s0 ⇒β s1 ⇒β ...⇒β sn−1 ⇒β sn then s[0]n ⇒β s

[1]
n−1 ⇒β ...⇒β s

[n−1]
1 ⇒β s

[n]
0

Proof: By induction on n. If n = 1, then from s0 ⇒β s1 and Lemma 4 we have s1 ⇒β s
∗
0 as

desired.
Suppose then that the lemma is true for n, and that

s0 ⇒β s1 ⇒β ...⇒β sn ⇒β sn+1. (21)

By inductive hypothesis, from s0 ⇒β s1 ⇒β ...⇒β sn we have

s[0]n ⇒β s
[1]
n−1 ⇒β ...⇒β s

[n−1]
1 ⇒β s

[n]
0 . (22)
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We have s[0]n ⇒β s
[1]
n−1 from (22) and s

[0]
n ⇒β s

[0]
n+1 (i.e., sn ⇒β sn+1) from (21). Applying

Lemma 4 to both of these, we have s[1]n−1 ⇒β s
[1]
n and s

[0]
n+1 ⇒β s

[1]
n . From s

[1]
n−1 ⇒β s

[2]
n−2

and s
[1]
n−1 ⇒β s

[1]
n and Lemma 4 we have s[2]n−2 ⇒β s

[2]
n−1 and s

[1]
n ⇒β s

[2]
n−1. Continuing this

reasoning, we end up with s[n]0 ⇒β s
[n]
1 and s[n−1]

2 ⇒β s
[n]
1 . From s

[n]
0 ⇒β s

[n]
1 and Lemma 4 we

then have s[n]1 ⇒β s
[n+1]
0 . This reasoning can be depicted more intuitively with the following

diagram

s
[0]
n s

[1]
n−1 s

[2]
n−2 s

[n−1]
1 s

[n]
0

s
[0]
n+1 s

[1]
n s

[2]
n−1 s

[n−1]
2 s

[n]
1 s

[n+1]
0

Thus we have s[0]n+1 ⇒β s
[1]
n ⇒β ... ⇒β s

[n]
1 ⇒β s

[n+1]
0 as desired. This completes the proof of

Lemma 5.
To prove the Church-Rosser Theorem itself, suppose X ↠β Y1 and X ↠β Y2. There are

then sequences U1, ..., Un and V1, ..., Vm of terms such that

X →β U1 →β ...→β Un = Y1 and X →β V1 →β ...→β Vm = Y2

and so by Lemma 1 we have

X ⇒β U1 ⇒β ...⇒β Un = Y1 and X ⇒β V1 ⇒β ...⇒β Vm = Y2.

Letting l be max(n,m) and adding reductions of the form e ⇒β e to the shorter of these two
sequences, we then have

X ⇒β U1 ⇒β ...⇒β Ul = Y1 and X ⇒β V1 ⇒β ...⇒β Vl = Y2.

From Lemma 5 it then follows that

Y1 ⇒β ...⇒β X
[l] and Y2 ⇒β ...⇒β X

[l].

From Lemma 2 we then have Y1 ↠β X [l] and Y2 ↠β X [l]. Thus X [l] is a term Z such that
Y1 ↠β Z and Y2 ↠β Z.
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Theorem 1.20: The Church-Rosser Theorem for βη-reductions in λ0.

In the untyped λ-calculus λ0, if X ↠βη Y1 and X ↠βη Y2, then there is a term Z such that
Y1 ↠βη Z and Y2 ↠βη Z.

Proof of Theorem 1.20.

In this proof, all λ-terms are understood to be terms of the untyped λ-calculus λ0. As before,
we assume all terms obey the Barendregt variable convention. The proof follows the same
strategy as the proof of Theorem 1.13, with which familiarity is assumed. We mostly restrict
ourselves to just describing the way in which this earlier proof must be modified to produce
a proof of Theorem 1.20.

Again, we define a more general notion of βη-reduction that we denote ⇒βη. As before,
for a given λ-term e the set of β- or η-redexes contained in e form a finite set of trees when or-
dered under the relation of inclusion, with the innermost redexes lying at the top. We would
like it to be the case that whenever one redex r lies higher than another redex λx(M)(N) or
λx(E(x)) (with x free in E) that r is a subexpression of M or N or E, so that when a redex in
a tree is reduced, the redexes below maintain their forms as redexes. But there are (precisely)
two sorts of counterexamples to this:

λx(E(x))(N)

λx(E(x))

(a)
λz(λx(M)(z))

λx(M)(z)

(b)

(a) the η-redex λx(E(x)) is a subexpression of of the β-redex λx(E(x))(N) (where x is not
free in E), so that when λx(E(x)) is reduced to E, λx(E(x))(N) is reduced to E(N)

(which need not be a redex)
(b) the β-redex λx(M)(z) is a subexpression of of the η-redex λz(λx(M)(z)) (where z is not

free in λx(M)), so that when λx(M)(z) is reduced to M [z/x], λz(λx(M)(z)) is reduced
to λz(M [z/x]) (which need not be a redex)

To deal with this problem, we will declare any redex in e of the form λx(E(x))(N) (where x
is not free in E) or λz(λx(M)(z)) (where z is not free in λx(M)) to be prohibited. If we perform
a 1-step reduction on any non-prohibited redex, then any other non-prohibited redex below
it maintains its form as a redex. We can therefore perform a 1-step β- or η-reduction on as
many (or as few) of the non-prohibited redexes contained in the redex trees of e that we want,
working from the innermost redexes outwards – that is, working from the uppermost redexes
downwards. As before, if doing so produces a term e′, we will say that e⇒β e

′. If in this way
we reduce all the non-prohibited redexes contained in e, we call the resulting term e∗ (or [e]∗),
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which we call the complete reduction of e. (Again, the order in which we perform β-reductions
associated with disjoint redexes does not matter.) By definition, we then have e⇒β e

∗.
We now have a similar sequence of lemmas to that contained in the proof of Theorem

1.13. Recall that s→βη t means s→β t or s→η t.

Lemma 1: For any λ-terms s and t, s→βη t entails s⇒βη t.
Proof: The reduction s →βη t corresponds to the case in which a single redex r in the re-
dex trees of s is reduced, with the result being t. If the redex r is not prohibited, then it is
immediate that s⇒βη t.

Suppose then that r is prohibited. Then r has one of the two forms (a) or (b) defined
earlier. In case (a) it has the form of the β-redex λx(E(x))(N) (with x not free in E) , which
β-reduces to E(N). Note however that if in this term the η-redex λx(E(x)) (which is a proper
subterm of r) is reduced, the result is also E(N).

In case (b), a similar phenomenon occurs. In this case r has the form of the η-redex
λz(λx(M)(z)), where z is not free in λx(M). This η-reduces to λx(M). However, if in
this term the β-redex λx(M)(z) (which is a proper subterm of r) is reduced, the result is
λz(M [z/x]). Note that if z is not free in λx(M), then the terms λx(M) and λz(M [z/x]) are
α-equivalent, and thus the same.

As a consequence, we have

If s→βη t via the reduction of a prohibited redex r, then s→βη t via
the reduction of a redex r′ properly contained in r.

(23)

Of course, the redex r′ given by (23) may also be prohibited. But then using the principle (23)

again, we can find a redex r′′ properly contained in r′ such s →βη t via the reduction of the
redex r′′. Because we cannot have an infinite sequence r, r′, r′′, ... of redexes, each a subredex
of the previous one on the list, there must be a non-prohibited redex r∗ in s such that s→βη t

via the reduction of r∗. Thus, s⇒βη t.
Lemma 2: For any λ-terms s and t, s⇒βη t entails s↠βη t.
Proof: Identical to that given in the proof of Theorem 1.13
Lemma 3: For any λ-terms s, s′, t, t′, if s⇒βη s

′ and t⇒βη t
′, then s[t/v] ⇒βη s

′[t′/v].
Proof: Exactly as in Theorem 1.13, but using βη-reduction instead of β-reduction.
Lemma 4: For any λ-terms s and t, if s⇒βη t then t⇒βη s

∗.
Proof: In this proof, in order to deal with both types of reduction at once we will sometimes
rewrite the β-redex λx(M)(N) more abstractly as W (M,N) and the η-redex λx(E(x)) more
abstractly as W (E). In this way, all redexes have the form W (X,Y, ...) for some X,Y, ... .
Given a redex W (X,Y, ...), we will write W r(X,Y, ...) for the reduction of this redex. So for
example, if W (M,N) is the β-redex λx(M)(N), then W r(M,N) is the term M [N/x], and if
W (E) is the η-redex λx(E(x)) (with x not free in E), then W r(E) is the term E.

Using this notation, we have the following
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(P1) If a redex r = W (X,Y, ...) is not prohibited and another redex r′ is properly contained
in r, then r′ is properly contained in one of X,Y, ....

(P2) For any redex W (X,Y, ...), if X ⇒βη X
′, Y ⇒βη Y

′, ... then

W r(X,Y, ...) ⇒βη W
r(X ′, Y ′, ...).

The property (P1) follows from our characterization of prohibited redexes. For a β-redex
λx(M)(N), property (P2) amounts to the claim that if M ⇒βη M ′ and N ⇒βη N ′, then
M [N/x] ⇒βη M

′[N ′/x], which follows from Lemma 3. For an η-redex λx(E(x)), property
(P2) amounts to the trivial claim that if E ⇒βη E

′ then E ⇒βη E
′. So both (P1) and (P2) are

true in general. They will be useful in what follows.
As in Theorem 1.13, Lemma 4 is proved by induction on height(s), where height(s) is

the length of the longest branch in the redex trees of s (this includes prohibited redexes.) As
before, the base case is trivial.

Suppose now that Lemma 4 holds for terms s′ with height(s′) ≤ l, and consider a term s

with height(s) = l + 1. Suppose initially that s is a redex, i.e.,

s =W (X,Y, ...).

Then note that we have
s∗ =W r(X∗, Y ∗, ...).

Suppose next that s⇒β t. There are two cases to consider

(Case 1) In the reduction s⇒β t, the redex s itself is among the redexes that are reduced.
(Case 2) In the reduction s⇒β t, the redex s itself is not among the redexes that are reduced.

(Note of course that if in the reduction s ⇒β t the redex s is reduced, it will be the last redex
reduced, as it lies at the very bottom of the redex trees for s.)

Making use of (P1), in Case 1 the term t has the form W r(X ′, Y ′, ...) for some X ⇒βη

X ′, Y ⇒βη Y ′, ..., while in Case 2 the term t has the form W (X ′, Y ′, ...) for some X ⇒βη

X ′, Y ⇒βη Y
′, .... In either case, height(X),height(Y ), ... are all strictly less than height(s),

and so the inductive hypothesis holds of X,Y, .... Thus we have X ′ ⇒βη X
∗, Y ′ ⇒βη Y

∗, ....
In Case 1 we then have t = W r(X ′, Y ′, ...) and X ′ ⇒βη X

∗, Y ′ ⇒βη Y
∗, ..., and so using

(P2) we have t⇒βη W
r(X∗, Y ∗, ...) = s∗.

In Case 2 we have t =W (X ′, Y ′, ...), X ′ ⇒βη X
∗, Y ′ ⇒βη Y

∗, ... and so t⇒βη W
r(X∗, Y ∗) =

s∗. (The reduction t ⇒βη W
r(X∗, Y ∗, ...) = s∗ is obtained by starting with t = W (X ′, Y ′, ...),

reducing X ′ ⇒βη X
∗, Y ′ ⇒βη Y

∗, ... to obtain W (X∗, Y ∗, ...), then finally reducing the redex
W to obtain W r(X∗, Y ∗, ...) = s.)

Therefore, in either case we have t⇒βη s
∗ as desired. To complete the induction, we must

finally consider the case in which s is not a redex. This is dealt with as in Theorem 1.13.
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Given Lemma 4, the proof of Lemma 5 and remainder of the proof is the same as before,
with only trivial notational changes (e.g., replacing β wherever it appears with βη.)

Theorem 1.31: Strong Normalizability of λtype
0 under β-reduction.

There is no infinite sequence τ1, τ2, ... of terms in the typed λ-calculus λtype
0 for which

τ1 →β τ2 →β τ3 →β ...

Proof of Theorem 1.31.

In this proof, all λ-terms are understood to be terms of the typed λ-caclulus λtype
0 .

For each fundamental type τ , we add a new atomic, closed term dτ of type τ to the typed
λ-calculus. For any compound type τ1 → τ2, we let dτ1→τ2 be an abbreviation for λxτ1(dτ2).
In this way, dτ is inductively defined for all simple types τ , and is always a closed term of
type τ , already in β-normal form. (Without expanding the λ-calculus in this way, it is not
true that for every type τ there is a closed term of type τ .) Showing that strong normalization
holds for this expanded typed λ-calculus obviously entails that it holds for our original typed
λ-calculus.
Definition: A λ-term e is strongly normalizing if there is no infinite sequence e0, e1, e2, ... of
λ-terms with e = e0 such that each ei+1 may be obtained from ei by a single step β-reduction.

For all types τ , we define a set JτK of closed λ-terms of type τ as follows
Definition: For every type τ , JτK is given as follows

(i) If τ is fundamental, JτK is the set of strongly normalizing, closed terms of type τ .
(ii) If τ has the form τ1 → τ2, JτK is the set of closed terms e of type τ such that for all

e′ ∈ Jτ1K, we have that e(e′) ∈ Jτ2K.

It is easily seen (by induction on the construction of types) that every type can be written
uniquely in the form

τ1 → (τ2 → (τ3 → ...→ (τn → σ)...))

where σ is a fundamental type. We use this fact freely in what follows. The following alter-
nate characterization of JτK is useful
Lemma 1: If a closed term e has type τ = τ1 → (τ2 → (τ3 → ... → (τn → σ)...)) where σ is
fundamental, then e is in JτK iff for all closed terms e1 ∈ Jτ1K, e2 ∈ Jτ2K..., en ∈ JτnK, we have
that e(e1)...(en) is strongly normalizing.
Proof: By induction on τ . If τ is fundamental, the result is immediate. Suppose then that
τ has the form σ1 → σ2 and the lemma holds of σ2. Suppose further that σ2 has the form
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τ1 → (... → (τn → ρ)...) where ρ is fundamental, so that σ1 → σ2 can be written in the form
σ1 → (τ1 → (...→ (τn → ρ)...)). Then for any closed term e of type σ1 → σ2, we have

e ∈ Jσ1 → σ2K iff for all closed terms e′ ∈ Jσ1K, e(e′) ∈ Jσ2K (by definition)
iff for all closed terms e′ ∈ Jσ1K, e1 ∈ Jτ1K, ...en ∈ JτnK, e(e′)(e1)...(en)

is strongly normalizing (applying inductive hypothesis to e(e′).)

as desired. This completes the induction. .

The following technical lemma forms the heart of the proof.
Lemma 2: For any type τ ,

(i) If t ∈ JτK and t is strongly normalizing, and e is a closed term with e ∈ JσK, then
λxτ (e)(t) ∈ JσK.

(ii) If t ∈ JτK, and e is term of type σ with one free variable xτ and e[t/xτ ] ∈ JσK, then
λxτ (e)(t) ∈ JσK.

Proof: We first prove (i). Suppose the type σ can be written as

σ1 → (σ2 → (σ3 → ...→ (σ → ρ)...)),

where ρ is a fundamental type. Suppose then that t ∈ JτK, t is strongly normalizing, e ∈ JσK,
and λxτ (e)(t) /∈ JσK. Then by Lemma 1, for some terms e1 ∈ Jτ1K, e2 ∈ Jτ2K..., en ∈ JτnK we
have that

λxτ (e)(t)(e1)...(en) (24)

is not strongly normalizing, so that we may perform an infinite sequence of β-reductions
starting with (24). Fix some infinite sequence of β-reductions that begins with the term (24).

It is easily seen that the only redexes contained in a term of the form (24) are the redex
λxτ (e)(t), and any redexs that occur as (not necessarily proper) subexpressions of e, t, e1, ..., en.
Thus, the first β-reduction must be either performed on (a) the initial redex λxτ (e)(t), or
(b) a (not necessarily proper) subterm of one of e, t, e1, ..., en. If the first reduction is not
of form (a), then the newly reduced term can be written in the form λxτ (e1)(t1)(e11)...(e

1
n)

(where all but one of e1, t1, e11, ..., e
1
n is identical with the corresponding e, t, e1, ..., en), and

so the next β-reduction must be either performed on (a) the initial subterm λxτ (e1)(t1),
or (b) a (not necessarily proper) subterm of one of e1, t1, e11, ..., e

1
n. Iterating this reasoning,

we see that in any infinite reduction sequence, either (c) a β-reduction involving the initial
subterm λxτ (e∗)(t∗) with e ↠β e∗ and t ↠β t∗ is eventually performed at some point, or
(d) the ith term of the reduction sequence has the form λxτ (ei)(ti)(ei1)...(e

i
n), where letting

e0 = e, t0 = t, e01 = e1, ..., e
0
n = en, we have that for each i > 0, exactly one of the terms

ei, ti, ei1, ..., e
i
n is obtained by a one-step β-reduction from ei−1, ti−1, ei−1

1 , ..., ei−1
n , and the re-

mainder of the ei, ti, ei1, ..., e
i
n are identical to the corresponding ei−1, ti−1, ei−1

1 , ..., ei−1
n . We

consider these two cases (c) and (d) in turn.
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In case (c), because the term e is closed, so too the term e∗ is closed, and the redex
λxτ (e∗)(t∗) thus β-reduces to e∗. Thus a term of the form

e∗(e∗1)...(e
∗
n)

with e ↠β e
∗, e1 ↠β e

∗
1, ... en ↠β e

∗
n occurs in the infinite β-reduction sequence that starts

with (24). Thus e(e1)...(en) is also not strongly normalizing, as e(e1)...(en) ↠β e
∗(e∗1)...(e

∗
n).

But if e(e1)...(en) is not strongly normalizing, then because e1 ∈ Jτ1K, e2 ∈ Jτ2K..., en ∈ JτnK, it
follows from Lemma 1 that e /∈ JσK, which is a contradiction.

Consider then case (d). In this case, our infinite reduction sequence involves nothing
more than reductions of the subexpressions e, t, e1, ..., en individually. Thus, at least one of
the terms e, t, e1, ..., en, must fail to be strongly normalizing. By assumption, t is strongly nor-
malizing, and thus one of e, e1, ..., en must fail to be strongly normalizing. Thus e(e1)...(en) is
not strongly normalizing, which as in case (c) contradicts e ∈ JσK. This completes the proof
of (i).

The proof of (ii) is similar. This time, suppose that t ∈ JτK, e[t/xτ ] ∈ JσK, and λxτ (e)(t) /∈
JσK. Then for some terms e1 ∈ Jτ1K, e2 ∈ Jτ2K..., en ∈ JτnK, we have that

λxτ (e)(t)(e1)...(en) (25)

is not strongly normalizing. Fix some infinite sequence of β-reductions that begin with the
term (25). As before, either (c) a β-reduction involving the initial subterm λxτ (e∗)(t∗) with
e ↠β e∗ and t ↠β t∗ is eventually performed at some point, or (d) the infinite reduction
sequence involves nothing more than reductions of the subexpressions e, t, e1, ..., en individ-
ually.

In case (c), the redex λxτ (e∗)(t∗) β-reduces to e∗[t∗/xτ ], and thus a term of the form

e∗[t∗/xτ ](e∗1)...(e
∗
n)

with e ↠β e
∗, t ↠β t

∗, e1 ↠β e
∗
1, ... en ↠β e

∗
n occurs in the infinite β-reduction sequence that

starts with (25). Thus e[t/xτ ](e1)...(en) is not strongly normalizing (as e[t/xτ ](e1)...(en) ↠β

e∗[t∗/xτ ](e∗1)...(e
∗
n)), contradicting e[t/xτ ] ∈ JσK.

In case (d), our infinite reduction sequence involves nothing more than reductions of
the subexpressions e, t, e1, ..., en individually. Thus, at least one of the terms e, t, e1, ..., en
must fail to be strongly normalizing. In any such case, the term e[t/xτ ](e1)...(en) also fails
to be strongly normalizing so long as we suppose, as we have, that the variable xτ actually
occurs in e, so that t actually occurs as a subexpression of e[t/xτ ]. (We also invoke the easily
proved fact that if there is an infinite reduction sequence starting from e, then there is an
infinite reduction sequence starting from e[t/xτ ].) But e[t/xτ ](e1)...(en) not being strongly
normalizing contradicts e[t/xτ ] ∈ JσK.

Lemma 3: For any type τ ,



76 CHAPTER 1. INTRODUCTION TO THE λ-CALCULUS.

(i) dτ ∈ JτK
(ii) for all t ∈ JτK, t is strongly normalizing.

Proof: By induction on τ . If τ is fundamental, (i) and (ii) are immediate from the fact that dτ

is in β-normal form and the definition of JτK for fundamental τ .
Suppose by inductive hypothesis that (i) and (ii) are true for types τ1 and τ2, and consider

the type τ = τ1 → τ2. Suppose that τ2 may be written σ1 → (σ2 → ...→ (σn → ρ)), where ρ is
fundamental. We may also suppose by inductive hypothesis that (i) and (ii) hold of σ1, ..., σn.

To prove (i) for τ , note that by definition dτ ∈ JτK iff for all t ∈ Jτ1K, we have dτ (t) ∈ Jτ2K.
Because dτ is λxτ1(dτ2), we have that dτ ∈ JτK iff

for all t ∈ Jτ1K, λxτ1(dτ2)(t) ∈ Jτ2K. (26)

Because by inductive hypothesis we know that all elements of Jτ1K are strongly normalizing
and that dτ2 ∈ Jτ2K, that (26) is true follows from Lemma 2(i).

To prove (ii) for τ , note that by inductive hypothesis we have dτ1 ∈ Jτ1K, dσ1 ∈ Jσ1K, ..., dσn ∈
JσnK. Thus, from t ∈ JτK and Lemma 1, we have that t(dτ1)(dσ1)...(dσn) is strongly normaliz-
ing. Because any subterm of a strongly normalizing term is strongly normalizing, it follows
that t is strongly normalizing.
Lemma 4: If e is a (not necessarily closed) λ-term of type σ with free variables xσ1

1 , x
σ2
2 , ..., x

σn
n

and t1, ..., tn are closed λ-terms of type σ1, ..., σn respectively with t1 ∈ Jσ1K, ..., tn ∈ JσnK,
then

e[t1/x
σ1
1 ]...[tn/x

σn
n ] ∈ JσK.

(Note that because the terms ti are closed, the order of the substitutions t1/xσ1
1 , ..., tn/x

σn
n

does not matter.)
Proof: By induction on the construction of e.

For the first base case, suppose e is just the variable xσ. We must prove that if t is a closed
λ-term of type σ with t ∈ JσK, then x[t/x] ∈ JσK, i.e., t ∈ JσK, which is immediate.

For the second base case, suppose e is dσ for some fundamental type σ. Then e has no free
variables, and it suffices to show dσ ∈ JσK, which we have from Lemma 3.

Next suppose that e has the form e1(e2) and has the type σ, so that e1 has the type σ → σ′

and e2 has the type σ′ for some type σ′. Suppose also that e has free variables xσ1
1 , x

σ2
2 , ..., x

σn
n

and that t1, ..., tn are closed λ-terms of type σ1, ..., σn with t1 ∈ Jσ1K, ..., tn ∈ JσnK. Then by
inductive hypothesis we have e1[t1/x1]...[tn/xn] ∈ Jσ′ → σK and e2[t1/x1]...[tn/xn] ∈ Jσ′K.
From this and the definition of Jσ′ → σK, it follows that

e1[t1/x1]...[tn/xn](e2[t1/x1]...[tn/xn]) ∈ JσK.

From the basic properties of substitution we then have

e1(e2)[t1/x1]...[tn/xn] ∈ JσK
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as desired.
Finally, suppose that e has the form λzσ(u) where u has the type σ′, so that e has the type

σ → σ′. Suppose that e = λzσ(u) has free variables xσ1
1 , x

σ2
2 , ..., x

σn
n (all of course distinct from

zσ) and that t1 ∈ Jσ1K, ..., tn ∈ JσnK. To start, assume that the variable zσ explicitly occurs free
in u. The free variables of u are then xσ1

1 , x
σ2
2 , ..., x

σn
n and zσ. By inductive hypothesis we have

for all t ∈ JσK, u[t1/x
σ1
1 ]...[tn/x

σn
n ][t/zσ] ∈ Jσ′K.

Applying Lemma 2(ii) (with u[t1/xσ1
1 ]...[tn/x

σn
n ] playing the role of e), we have

for all t ∈ JσK, λzσ(u[t1/x1]...[tn/xn])(t) ∈ Jσ′K

from which it follows from the definition of Jσ → σ′K that

λzσ(u[t1/x1]...[tn/xn]) ∈ Jσ → σ′K

and because the terms ti are closed,

λzσ(u)[t1/x1]...[tn/xn] ∈ Jσ → σ′K

as desired.
It suffices to consider the case in which e has the form λzσ(u) and the variable zσ does not

occur free in u. In this case (using the same notation), by inductive hypothesis we have

u[t1/x1]...[tn/xn] ∈ Jσ′K.

Using Lemma 2(i) (and invoking the fact proved in Lemma 3 that all the elements of JσK are
strongly normalizing), we have as before that

for all t ∈ JσK, λzσ(u[t1/x1]...[tn/xn])(t) ∈ Jσ′K.

from which it again follows that

λzσ(u)[t1/x1]...[tn/xn] ∈ Jσ → σ′K

as desired. .
It follows from Lemma 4 that if e is a closed λ-term of type σ, then e ∈ JσK. From Lemma 3

it then follows that e is strongly normalizing. So all closed λ-terms are strongly normalizing.
Let e be an open λ-term with free variables xσ1

1 , x
σ2
2 , ..., x

σn
n . Then the λ-term λxσ1

1 x
σ2
2 ...x

σn
n (e)

is closed and therefore strongly normalizing. But because every subterm of a strongly nor-
malizing term is strongly normalizing, it follows that e is strongly normalizing. So all λ-terms
are strongly normalizing.
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Theorem 1.32: The Church-Rosser Theorem for β-reductions in λtype
0 .

In the typed λ-calculus λtype
0 , if X ↠β Y1 and X ↠β Y2, then there is a term Z such that

Y1 ↠β Z and Y2 ↠β Z.

Theorem 1.34: The Church-Rosser Theorem for βη-reductions in λtype
0 .

In the typed λ-calculus λ0, if X ↠βη Y1 and X ↠βη Y2, then there is a term Z such that
Y1 ↠βη Z and Y2 ↠βη Z.

Proof of Theorems 1.32 and 1.34.

To prove Theorems 1.32 and 1.34, it suffices to use the proofs of Theorems 1.13 and 1.20
and note that nothing more than notational alterations are required in the typed case. In
particular, every term used in these proofs can be typed appropriately if required.

Theorem 1.43: Soundness and Completeness of TR0.

Suppose E is an untyped λ0-term whose free variables are v1, ..., vn, and let τ1, ..., τn be types.
Then the following are equivalent:

(i) It is possible to assign simple types (i.e., types of λtype
0 ) to all the variables of E in such a

way that the free variables v1, ..., vn of E are assigned types τ1, ..., τn, and E itself has
type X .

(ii) There is a proof of Γ ⊢ E : X in TR0, where the context Γ includes the variable declara-
tions v1 : τ1, v2 : τ2, ..., vn : τn.

Proof of Theorem 1.43.

First we prove (i) → (ii). The proof is by induction on the construction of the λ-term E. Let Γ
be the context v1 : τ1, v2 : τ2, ..., vn : τn. We assume without loss of generality thatE obeys the
Barendregt variable convention. For suppose E is a term that does not obey the Barendregt
variable convention, and let E′ be a term α-equivalent to E that does obey the Barendregt
variable convention. Because E and E′ are α-equivalent, if E satisfies (i), then so does E′ .
Thus, if (i) → (ii) holds for E′, we have a proof of Γ ⊢ E′ : X for some Γ with Γ ⊆ Γ. Silent
replacement of α-equivalent terms in the final step of this proof then gives Γ ⊢ E : X , and so
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(ii) holds, as desired.
For the base case of the induction, suppose that E is a variable v. Then E can be assigned

any type X whatsoever. Because there is a proof of v : X ⊢ v : X for any X , (i) → (ii) holds
in this case.

Suppose next thatE has the formE1(E2). Let us suppose that consistent with the variable
declarations in Γ, it is possible to type the remaining variables of E so that E is assigned the
type X . In this situation, we must have that for some type Y , E1 is assigned type Y → X and
E2 is assigned type Y . Then by inductive hypothesis we have

Γ1 ⊢ E1 : Y → X and Γ2 ⊢ E2 : Y (27)

for contexts Γ1 and Γ2 such that for every free variable vi of E1, the context Γ1 contains vi : τi,
and for every free variable vi of E2, the context Γ2 contains vi : τi. By Theorem 1.41, we may
in fact assume that Γ1 and Γ2 consist only of typing declarations for the the free variables of
E1 and E2 respectively (and thus Γ1,Γ2 ⊆ Γ), and that the only other variable declarations
that appear anywhere else in the typing derivations (27) are typing declarations for bound
variables of E1 and E2. Because E1 and E2 obey the Barendregt variable convention, the
bound variables of E1 and E2 are distinct from the free variables of E1(E2), and so these
additional variable declarations all involve variables distinct from v1, ..., vn.

By adding additional (redundant) variable declarations to the contexts in the typing deriva-
tions (27), we may then produce typing derivations

Γ ⊢ E1 : Y → X and Γ ⊢ E2 : Y. (28)

(Note that we must invoke the fact that any additional variable declarations in (27) that occur
above the final conclusion involve variables other than v1, ..., vn. If this were not true there
would be a chance that adding redundant variable declarations to the typing constructions in
(27) would produce a context with a variable declared in two different ways, which would be
ungrammatical. By working only with terms that obey the Barendregt variable convention
we avoid this possibility.)

From (28), we may infer Γ ⊢ E : X using the (App) rule. So (i) → (ii) holds in this case.
Suppose finally that E has the form λv(E′) and that the free variables of λv(E′) are

v1, ..., vn, so that the free variables of E′ are either v, v1, ..., vn or v1, ..., vn, depending on
whether v explicitly appears free in E′. Suppose also that consistent with the variable dec-
larations of Γ, the remaining variables of λv(E′) can be assigned types in such a way that
λv(E′) is assigned type X . In this situation, for some types Y and Z the type X will have the
form Y → Z, the term E′ will have the type Z, and the variable v will have the type Y . Then
by inductive hypothesis and Theorem 1.41 there is a typing derivation with conclusion

Γ, v : Y ⊢ E′ : Z or Γ ⊢ E′ : Z (29)
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depending on whether v explicitly appears free in E′ or not. In the second case of (29), the
variable v does not occur bound in E′ and so by Theorem 1.41 we may assume that v is not
declared anywhere in the typing derivation Γ ⊢ E′ : Z. Thus we may freely add v : Y as
a (redundant) variable declaration throughout the proof of Γ ⊢ E′ : Z, obtaining a typing
derivation with conclusion Γ, v : Y ⊢ E′ : Z; i.e., the first case of (29). So either way we have
a typing derivation with conclusion Γ, v : Y ⊢ E′ : Z. Applying the (Abs) rule then gives

Γ ⊢ λv(E′) : Y → Z

as desired, and (i) → (ii) holds in this case. This completes the proof that (i) → (ii) holds in
general.

Now we prove (ii) → (i). The proof is by induction on the construction of typing deriva-
tions. (We do not need to assume anymore that any particular terms obey the Barendregt
variable convention.) If Γ ⊢ E : X has the form of an initial sequent ∆, v : X ⊢ v : X , then
it suffices to show that it is consistent with v being assigned the type X that v is assigned the
type X , which is trivial. Thus (ii) → (i) holds in this case.

Suppose next that Γ ⊢ E1(E2) : X is the result of an (App) inference from

Γ ⊢ E1 : Y → X and Γ ⊢ E2 : Y

Let Γ be the context v1 : τ1, ..., vn : τn, let Γ1 be the subset of variable declarations in Γ that
declare types for free variables of E1, and Γ2 be the subset of variable declarations in Γ that
declare types for free variables of E2. (Every typing declaration in Γ will then be in one or
both of Γ1 and Γ2, as every free variable of E1(E2) occurs either free in E1 or free in E2.)

By inductive hypothesis, it then follows that consistent with the free variables of E1 being
typed in accordance with the variable declarations in Γ1, the term E1 can be assigned the
type Y → X , and consistent with the the free variables of E2 being typed in accordance with
the variable declarations in Γ2, the term E2 can be assigned the type Y → X . Because both
Γ1 and Γ2 are contained in Γ, there is no conflict between the variable declarations of Γ1 and
Γ2, and it follows that consistent with the free variables of E1(E2) being typed in accordance
with the variable declarations in Γ, the term E1(E2) can be assigned the type X , as desired.

Suppose finally that Γ ⊢ λv(E) : X → Y is the result of an (Abs) inference from

Γ, v : X ⊢ E : Y (30)

where if v1, ..., vn are the free variables of λv(E), then Γ includes the typing declarations
v1 : τ1, ..., vn : τn. Again, let Γ be the context v1 : τ1, ..., vn : τn.

If v occurs free in E, then the free variables of E are v1, ..., vn, v, and so from (30) and
inductive hypothesis, we have that consistent with the variable declarations in Γ, v : X it is
possible to assign E the type Y . It follows that consistent with the variable declarations in
Γ it is possible to assign λv(E) the type X → Y , as desired. If v does not occur free in E,
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then by inductive hypothesis and (30) we have that consistent with the variable declarations
in Γ it is possible to assign E the type Y . Again, this means that consistent with the variable
declarations in Γ it is possible to assign λv(E) the type X → Y , as desired. This completes
the proof that (ii) → (i) holds in general.

Theorem 1.49: Soundness and Completeness of TRbt
0 .

Suppose E is a bound-typed λ-term whose free variables are v1, ..., vn, and let τ1, ..., τn be
types. Then the following are equivalent:

(i) If the variables v1, v2, ..., vn are assigned types τ1, τ2, ..., τn respectively, then E must be
assigned type σ.

(ii) There is a proof of Γ ⊢ E : X in TRbt
0 , where the context Γ includes the variable declara-

tions v1 : τ1, v2 : τ2, ..., vn : τn.

Proof of Theorem 1.49.

The proof is largely the same as that of Theorem 1.43. The proof that (i) → (ii) is by induction
on the construction of the λ-term E. Let Γ be the context v1 : τ1, v2 : τ2, ..., vn : τn. As in
Theorem 1.43, we may assume that E obeys the Barendregt variable convention.

The base case in which E is a variable is trivial. Suppose then that E has the form E1(E2).
Let us suppose that if the free variables in E are typed in accordance with Γ, the term E must
receive type X . Because the type of E and all its subterms are uniquely determined by the
typing declarations in Γ, these typing declarations also uniquely determine the types of E1

and E2. Suppose then that if the free variables in E1 and E2 are typed in accordance with
Γ, that E1 must be assigned the type Y → X and E2 must be assigned type Y . Then by
inductive hypothesis we have

Γ1 ⊢ E1 : Y → X and Γ2 ⊢ E2 : Y

for contexts Γ1 and Γ2 such that for every free variable vi of E1, Γ1 contains vi : τi, and for
every free variable vi of E2, Γ2 contains vi : τi. Precisely as in the proof of Theorem 1.43 we
can then argue that

Γ ⊢ E1(E2) : X

So (i) → (ii) holds in this case.
Suppose finally that E has the form λvY (E′) for some type Y , so that E′ has free variables

v1, ..., vn and possibly v. Assume also that given the typing declarations in Γ, λvY (E′) must be
assigned the type Y → Z. If v occurs free in E′, this means that given the typing declarations
in Γ, v : Y , the term E′ must be assigned the type Z, and if v does not occur free in E′, this



82 CHAPTER 1. INTRODUCTION TO THE λ-CALCULUS.

means that given the typing declarations in Γ, the term E′ must be assigned the type Z. So
by inductive hypothesis we have

Γ, v : Y ⊢ E′ : Z or Γ ⊢ E′ : Z

The same argument as in Theorem 1.43 then shows that in either case we have

Γ ⊢ λvY (E′) : Y → Z

as desired, and (i) → (ii) holds in this case. This completes the proof that (i) → (ii) holds in
general.

The proof that (ii) → (i) is by induction on the construction of proofs. If Γ ⊢ E : X has the
form of an initial sequent ∆, v : X ⊢ v : X , then the result is trivial.

Suppose then that Γ ⊢ E1(E2) : X is the result of an (App) inference from

Γ ⊢ E1 : Y → X and Γ ⊢ E2 : Y

where v1, ..., vn are the free variables of E1(E2). Thus, Γ will include the typing declarations
v1 : τ1, ..., vn : τn for some τ1, ..., τn. As before, let Γ be the context v1 : τ1, ..., vn : τn, let Γ1

be the subset of variable declarations in Γ for free variables of E1, and let Γ2 be the subset of
variable declarations in Γ for free variables of E2.

By inductive hypothesis, the variable declarations in Γ1 entail that E1 is assigned the type
Y → X , and the variable declarations in Γ2 entail that E2 is assigned the type Y → X .
Because Γ1 and Γ2 are contained in Γ, it follows that the variable declarations in Γ entail that
E1(E2) is assigned the type X , as desired.

Suppose finally that Γ ⊢ λvX(E′) : X → Y is the result of an (Absbt) inference from

Γ, v : X ⊢ E′ : Y

where if v1, ..., vn are the free variables of λv(E′), then Γ includes the typing declarations
v1 : τ1, ..., vn : τn. Let Γ be the context v1 : τ1, ..., vn : τn.

If v occurs free in E′, then by inductive hypothesis, the variable declarations in Γ, v : X

require E′ to be assigned the type Y . This means that the variable declarations in Γ require
λvX(E′) to be assigned the type X → Y , as desired.

If v does not occur free in E′, then by inductive hypothesis, the variable declarations in
Γ require E′ to be assigned the type Y . This also means that the variable declarations in Γ

require λvX(E′) to be assigned the type X → Y , as desired. This completes the proof that (ii)
→ (i) holds in general.



Chapter 2

Intuitionistic Propositional Logic and the
Curry-Howard Correspondence.

2.1 Preamble

In this chapter, our main goal is to understand the Curry-Howard correspondence in its simplest
forms. Broadly speaking, the Curry-Howard correspondence connects the notions of computation
and proof - two notions which might otherwise seem quite distinct. There are many different
forms of the Curry-Howard correspondence; in this chapter, we examine a simple version that
connects the notion of certain sorts of computation with the notion of provability in intuitionistic
propositional logic. In later chapters we examine more sophisticated versions of the Curry-Howard
correspondence that connect richer notions of computation with richer notions of provability. We
begin with a brief discussion of the main ideas behind intuitionistic logic.

2.2 Intuitionistic Logic: Motivation

One of the guiding ideas behind intuitionistic logic is that our reasoning ought to be constructive.
So for example, according to constructive reasoning the only situation in which we are entitled
to assert a disjunction A ∨ B would be a situation in which either we are entitled to assert A or
we are entitled to assert B. To put this in terms of knowledge, we could say that we only know a
disjunctive claim A ∨ B if we know A or know B. Intuitionistic logic makes similar claims about
existentially quantified sentences (∃x)ϕ(x). The only situation in which we are entitled to assert
such a sentence is a situation in which we can name (or construct) an object o for which ϕ(o). To
put it in terms of knowledge, we only know a claim of the form (∃x)ϕ(x) if we know that ϕ(o) for
some particular o.

Intuitionistic logic places different demands on us than classical logic. This point is illustrated
nicely by the following classic example:
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Theorem 2.1

There are irrational numbers x, y such that xy is rational.

Proof

Consider the number (
√
2
√
2
)
√
2. Using the fact that (ab)c = a(b·c), this equals 2. So if

√
2
√
2

is

irrational, then x =
√
2
√
2
, y =

√
2 gives an example of irrational numbers x and y such that

xy is rational. On the other hand, if
√
2
√
2

is rational, then x =
√
2, y =

√
2 gives an example

of irrational numbers x and y such that xy is rational. So either way, there are irrational
numbers x, y such that xy is rational.

From the point of view of classical logic, this proof is completely persuasive. From the point
of view of intuitionistic logic, it is not a valid proof at all.The theorem being proved is of course
an existential claim; it states that there are irrational numbers x, y such that xy is rational. But at
the end of the proof we are still not in a position to name specific irrational numbers x and y for
which xy is rational. The intuitionistic logician is bothered by this - what could it mean to have
proved an existential claim if a confirming instance has not been unambiguously specified? If one
thinks that to prove a disjunction one must prove one of the disjuncts, or if one thinks that to
prove an existential claim one must construct a specific confirming instance, then the above proof
is completely unpersuasive.

Intuitionistic logic is an attempt to restrict our techniques of reasoning in such a way that
whenever we can prove a disjunctionA∨B, then we know which ofA orB obtains, and whenever
we can prove an existential claim (∃x)ϕ(x), then we can name an object o for which we have ϕ(o). It
is perhaps surprising that one can quite formally and rigorously define a system of reasoning that
conforms to these principles, and can in fact do so merely by making some small modifications to
the usual rules of classical logic. Exploring how this is so will be one of the main themes of this
chapter.

Although intuitionstic logic has a propositional form (in which there are no quantifiers) and a
predicate form (which includes the usual quantifiers), in this chapter we will restrict our attention
to propositional intuitionistic logic, turning to predicate intruitionistic logic in a later chapter.

First, we have the following definition
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Definition 2.2:

In propositional intuitionistic logic, all formulae are constructed from atomic formulae and
the the 0-ary connective ⊥ (sometimes called ‘the false’ or ‘falsum’) using the binary connec-
tives →,∨ and &.

In what follows, ¬ϕ will be an abbreviation for ϕ →⊥, ϕ ↔ ψ will be an abbreviation for
(ϕ→ ψ)&(ψ → ϕ), and ⊤ (sometimes called ‘the true’ or ‘verum’) will be an abbreviation for
⊥→⊥.

So for example

(¬A) ∨B is an abbreviation of (A→⊥) ∨B
(¬A) ↔ B is an abbreviation of ((A→⊥) → B) & (B → (A→⊥))

(¬A) ∨ ¬⊤ is an abbreviation of (A→⊥) ∨ ((⊥→⊥) →⊥)

Next we turn to a discussion of the connectives themselves. The logical constant ⊥ and the
connectives →,∨ and & are the basic connectives of propositional intuitionistic logic. How are
we to analyse their meaning? In the usual presentations of classical propositional logic, much
emphasis is placed on truth tables. In particular, the connectives are often regarded as defined by
the way they transform truth values. For example, consider the truth table for &:

A B A&B
⊤ ⊤ ⊤
⊤ ⊥ ⊥
⊥ ⊤ ⊥
⊥ ⊥ ⊥

This table presents & as if it were a function taking a pair of truth values as inputs (given in the
first two columns), and outputting a truth value (given in the third column). From the point of
classical logic, one can even think of this as something like the definition of the connective & – it is
the binary connective that transforms truth values in the way shown in this table.

Intuitionistic logic takes a different point of view in analysing the meaning of the connectives.
Rather than analysing the connectives in terms of truth values, intuitionistic logic analyzes them
in terms of proofs, or even more broadly in terms of constructions. The basic ideas intuitionistic
logic begins with are then as follows:

Definition 2.3: The BHK Conditions

BHK1 : To prove A & B is to prove A and to prove B.
BHK2 : To prove A ∨B is to prove A or to prove B.
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BHK3 : To prove A→ B is to construct a way of transforming a proof of A into a proof of B.
BHK4 : There is no proof of ⊥.

These conditions are described here somewhat informally, but we will later consider much more
precise versions of them. They are sometimes described as the BHK conditions on the connectives
in honor of Brouwer, Heyting, and Kolmogorov who first developed many of the main ideas of
intuitionistic logic.

Consider BHK1. This does not just say that one way of proving A&B is to prove A and prove
B; it rather makes the stronger claim that what it is to prove A&B is to prove A and to prove B.
Moreover, this is taken as our basic analysis of &. That is to say, the meaning of & is constituted by
the fact that it is the connective having the property that proving A&B just amounts to proving A
and proving B.

Similarly, according to BHK2, the meaning of ∨ is constituted by the fact that it is the connec-
tive having the property that proving A ∨B amounts to either a proof of A or a proof of B.

The idea behind BHK3 is that to prove A → B is to have some method for transforming a
proof of A into a proof of B; this is sometimes expressed by the idea that a proof of A → B is a
function that transforms a proof of A into a proof of B. This is usually more specifically taken to
mean that there is some kind of mechanical procedure for transforming a proof of A into a proof of
B. (At this point, we can be somewhat open as to what counts as a ‘mechanical procedure’.) The
connective → can even be regarded as being defined by the fact that it is the connective having
the property that proving A → B amounts to specifying a function that takes a proof of A into a
proof of B.

The claim BHK4 is perhaps more modest in character than BHK1-3. Presumably, we do not
want to say that ⊥ is characterized by the fact that there is no proof of ⊥, because there are sen-
tences other than ⊥ which are not provable. While it might be argued that BHK4 captures part of
the meaning of ⊥, it certainly does not capture all of it. Nevertheless, the claim made in BHK4 is
a true one, and it will suffice in what follows to regard BHK4 as a basic truth about ⊥.

The way of thinking of the connectives captured in BHK1-4 is known as the BHK (Brouwer-
Heyting-Kolmogorov) interpretation of intuitionistic logic. Note that according to this interpreta-
tion, because we regard ¬A as an abbreviation of A →⊥, proving ¬A amounts to giving a proce-
dure that takes a proof of A into a proof of ⊥ (i.e., a proof of a contradiction.)

In BHK1-4, the main non-classical idea lies in BHK2 – that is, in the claim that proving A ∨ B
amounts to proving A or proving B. The classical logician could in fact happily accept BHK1,
BHK3, and BHK4, but would emphatically reject BHK2. This is because in classical logic, one can
have a proof ofA∨B without having either a proof ofA or a proof ofB. We have seen this already
in our discussion of Theorem 2.1. For an even simpler example, consider the claim

Even: There are an even number of electrons in the universe.

Using classical logic, we can easily prove

Even ∨ ¬Even,
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as this is a tautology. This however does not require that we have a proof of Even or a proof of
¬Even. Only scientific investigation can determine whether Even is true or false; logic on its own
gives us neither a proof of Even nor a proof of ¬Even. The claim that proving A ∨ B amounts to
proving A or proving B is therefore a departure from classical logic. In effect, it imposes much
stricter requirements on proving a disjunctionA∨B than are imposed by classical logic. According
to the BHK conditions, we do not have a proof of Even ∨ ¬Even, and perhaps never will.

We have not yet spelt out any sort of formal system that captures the ideas of BHK1-4. How-
ever, even without doing so, we can see somewhat informally that various sentences should be
theorems of intuitionistic logic. For example, consider the sentence (p&q) → p. This is a classical
tautology. Should we expect this to be intuitionistically provable? According to BHK3, a proof
of (p&q) → p would be a procedure that transforms a proof of p&q into a proof of p. Given that
according to BHK1 a proof of a p&q is just a proof of p and a proof of q, an intuitionistic proof of
(p&q) → p would just be a function that takes a proof of p and a proof of q and returns a proof of
p. Such a function, of course, exists - given a proof of p and a proof of q, just forget about the proof
of q. One then has a proof of p. Thus, (p&q) → p should be intuitionistically provable.

Consider the sentence ⊥→ p. This too is a classical tautology – anything follows from ⊥.
Should we expect this to be intuitionistically provable? For ⊥→ p to be provable would be to have
a way of transforming a proof of ⊥ into a proof of p. Because there are no proofs of ⊥, we think of
ourselves as ‘vacuously’ being able to transform a proof of ⊥ into a proof of p – that is to say, any
transformational procedure may be said to take a proof of ⊥ into a proof of p, because there are no
proofs of ⊥. So this should be intuitionistically provable.

Consider now the classically tautology p → (q → p). Should we expect this to be intuitionisti-
cally provable? The question we must ask is whether we have a way of transforming a proof of p
into way of transforming a proof of q into a proof of p. Indeed, we do. Given a proof Π of p, we
have a way of transforming a proof Σ of q into a proof of p as follows – erase Σ, and write down
Π. This transforms any proof of q into a proof of p. Thus, we should expect p → (q → p) to be
intuitionistically provable.

Likewise, you should be able to convince yourself that p → ¬¬p ought to be intutionistically
provable. (This is included in the exercises.)

There are of course classical tautologies that we would not expect to be intutionistically prov-
able. We have already considered the sentence p ∨ ¬p. For this to be provable is for either p or
¬p to be provable. Of course, it is not the case that for every sentence p, we have that either p
or ¬p is provable using pure logic. So we should expect that p ∨ ¬p will not be intutionistically
provable in general. In this sense, the law of the excluded middle fails for intuitionistic logic, as a
result of BHK2. You should also try to convince yourself that there are no good reasons to expect
¬¬p → p be intuitionistically provable. Perhaps a little more surprisingly, you should be able to
convince yourself that there are no good reasons to expect Peirce’s Law ((p → q) → p) → p to be
intuitionstically provable, even though this is a purely implicational classical tautology and does
not involve negation or disjunction in any way.

Of course, none of the arguments here suggesting that something should or should not be
intuitionistically provable are completely rigorous. They are simply argument sketches. Armed
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with further material, we will later be able to replace such argument sketches with completely
rigorous arguments. Arguments sketches of the sort we have considered here are nevertheless
suggestive and have played an important historical role in the development of intuitionistic logic.

Exercises for Section 2.2

1. Using the BHK interpretation, argue informally that the following should be intuitionisti-
cally provable. It suffices to give informal arguments of the sort given in this section of the
text.

(a) p→ (p ∨ q)
(b) p→ ¬¬p
(c) (p→ q) → (¬q → ¬p)
(d) ¬¬¬p→ ¬p

2. Using the BHK interpretation, argue informally that the following should not be intuition-
istically provable. It suffices to describe how naive ways of trying to prove them using the
BHK rules fail.

(a) ¬¬p→ p

(b) (¬q → ¬p) → (p→ q)

(c) ((p→ q) → p) → p)

2.3 Natural Deduction for Propositional Intuitionistic Logic

We now set up a formal proof system that captures the informal notion of intuitionistic provability
developed in the last section. It will not be clear until somewhat later in this chapter why or how
the proof system presented in this section captures the main ideas behind the BHK interpretation.
In particular, only once we understand the Curry-Howard correspondence and proof normaliza-
tion will we be able to clearly see the sense in which this proof system captures the BHK rules.
Until then, the reader should just focus on the details of the proof system itself.

In our proof system, each step in the proof will consist of a sequent of the form

s1, s2, ..., sn ⊢ t

where s1, s2, ..., sn, t are fomulae. For brevity, we will typically write this as

∆ ⊢ t

where ∆ is the unordered list of sentences s1, s2, ..., sn. In ∆, we will allow elements to be repeated.
Intuitively, the sequent ∆ ⊢ t says that t is derivable from the sentences in ∆. We will write

⊢ s
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as an abbreviation of
∅ ⊢ s,

where ∅ is the empty list. To say ⊢ s is then to say that s is provable outright.
A proof will consist of a ‘tree’ of such sequents. The leaves of the trees will be located at the

top, and will correspond to our logical axioms. The statement being proven will lie at the base of
the tree. Often we are interested in proving a statement of the form ⊢ s, but we will allow more
general assertions of the form ∆ ⊢ s to be the conclusion of a proof and lie at the base of the tree.
We will get from one level of a tree to the level below by performing a rule of inference. Examples
will be provided shortly.

We specify the logical axioms and rules of inference of our system, which we call NJ.

Definition 2.4: The Intuitionistic Propositional Calculus NJ.

For any formulae ϕ, ψ, θ and any finite unordered list of formulae ∆, we have

Logical Axioms:

Γ, ϕ ⊢ ϕ

Rules of Inference:

∆, ϕ ⊢ ψ
(→ I)

∆ ⊢ ϕ→ ψ

∆ ⊢ ϕ→ ψ ∆ ⊢ ϕ
(→ E)

∆ ⊢ ψ

(major premise: ∆ ⊢ ϕ→ ψ)

∆ ⊢ ϕ ∆ ⊢ ψ
(& I)

∆ ⊢ ϕ&ψ

∆ ⊢ ϕ&ψ
(& E)

∆ ⊢ ϕ

∆ ⊢ ϕ&ψ
(& E)

∆ ⊢ ψ

∆ ⊢ ϕ
(∨ I)

∆ ⊢ ϕ ∨ ψ
∆ ⊢ ψ

(∨ I)
∆ ⊢ ϕ ∨ ψ

∆ ⊢ ϕ ∨ ψ ∆, ϕ ⊢ θ ∆, ψ ⊢ θ
(∨ E)

∆ ⊢ θ
(major premise: ∆ ⊢ ϕ ∨ ψ)

∆ ⊢ ⊥ (⊥ E)
∆ ⊢ ϕ

In this system when something like ∆, ϕ appears on the left hand side of a ⊢ symbol, we
understand ∆, ϕ as the unordered list of sentences obtained by adding ϕ to the unordered list of
sentences ∆.

In the case of the (→E) rule, we say that the premise ∆ ⊢ ϕ → ψ is the major premise, and the
remaining premise is minor, and in the case of the (∨E) rule, we say that the premise ∆ ⊢ ϕ ∨ ψ is
the major premise, and the remaining premises minor. For the remaining rules, we will not need
to classify premises as major or minor.
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Note that the rules and logical axioms of NJ are all classically acceptable. Unlike classical logic,
however, NJ does not have the following rule:

∆,¬ϕ ⊢ ⊥
(×)

∆ ⊢ ϕ

This rule is of course classically valid, but we do not include it in our system, and it is not derivable
in any way from the rules of NJ.

It is not obvious that this moderate restriction of classical logic captures the ideas behind the
BHK interpretation, but we will see quite rigorously by the end of the chapter that it does. Tradi-
tional treatments of intuitionistic logic develop a semantics for intuitionistic logic (typically using
the machinery of ‘Kripke frames’), and then prove a soundness and completeness theorem relative
to this semantics, in analogy with the familiar soundness and completeness theorems of classical
logic. (See [7] and chapter 2 of [10] for examples of this.) We will not take this route. Rather than
thinking of intuitionisitic proofs as arguments that preserve truth in Kripke frames, we will end
up thinking of intuitionistic proofs as computer programs or algorithms (given by typed λ-terms)
that obey the BHK rules.

As simple examples of proofs in intuitionistic logic, here are intuitionistic proofs of p → (q →
p) and p→ ¬¬p, recalling that this later sentence is an abbreviation for p→ ((p→⊥) →⊥):

p, q ⊢ p
(→ I)

p ⊢ q → p
(→ I)

⊢ p→ (q → p)

p, p→⊥ ⊢ p p, p→⊥ ⊢ p→⊥
(→ E)

p, p→⊥ ⊢ ⊥
(→ I)

p ⊢ (p→⊥) →⊥
(→ I)

⊢ p→ ((p→⊥) →⊥)

The classical principle that everything follows from a contradiction also holds in intuitionistic
logic:

p&¬p ⊢ p&¬p
(& E)

p&¬p ⊢ p

p&¬p ⊢ p&¬p
(& E)

p&¬p ⊢ ¬p
(→ E)

p&¬p ⊢ ⊥
(⊥ E)

p&¬p ⊢ q
(→ I)

⊢ (p&¬p) → q

For a more complicated argument, note that using the proofs

(¬p) ∨ (¬q), p&q, ¬p ⊢ ¬p
(¬p) ∨ (¬q), p&q, ¬p ⊢ p&q

(& I)
(¬p) ∨ (¬q), p&q, ¬p ⊢ p

(→ E)
(¬p) ∨ (¬q), p&q, ¬p ⊢ ⊥

and
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(¬p) ∨ (¬q), p&q, ¬q ⊢ ¬q
(¬p) ∨ (¬q), p&q, ¬q ⊢ p&q

(& I)
(¬p) ∨ (¬q), p&q, ¬q ⊢ q

(→ E)
(¬p) ∨ (¬q), p&q, ¬q ⊢ ⊥

we can prove ((¬p) ∨ (¬q)) → ¬(p&q) :

(¬p) ∨ (¬q), p&q ⊢ (¬p) ∨ (¬q)

...
(¬p) ∨ (¬q), p&q, ¬p ⊢⊥

...
(¬p) ∨ (¬q), p&q, ¬q ⊢⊥

(∨ E)
(¬p) ∨ (¬q), p&q ⊢ ⊥

(→ I)
(¬p) ∨ (¬q) ⊢ ¬(p&q)

(→ I)
⊢ ((¬p) ∨ (¬q)) → ¬(p&q)

We have called the proof system just presented NJ. The system NJ(→) denotes the ’implica-
tional’ fragment of this system - that is, the system with the same logical axioms, but with only
the rules (→ I) and (→ E).

Definition 2.5: The System NJ(→).

Logical Axioms:

Γ, ϕ ⊢ ϕ

Rules of Inference:

∆, ϕ ⊢ ψ
(→ I)

∆ ⊢ ϕ→ ψ

∆ ⊢ ϕ→ ψ ∆ ⊢ ϕ
(→ E)

∆ ⊢ ψ

(major premise: ∆ ⊢ ϕ→ ψ)

Of the many familiar theorems from classical logic, NJ proves some but not others. Most
notably, it does not prove the law of the excluded middle p ∨ ¬p in general. (Later in this chapter,
we will rigorously prove that NJ does not prove the law of the excluded middle!) And although
we have seen that NJ can prove p→ ¬¬p, it cannot prove ¬¬p→ p in general. (Interestingly, it can
prove ¬¬¬p→ ¬p.) Not all the familiar deMorgan’s laws hold either. So although the following

(¬p&¬q) → ¬(p ∨ q)
¬(p ∨ q) → (¬p&¬q)
(¬p ∨ ¬q) → ¬(p&q).

are all provable in NJ,

¬(p&q) → (¬p ∨ ¬q)

is not provable in NJ. However, all the familiar distributivity rules relating conjunction and dis-
junction

(p ∨ (q&r)) → ((p ∨ q)&(p ∨ r))
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((p ∨ q)&(p ∨ r)) → (p ∨ (q&r))

((p&q) ∨ (p&r)) → (p&(q ∨ r))
(p&(q ∨ r)) → ((p&q) ∨ (p&r))

are provable in NJ. In the exercises you will verify many of these facts about what is provable in
NJ. Later in this chapter we will be in a position to show rigorously that certain sentences are not
provable in NJ.

Exercises for Section 2.3

1. Prove the following sentences in NJ:
(a) p→ (p ∨ q)
(b) ¬(p ∨ q) → ¬p
(c) ¬(p ∨ q) → (¬p)&(¬q)
(d) (¬p)&(¬q) → ¬(p ∨ q)
(e) (¬p) ∨ (¬q) → ¬(p&q)
(f) p→ ¬¬p
(g) (p ∨ (q&r)) → ((p ∨ q)&(p ∨ r))
(h) ((p ∨ q)&(p ∨ r)) → (p ∨ (q&r))

(i) ((p&q) ∨ (p&r)) → (p&(q ∨ r))
(j) (p&(q ∨ r)) → ((p&q) ∨ (p&r))

(k) ¬¬(p ∨ ¬p)
(l) (p→ q) → (¬q → ¬p)
(m) ¬¬¬p→ ¬p
2. Show that a formula X is provable in classical propositional logic iff ¬¬X is provable in
NJ as follows. (This result is sometimes called Glivenko’s Theorem.) For our purposes, we take
classical propositional logic to be NJ with additional logical axioms of the form

∆ ⊢ X ∨ ¬X

permitted for any sentence X and unordered list of sentences ∆.
(a) Prove that if ⊢ ¬¬X is provable in NJ, then ⊢ X is provable in classical propositional
logic. (Hint: prove and use the fact that ¬¬X ⊢ X is derivable in classical propositional
logic, using (∨ E).)
(b) Show that if ⊢ X is provable in classical propositional logic, then for some formulae
p1, ..., pn,

p1 ∨ ¬p1, p2 ∨ ¬p2, ..., pn ∨ ¬pn ⊢ X

is provable in NJ. Infer from this that

p1 ∨ ¬p1, p2 ∨ ¬p2, ..., pn ∨ ¬pn,¬X ⊢⊥
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is provable in NJ.
(c) From this, show that if ⊢ X is provable in classical propositional logic, then ⊢ ¬¬X is
provable in NJ. (Hint: use the fact that ⊢ ¬¬(p ∨ ¬p) is provable in NJ.)

2.4 Some Abbreviations

It will help to introduce some conventions to simplify the presentation of proofs. The following
rule, sometimes called weakening, allows us to introduce an additional premise on the left of a
sequent

∆ ⊢ B (W)
∆, A ⊢ B

In fact, anything we can prove with this rule we can prove without it. For example, consider the
proof

B,B → A ⊢ B B,B → A ⊢ B → A
(→E)

B,B → A ⊢ A
(W)

B,B → A,C ⊢ A

(31)

In the final step of this proof, we introduce C on the left by a weakening. However, we could in
fact have just included C in the left hand side of each sequent all along, thereby eliminating the
need for a weakening, as follows:

B,B → A,C ⊢ B B,B → A,C ⊢ B → A
(→E)

B,B → A,C ⊢ A
(32)

Although weakening adds an extra step to the proof, it allows us to introduce a formula on the
left hand side of a sequent only when it is needed, rather than being forced to carry it around from
the beginning of a proof. Weakening can thus make our proofs more compact, and so we allow
ourselves to use this rule. However, we do not regard weakening as one of the basic rules of NJ.
Instead, we think of (31) as an ‘abbreviation’ of (32). So (31) is not technically a proof of NJ, but
rather an abbreviation of proof (32), which is a proof of NJ.

It will be useful to introduce several other ‘abbreviations’ of this sort. Consider the rule (→ E)

∆ ⊢ A→ B ∆ ⊢ A (→ E)
∆ ⊢ B

In this rule the context ∆ on the left hand side of each sequent is required to be the same. An
alternative would be to not require this, but instead require that the context in the conclusion be
the concatenation of the contexts in the premises. We call this rule (→ E’)

∆ ⊢ A→ B ∆′ ⊢ A (→ E’)
∆,∆′ ⊢ B

where by ∆,∆′ we simply mean the unordered list consisting of ∆ conjoined with ∆′. If ∆ and ∆′

have an element X in common, then X may of course appear multiple times in ∆,∆′ . We allow
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the option of eliminating as many such ‘duplicate’ formulae as we want on the left hand side of
the sequent when applying this rule. So for example, each of the following are valid instances of
(→ E’)

A,A→ B,C1 ⊢ A→ B A,A→ B,C2 ⊢ A
(→ E’)

A,A,A→ B,A→ B,C1, C2 ⊢ B

A,A→ B,C1 ⊢ A→ B A,A→ B,C2 ⊢ A
(→ E’)

A,A→ B,A→ B,C1, C2 ⊢ B
(33)

A,A→ B,C1 ⊢ A→ B A,A→ B,C2 ⊢ A
(→ E’)

A,A→ B,C1, C2 ⊢ B

Like the rule of weakening, we do not need to think of (→ E’) as a new basic rule of NJ. In fact,
anything we can prove with (→ E’) can be proven just with (→ E) by adding needed formulae to
the left hand side of sequents above the (→ E), in much the same way that we did for weakening.
For example, the middle proof (33) can be regarded as an abbreviation for

A,A→ B,A→ B,C1, C2 ⊢ A→ B A,A→ B,A→ B,C1, C2 ⊢ A
(→ E)

A,A→ B,A→ B,C1, C2 ⊢ B
(34)

In this way, we regard proofs using (→ E’) as simply abbreviations of proofs using the conven-
tional (→ E) rule. Comparing (33) and (34) we see that the (→ E’) rule can simplify our proofs, and
for this reason we use it.

Using these new abbreviations, we can compress (31) even further as follows

B ⊢ B B → A ⊢ B → A (→E’)
B,B → A ⊢ A

(W)
B,B → A,C ⊢ A

(35)

We allow similar ‘abbreviations’ for all our rules which take more than one sequent as premise –
so not just (→E), but also (&I’) and (∨E’).

The material of this section is captured by the following theorem

Theorem 2.6: The Admissibility of (W), (→E’), (&I’) and (∨E’).

In each of the rules

∆ ⊢ B (W)
∆, A ⊢ B

∆ ⊢ A→ B ∆′ ⊢ A (→ E’)
∆,∆′ ⊢ B

∆ ⊢ A ∆′ ⊢ B (& I)
∆,∆′ ⊢ A&B

∆ ⊢ A ∨B ∆′, A ⊢ C ∆′′, B ⊢ C
(∨ E)

∆,∆′,∆′′ ⊢ C

if the premise(s) are provable in NJ, then so is the conclusion. In the conclusions of the rules
(→E’), (&I’) and (∨E’), we allow the optional elimination of ‘duplicate’ copies of formulae
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created when the contexts ∆, ∆′, ... partially overlap.

This theorem tells us that even though (W), (→E’), (&I’) and (∨E’) are not rules of NJ, we may
treat them as if they were. The proof is a straightforward induction on the construction of proofs,
and a representative case is left to the exercises.

Exercises for Section 2.4

1. To what proofs using only the rules of NJ do the following proofs correspond?

(i) C ⊢ C
B ⊢ B (W)

A,B ⊢ B
(&I’)

A,B,C ⊢ B&C

(ii)
A ∨B ⊢ A ∨B B ⊢ B

A ⊢ A ¬A ⊢ ¬A (→E’)
A,¬A ⊢ ⊥

(⊥E)
A,¬A ⊢ B

(∨E’)
A ∨B,¬A ⊢ B

2. By using the rules (W), (→E’), (&I’) and (∨E’) wherever possible, simplify the following
proofs

(i)

A,A→⊥ ⊢ A A,A→⊥ ⊢ A→⊥
(→ E)

A,A→⊥ ⊢ ⊥
(→ I)

A ⊢ (A→⊥) →⊥
(→ I)

⊢ A→ ((A→⊥) →⊥)

(ii) the proof of ((¬p) ∨ (¬q)) → ¬(p&q) given in section 2.3.

3. Prove that if ∆ ⊢ B is provable in NJ, then so is ∆, A ⊢ B. (Hint: use induction on the
construction of proofs.)
4. Prove that if ∆ ⊢ A and ∆′ ⊢ B are provable in NJ, then so is ∆,∆′ ⊢ A&B. (Hint: use the
result of the previous exercise.)

2.5 The Curry-Howard Correspondence: Version I

We now turn our attention back to typing derivations and the arguments of the formal system
TR0. This is a system in which it can be rigorously shown that a given untyped λ-term can be
assigned a given type. We have seen that it is a central tool in the Curry-style typed λ-calculus.

The arguments of TR0 are strikingly similar to ordinary proofs in logic. For example, take
the typing derivation in which it is shown that the term λx(λy(x(xy))) can be assigned the type
(A→ A) → (A→ A):
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x : A→ A, y : A ⊢ x : A→ A

x : A→ A, y : A ⊢ x : A→ A x : A→ A, y : A ⊢ y : A

x : A→ A, y : A ⊢ xy : A

x : A→ A, y : A ⊢ x(xy) : A

x : A→ A ⊢ λy(x(xy)) : A→ A

⊢ λx(λy(x(xy))) : (A→ A) → (A→ A)

If in each judgment of the form z : B we simply discard the left hand side z (the λ-term) and keep
the right hand side B (the type), the above proof becomes the following:

A→ A, A ⊢ A→ A

A→ A, A ⊢ A→ A A→ A, A ⊢ A

A→ A, A ⊢ A

A→ A, A ⊢ A

A→ A ⊢ A→ A
⊢ (A→ A) → (A→ A)

This is now an ordinary proof in propositional logic using only the rules (→ I) and (→ E), and is
thus a proof in NJ(→). This should not be surprising. Our typing derivations use only the rules:

Γ, x : A ⊢ x : A (Var)

Γ ⊢ x : A→ B Γ ⊢ y : A
(App)

Γ ⊢ xy : B

Γ, x : A ⊢ y : B
(Abs)

Γ ⊢ λxy : A→ B

The process of discarding the λ-terms and keeping the types in these rules yields:

Γ, A ⊢ A

Γ ⊢ A→ B Γ ⊢ A

Γ ⊢ B

Γ, A ⊢ B

Γ ⊢ A→ B

where Γ is the list of types in Γ. This of course is precisely the set of logical axioms and rules of
NJ(→).

A striking consequence of this is as follows. Suppose a term t of the untyped λ-calculus is
closed (i.e., has no free variables), and can be assigned the type τ . According to the Soundness
and Completeness Theorem of TR0 (Theorem 1.43), there is then a proof of ⊢ t : τ in TR0. By
deleting terms and keeping types in this proof, we can transform this typing derivation in TR0

into a proof of ⊢ τ in NJ(→). Thus, if a closed term of the untyped λ-calculus can be assigned the
type τ , then τ must be a theorem of NJ(→). So for example, it immediately follows that the type
¬¬A → A will not in general be the type of any closed λ-term, as ¬¬A → A is not a theorem of
NJ(→).
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This reveals a surprising connection between two things one might have thought of as quite
distinct – the typing of programs, and the proving of theorems. In this and in what follows we
will be examining this connection and its consequences more closely.

More generally, we have the following theorem

Theorem 2.7: The Curry-Howard Correspondence for TR0 and NJ(→), Part 1.

If TR0 proves
x1 : A1, ..., xn : An ⊢ s : B

then NJ(→) proves
A1, ..., An ⊢ B

Proof

In any proof in TR0, if one takes each assertion of the form z : B and discards the term z

leaving only the type B, the result is a proof of NJ(→).

It is easy to transform proofs in TR0 into proofs in NJ(→). But what about the other way
around? Can we transform proofs in NJ(→) into proofs in TR0?

This is indeed possible. Consider the NJ(→) proof given earlier:

A→ A, A ⊢ A→ A

A→ A, A ⊢ A→ A A→ A, A ⊢ A

A→ A, A ⊢ A

A→ A, A ⊢ A

A→ A ⊢ A→ A
⊢ (A→ A) → (A→ A)

This has 3 leaves; two of the form A → A,A ⊢ A → A, and one of the form A → A,A ⊢ A. Only
two types A and A → A appear in these leaves. Let us identify these types with two variables x
and y, by declaring x : A and y : A→ A. The leaf A→ A,A ⊢ A→ A then becomes:

y : A→ A, x : A ⊢ y : A→ A

and the leaf A→ A,A ⊢ A becomes:

y : A→ A, x : A ⊢ x : A

Moving from the leaves of the tree downwards and applying the rules of TR0, we may then attach
a λ-term built from x and y to each type in the tree. This gives the proof:

x : A→ A, y : A ⊢ x : A→ A

x : A→ A, y : A ⊢ x : A→ A x : A→ A, y : A ⊢ y : A

x : A→ A, y : A ⊢ xy : A

x : A→ A, y : A ⊢ x(xy) : A

x : A→ A ⊢ λy(x(xy)) : A→ A

⊢ λx(λy(x(xy))) : (A→ A) → (A→ A)
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This sort of strategy can be applied quite generally. We have

Theorem 2.8: The Curry-Howard Correspondence for TR0 and NJ(→), Part 2.

If NJ(→) proves
A1, ..., An ⊢ B

Then for any distinct variables x1, ..., xn, there is some λ-term s such that TR0 proves

x1 : A1, ..., xn : An ⊢ s : B

Proof

The proof is a straightforward induction on the construction of proofs in NJ(→). For the base
case, consider a leaf

A1, ... , An, B ⊢ B

then for any distinct variables x1, ... , xn, y we have that

x1 : A1, ... , xn : An, y : B ⊢ y : B

is a proof in TR0. This completes the base case.
Suppose next that a proof of A1, ... , An ⊢ B has as its final step an application of (→E):

...
A1, ... , An ⊢ C → B

...
A1, ... , An ⊢ C

(→ E)
A1, ... , An ⊢ B

and let x1, .., xn be distinct variables. By inductive hypothesis, for some λ-terms s1 and s2,
there are proofs of

x1 : A1, ... , xn : An ⊢ s1 : C → B and x1 : A1, ... , xn : An ⊢ s2 : C

in TR0. Combining these, we then have the following proof in TR0

...
x1 : A1, ... , xn : An ⊢ s1 : C → B

...
x1 : A1, ... , xn : An ⊢ s2 : C

x1 : A1, ... , xn : An ⊢ s1(s2) : B

as desired.
Finally, suppose that a proof of A1, ... , An ⊢ B has as its final step an application of (→E).

This means that B has the form C → D:
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...
A1, ... , An, C ⊢ D

(→ E)
A1, ... , An ⊢ C → D

Let x1, ... , xn, xn+1 be distinct variables. By inductive hypothesis, for some λ-term s there is
a proof of

x1 : A1, ... , xn : An, xn+1 : C ⊢ s : D

in TR0. We then have the following proof in TR0

...
x1 : A1, ... , xn : An, xn+1 : C ⊢ s : D

(→ E)
x1 : A1, ... , xn : An ⊢ λxn+1(s) : C → D

as desired.

The two parts of the Curry-Howard corrpesondence tell us that there is an intimate connection
between proofs in NJ(→) and proofs in TR0. Every proof in TR0 contains as its ‘skeleton’ a proof
in NJ(→), and every proof in NJ(→) is the ‘skeleton’ of some proof in TR0.

Let us return to questions about the typing of terms, and introduce some terminology. Given
a type A, one might wonder where there is some λ-term s for which s can be assigned type A.
This is equivalent to asking whether there is some s such that ⊢ s : A is provable in TR0. This is
sometimes called the type inhabitation problem for A. If ⊢ s : A, we say that the term s ‘inhabits’ the
type A, and that the type A is ‘inhabited’. One can then ask which types are inhabited. Theorems
2.7 and 2.8 tell us that a type A is inhabited iff A is a theorem of NJ(→). So a question about types
is perhaps surprisingly answered by invoking a concept from intuitionistic logic.

Not only can thinking about intuitionistic logic help us answer questions about the typing
of λ-terms, but thinking about the typing of λ-terms can also help us answer questions about
intuitionistic logic. For example, let us ask: is the sentence

(A→ B) → ((B → C) → (A→ C)) (36)

a theorem of NJ(→)? By the Curry-Howard correspondence, this sentence is a theorem of NJ(→)

iff there is a closed λ-term that can be given the type (36). Careful experimentation shows that
there is such a term, namely

λx(λy(λz(y(xz)))) (37)

which may be typed as follows:

λxA→B(λyB→C(λzA(y(xz)))).

That the λ-term (37) may indeed be given the type (36) is shown explicitly by the following typing
derivation
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x :A→B, y :B→C, z :A ⊢ y :B→C

x :A→B, y :B→C, z :A ⊢ x :A→B x :A→B, y :B→C, z :A ⊢ z :A

x :A→B, y :B→C, z :A ⊢ xz :B

x :A→B, y :B→C, z :A ⊢ y(xz) :C

x :A→B, y :B→C ⊢ λz(y(xz)) :A→C

x :A→B ⊢ λy(λz(y(xz))) : (B→C)→(A→C)

⊢ λx(λy(λz(y(xz)))) : (A→B)→((B→C)→(A→C))

Eliminating the terms and keeping the types in this typing derivation then yields a proof of (37)
in NJ(→):

A→ B,B → C,A ⊢ B → C

A→ B,B → C,A ⊢ A→ B A→ B,B → C,A ⊢ A

A→ B,B → C,A ⊢ B

A→ B,B → C,A ⊢ C

A→ B,B → C ⊢ A→ C

A→ B ⊢ (B → C) → (A→ C)

⊢ (A→ B) → ((B → C) → (A→ C))

In this way, the λ-term λx(λy(λz(y(xz)))) ‘encodes’ a proof of (A→ B) → ((B → C) → (A→ C))

in NJ(→). Thinking of λ-terms as programs, proofs are then encoded by programs. Searching for
a proof of a given sentence in NJ(→) is then equivalent to searching for a closed λ-term (i.e., a
program) with a given type.

Finally, it is worth pointing out that the Curry-Howard Correspondence also holds between
TRbt

0 and NJ(→). In particular, we have the following theorems

Theorem 2.9: The Curry-Howard Correspondence for TRbt
0 and NJ(→), Part 1.

If TRbt
0 proves

x1 : A1, ..., xn : An ⊢ s : B

then NJ(→) proves
A1, ..., An ⊢ B

Theorem 2.10: The Curry-Howard Correspondence for TRbt
0 and NJ(→), Part 2.

If NJ(→) proves
A1, ..., An ⊢ B

Then for any distinct variables x1, ..., xn, there is some bound-typed λ-term s such that TRbt
0

proves
x1 : A1, ..., xn : An ⊢ s : B

The proofs are trivial variants of Theorems 2.7 and 2.8, and are left to the reader.
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Given the simplicity of TR0 and NJ(→), the Curry-Howard Correspondence and its applica-
tions given so far might seem somewhat superficial. But we will see over the next several chap-
ters that the Curry-Howard Correspondence can be generalized and applied in further surprising
ways. We have started this chapter with the most transparent form of the Curry-Howard Corre-
spondence simply in order to have a firm and clear foundation on which to build more sophisti-
cated versions.

Exercises for Section 2.5

1. For each of the following sentences τ , (i) construct a proof in NJ(→) of τ , and (ii) using
this proof and the method described in this section, generate a closed λ-term s and a proof in
TR0 of ⊢ s : τ . (In this way, you are showing that the type τ is inhabited.)
(a) A→ (B → B)

(b) (A→ B) → ((B → C) → (A→ C))

(c) (A→ B) → ((C → A) → (C → B))

2. Show that the sentence X → (X → X) is provable in NJ(→), and that there exist terms s1
and s2 of the untyped λ-calculus such that both

⊢ s1 : X → (X → X) and ⊢ s2 : X → (X → X)

are provable in TR0, but that s1 and s2 are not βη-equivalent. Thus, there is no sense in which
the s postulated in Theorem 2.8 is unique.

2.6 Avoiding Misunderstandings: I

The Curry-Howard Correspondence tells us that a type A is inhabited (that is, there is a closed
λ-term M which may be assigned type A) iff A is a theorem of NJ(→).

One might first find this result a little puzzling. Fix any types A and B. For example, suppose
A is N and B is B. Surely I can come up with a computer program that, when given an input of
type A returns an object of type B. For example, surely I can write a computer program that when
given any natural number as input just returns the truth value ⊤. Is this not a computer program
of type A→ B, for the values of A and B in question? And will this not ultimately mean that any
type of the form A→ B is inhabited, regardless of whether A→ B is a theorem of NJ(→)?

We must be careful here. We can certainly write down λ-terms that take as input an object of
type A and that return an output of type B, for any A and B. The term λxA(yB) is such a term.
This term has type A→ B. This is true even if A→ B is not a theorem of NJ(→). But this is not a
counterexample to the Curry-Howard Correspondence, as the term λxA(yB) is not closed, and so

⊢ λx(y) : A→ B
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is not provable in TR0. By contrast, you should be able to verify that

y : B ⊢ λx(y) : A→ B

is provable in TR0. But this poses no threat to the Curry-Howard Correspondence, as deleting
λ-terms and keeping types gives us:

B ⊢ A→ B

which is provable in NJ(→) for any A and B.
Alternatively, starting with the λ-term λxA(yB), we can bind the free variable yB to obtain the

closed λ-term λyBλxA(yB). But now this is a computer program with type B → (A → B). This
term does correspond to a theorem of intuitionistic logic, as you should be able to verify.

The lesson here is that although for arbitrary types A and B we can construct computer pro-
grams that take as inputs objects of typeA and produce as output objects of typeB, if the program
involves free variables of any sort then it is not really a program of type A → B, and so cannot
count as refutation of the Curry-Howard Correspondence.

Still, one might have further worries. Let us go back to our computer program that takes any
natural number as input, and returns the Boolean truth value ⊤. Or more generally, for any types
A and B, fix some arbitrary object oB of type B, and consider the λ-term λxA(oB). On any input
of type A, this returns the fixed value oB . The λ-term λxA(oB) is closed. This closed λ-term looks
like a solution to the inhabitation problem for A → B. And so does this not mean after all that
every type of the form A→ B is inhabited, regardless of whether A→ B is provable in NJ(→)?

Again, once we think things through we see that there is no threat to the Curry-Howard Cor-
respondence. The problem is that in the typed λ-calculus, we do not have constants oB (or even
⊤B) at our disposal. The term λxA(oB) is not a term of the typed λ-calculus as we have defined
it. Any constants we want to introduce must be explicitly defined. For some types, it is easy to
define a constant of that type. But for other types we simply cannot.

For example, for any type of the form B → B we can easily define an object o of type B → B,
just by regarding oB→B as an abbreviation for the closed λ-term λxB(xB). Understanding oB

as an abbreviation in this way, the term λxA(oB) is perfectly acceptable. But this term has type
A→ (B → B), which does indeed correspond to a theorem of NJ(→).

By contrast, consider some simple type B such as N or B. Given only the machinery in the
typed λ-calculus as we have defined it, we cannot define a closed term with typeB. Any definition
of any object in the typed λ-calculus by a closed term must have the form λxρ(U) for for some U ,
and will thus have a type of the form ρ→ ρ′ for some ρ and ρ′. We thus cannot define any specific
object of any fundamental type with a closed term. So although we can use variables such as xB

in our programming language, we do not have prior access to any constants of this type, nor can
we define them. Of course, as we saw earlier we can define objects that behave like Boolean truth
values or natural numbers, but these are actually objects of more complex types that merely mimic
the Booleans or natural numbers. They do not provide us with constants of the form oB for any
simple type B. Thus, we cannot view λxA(oB) as a λ-term that solves the inhabitation problem
for A→ B for any simple type B.
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In fact, it is a consequence of the Curry-Howard Correspondence that we can define a closed
term of type B iff B is a theorem of NJ(→). (This further shows how restricted a programming
language the typed λ-calculus is.) Thus, we can use terms of the form λxAoB to solve the inhab-
itation problem for A → B iff B is already a theorem of NJ(→). But if B is already a theorem of
NJ(→), then so is A→ B. So again, there is no threat to the Curry-Howard Correspondence here.

2.7 More Consequences: Proof Normalization.

One important area in which the Curry-Howard correspondence can be put to very good use is
proof theory. This is a rich and complex area of mathematics on its own, and we merely introduce
the reader to a few important results without any claim to exhaustiveness. Some of the ideas
introduced in this section will also be central in our later vindication of the BHK conditions.

Consider the following proof of Y → (X → Y ) in NJ(→)

X, X, Y ⊢ Y
(→ I)

X, Y ⊢ X → Y X, Y ⊢ X
(→ E)

X, Y ⊢ Y
(→ I)

Y ⊢ X → Y (→ I)
⊢ Y → (X → Y )

(38)

This proof is completely correct. However, it is perverse and inefficient. For example, the
conclusion of the (→ E) inference is the sequent X,Y ⊢ Y , which is a logical axiom with which we
could have just begun the proof. There are other curious features of this proof that we will also
turn to shortly.

Our goal is to discuss methods of proof simplification that could be used to at least somewhat
simplify proofs like (38). There are presumably many different approaches that could be taken
here, but as our goal is to develop very general methods of proof simplification, we want to focus
on general principles rather than ad-hoc methods that only apply in very specific cases. We will
see that there are in fact very general methods of proof simplification that can be applied not just
to (38), but to any proof.

Let us then focus on a more subtle oddity of (38). Note that the proof begins with an application
of the (→I) rule introducing a conditional X → Y , which is then immediately followed by an
application of the (→E) rule eliminating this very conditional. The result is the logical axiom
X,Y ⊢ Y with which we began the proof. There is something odd about introducing a conditional
and then immediately eliminating it, and one might wonder whether this is the main cause of the
inefficiency of (38).

Even more specifically, the proof (38) involves an application of the (→E) rule whose major
premise involves a conditional X → Y that has just been introduced with the use of the (→I) rule.
Let us consider this pattern of reasoning more generally. We begin with the definition
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Definition 2.11: Normal Proof of NJ(→).

A proof in NJ(→) is normal just in case it contains no occurrence of a (→I) rule introducing a
conditional X → Y which is immediately followed by an application of the (→E) rule with
this conditional X → Y as its major premise.

The proof (38) is not normal. We would like to consider systematic ways of transforming it into a
normal proof.

To this end, consider the following typing derivation that corresponds to (38) using the Curry-
Howard correspondence

u : X, v : X, w : Y ⊢ w : Y

u : X, w : Y ⊢ λv(w) : X → Y u : X, w : Y ⊢ u : X

u : X, w : Y ⊢ λv(w)(u) : Y

w : Y ⊢ λu(λv(w)(u)) : X → Y

⊢ λwλu(λv(w)(u)) : Y → (X → Y )

(39)

Just as there is something inefficient and unsatisfactory about (38), one would expect there to
be something inefficient and unsatisfactory about (39). And indeed, there is something unsatis-
factory about (39) that is very easy to identify. The typing derivation (39) shows that the type
Y → (X → Y ) is inhabited. The example it provides of a term that can be given this type is
λwλu(λv(w)(u)). But this term is not in β-normal form and can be simplified. When it is β-
reduced, we get the β-normal form term λwλu(w). Theorem 1.44 tells us that whenever an un-
typed λ-termM can be assigned a type and M ↠β N , thenN can also be assigned that same type.
Thus, we could have much more easily have shown that the type Y → (X → Y ) was inhabited by
showing that the term λwλu(w) can be given this type. in fact, such a typing derivation can easily
be constructed

w : Y, u : X ⊢ w : Y

w : Y ⊢ λu(w) : X → Y

⊢ λwλu(w) : Y → (X → Y )

(40)

Removing the terms from this typing derivation and keeping the types then gives the following
NJ(→) proof of Y → (X → Y )

Y,X ⊢ Y
(→ I)

Y ⊢ X → Y (→ I)
⊢ Y → (X → Y )

(41)

This is a very much simpler proof of Y → (X → Y ). Note moreover that (41) is a normal proof.
In fact, there is a very general method of transforming non-normal proofs to normal proofs

lurking here. Before stating the main theorem that shows the general phenomenon, we need a
lemma
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Lemma 2.12: The Subterm Lemma for TR0

In any typing derivation of TR0 with conclusion of the form Γ ⊢ s : A, if s′ is a subterm of s
then the typing derivation contains a sequent of the form Γ′ ⊢ s′ : B, where Γ′ ⊆ Γ.

The proof of this lemma is a straightforward induction on the construction of typing derivations
Γ ⊢ s : A and is left to the exercises.

Armed with this lemma, the following theorem can be easily proven

Theorem 2.13

Given a typing derivation T in TR0 whose conclusion is a sequent of the form ∆ ⊢ g : C, let
P be the NJ(→) proof obtained from T by deleting all terms and keeping types. Then P is a
normal proof iff g is in β-normal form.

This theorem shows that there is an intimate connection between non-normal proofs and typing
derivations of terms not in β-normal form. The proof is straightforward

Proof

First we show that if g is not in β-normal form, then P is not normal. Suppose then that T is
a typing derivation with conclusion ∆ ⊢ g : C, where g is not in β-normal form. It follows
from Lemma 2.12 that T contains a sequent of the form

Γ ⊢ λu(e)(f) : D.

The step prior to this sequent must be the (App) rule

...
Γ ⊢λu(e) : E → D

...
Γ ⊢f : E

(App)
Γ ⊢ λu(e)(f) : D

and the step prior to the leftmost premise of this inference must be the (Abs) rule

...
Γ, u : E ⊢e : D

(Abs)
Γ ⊢λu(e) : E → D

...
Γ ⊢f : E

(App)
Γ ⊢ λu(e)(f) : D

Deleting all terms and keeping types then gives the NJ(→) proof P
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...

Γ, E ⊢D
(→I)

Γ ⊢E → D

...

Γ ⊢E (→E)
Γ ⊢ D

for some list Γ of formulae. This proof P is not normal.
Next we show that if P is not normal, then g is not in β-normal form. Suppose then that

P has the form

...
Γ, A ⊢B

(→I)
Γ ⊢A→ B

...
Γ ⊢A (→E)

Γ ⊢B
...

∆ ⊢C
Any typing derivation T from which this is derived must have the form

...

Γ, u : A ⊢e : B
Γ ⊢λu(e) : A→ B

...

Γ ⊢f : A

Γ ⊢λu(e)(f) : B
...

∆ ⊢g : C

where u is a variable, e, f and g are λ-terms, and Γ and ∆ are contexts.
Because in any typing derivation, every λ-term that appears in the proof is α-equivalent to

a subexpression of any λ-term lower in the proof, it follows that g has λu(e)(f) (or something
α-equivalent to it) as a subexpression. Thus g is not in β-normal form.

Theorem 2.13 gives us a method for transforming any non-normal proof into a normal proof,
by a combination of the Curry-Howard Correspondence and β-reduction. For given any non-
normal proof P , we may transform it into a typing derivation T that contains P as its ‘skeleton’.
By Theorem 2.13, this will be a typing derivation for a term e that is not in β-normal form, and
it will assign e some type τ . If e β-reduces to e′ where e′ is in β-normal form, then e′ can also be
assigned the type τ . We can thus produce a typing derivation that shows that e′ can be assigned
the type τ . By Theorem 2.13, the skeleton of this typing derivation will be a normal proof P ′ (with
the same conclusion as P ). We have thus transformed the non-normal proof P into a normal proof
P ′. The procedure is competely mechanical and requires no ingenuity. This procedure is often
called ‘proof normalization’. Precisely this procedure transforms the proof (38) into the simpler
proof (39). In the exercises, you will apply it to some other non-normal proofs.
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Note then that we have the following result:

Theorem 2.14: Proof Normalization Theorem for NJ(→)

If A1, ..., An ⊢ B has a proof in NJ(→), then it has a normal proof in NJ(→).

Proof

Suppose P1 is a non-normal proof of A1, ..., An ⊢ B. By the Curry-Howard Correspondence
(in particular, Theorem 2.8), this may be transformed into a typing derivation with conclusion

x1 : A1, ..., xn : An ⊢ s : B

for some λ-term s. By Theorem 2.13, s is not in β-normal form. Let s′ be the β-normal form
of s. By Theorem 1.44 (the Subject Reduction Theorem) there is a typing derivation of

x1 : A1, ..., xn : An ⊢ s′ : B

in TR0. Because s′ is in β-normal form, it follows from Theorem 2.13 that the NJ(→) proof
obtained by taking this typing derivation and removing all terms and keeping types is a
normal proof of A1, ..., An ⊢ B.

Normal proofs have a simple structure that makes them very useful in proving facts about
NJ(→) or TR0. To see how, we first need another definition. Proofs in NJ(→) are trees. Such trees
consists of branches, where a branch is a linear sequence of sequents that extends from some leaf
of the tree (i.e., a logical axiom), and is such that if it includes some sequent then it includes the
sequent immediately below it. In this way, a branch extends from a leaf of the tree all the way to
the very bottom of the tree (i.e., the conclusion of the proof.) Consider for example the proof:

A,A→ B ⊢ A A,A→ B ⊢ A→ B
(→ E)

A,A→ B ⊢ B
(→ I)

A ⊢ (A→ B) → B

(42)

This has exactly two branches:

Branch 1: A,A→ B ⊢ A A,A→ B ⊢ B A ⊢ (A→ B) → B

Branch 2: A,A→ B ⊢ A→ B A,A→ B ⊢ B A ⊢ (A→ B) → B

The following definition is useful
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Definition 2.15: Major Branch

A major branch of a proof is a branch of the proof with the property that if the conclusion of an
inference lies on the branch and that inference has a major premise, then that major premise
also lies on in the branch.

You should be able to verify that in the proof just given, Branch 1 is not a major branch, and
Branch 2 is a major branch.

Each proof contains at least one major branch: simply start at the bottom of the tree and move
upwards from the conclusion of rule to its premises, picking the major premise whenever one
reaches a (→E) rule and one has two premises to pick from. Proceeding upwards in this way, one
will eventually reach a leaf of the tree. In this way, one traces out a major branch. In the case
of NJ(→) proofs, the major branch is unique, though this will not hold true in more complicated
systems we consider later.

Note that in a normal proof, on a major branch the (→I) rule cannot be immediately followed
by the (→E) rule, as this would introduce the pattern:

major branch
...

Γ, A ⊢B
(→ I)

Γ ⊢A→ B

...
Γ ⊢A (→ E)

Γ ⊢B
...

which would mean that the original proof was non-normal. Thus, on a major branch the (→I)
rule can only be followed by the (→I) rule. This means that a major branch can only consist of a
sequence of (→E) rules followed by a sequence of (→I) rules. For example, in the normal proof
(42), Branch 2 consists of a single (→E) rule followed by a single (→I) rule.

We have thus proven

Lemma 2.16: The Major Branch Lemma.

In any normal proof in NJ(→), a major brach will consist of a (possibly empty) sequence of
(→E) rules followed by a (possibly empty) sequence of (→I) rules.

This modest looking lemma turns out to be very useful. For example, with it one is easily able
to prove the following
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Theorem 2.17: Consistency of NJ(→).

No atomic sentence X is provable in NJ(→).

The only atomic sentences in the language used in NJ(→) are the propositional variables
X,Y, Z, ... and the sentence ⊥. This theorem tells us that these sentences are not theorems of
NJ(→). This theorem may thus be viewed as a type of consistency proof for NJ(→).

Proof

Suppose NJ(→) proves S where S is either a propositional variable or the symbol ⊥. We then
know from Theorem 2.14 that there is a normal proof P whose conclusion is ⊢ S. The last
step of P cannot be the (→I) rule, because S does not have the form of a conditional. So using
Lemma 2.16, we have that any major branch of P must consist solely of a sequence of (→E)
rules. But the (→E) rule leaves the left hand side of a sequent unchanged. Because the left
hand side of every leaf is non-empty, it follows that if a major branch of P consists only of
(→E) rules, then the left hand side of its bottommost sequent must also be non-empty. But
the left hand side of ⊢ S is empty, which is a contradiction.

Some further intriguing applications of the Major Branch Lemma will be given in the exercises.
The simplicity of NJ(→) might lead one to think that all this effort and terminology to prove

these theorems is perhaps overkill. But will see that the basic ideas here can be generalized quite
straightforwardly to help us analyze much stronger proof systems in a very similar way. As with
the Curry-Howard Correspondence, we start with the simplest version of these ideas in order to
have a firm and clear foundation on which to generalize them later.

Exercises for Section 2.7

1. Each of the following proofs in NJ(→) is not normal. Use the techniques of this section to
transform them into normal proofs. In particular, begin by decorating the proofs in such a
way to produce proofs in TR0 of ⊢ M : τ , where τ is the conclusion of the original NJ(→)
proof. You should notice that M is not in β-normal form. Reduce M to a β-normal form M ′,
and produce a derivation of ⊢ M ′ : τ in TR0. This later typing derivation should encode a
normal proof of τ , and you should verify that this is the case.

(a)

A,A ⊢ A
(→ I)

A ⊢ A→ A A ⊢ A (→ E)
A ⊢ A (→ I)⊢ A→ A
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(b)

A,A,B ⊢ B
(→ I)

A,B ⊢ A→ B A,B ⊢ A
(→ E)

A,B ⊢ B
(→ I)

B ⊢ A→ B (→ I)
⊢ B → (A→ B)

2. Show that the following are not derivable in NJ(→), where X and Y are distinct atomic
sentences. (Hint: use the Major Branch Lemma.) In each case, you make invoke the result
from earlier cases.

(i) X, (X → Y ) → X ⊢ Y
(ii) (X → Y ) → X ⊢ X → Y

(iii) ⊢ ((X → Y ) → X) → X (Pierce’s Rule).

(side note: Pierce’s Rule is provable in classical logic.)

3. Using the Major Branch Lemma, show that every closed λ-term in β-normal form has the
form

λx1λx2...λxn(y(E1)(E2)...(Em))

where n ≥ 1, y is a variable, m ≥ 0, and each E1, ..., Em is in β-normal form.

4. We have seen that a proof of ∆ ⊢ E : X in TR0 in which the λ-term E is in β-normal form
corresponds to a proof in NJ(→) in which a certain pattern of reasoning does not appear.
What additional pattern of reasoning does not appear if the λ-term E is assumed to be in
βη-normal form?

5. Prove Lemma 2.12. (Hint: proceed by induction on the construction of typing derivations
Γ ⊢ s : A.)

6. Is there a normal proof of NJ(→) that includes a sequent Γ, X ⊢ X not as a leaf of the
proof?

7. Is there a normal proof of NJ(→) in which an occurrence of the (→I) rule is immediately
followed by an occurrence of the (→E) rule, where it is not necessarily required that the con-
clusion of the (→I) rule be the major premise of the (→E) rule?

2.8 Adding Types: Ordered Pairs

The Curry-Howard correspondence shows that there is a perhaps surprising connection between
certain natural concepts in the λ-calculus and the proof theory of NJ(→). The deeper significance
of the Curry-Howard correspondence however comes from the fact that these ideas can be gen-
eralized so that they hold in logical systems far stronger than NJ(→). We begin this process of
generalization now.

We have already argued that the typed λ-calculus can be viewed as a kind of (typed) program-
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ming language. It is natural to want to expand the typed λ-calculus λtype
0 and its corresponding

system TR0 of typing rules to include more complex types that repeatedly arise in computer pro-
gramming.

In a computer program, it is common to want to store two distinct items into a single data
structure – an ordered pair – for subsequent manipulation. To capture this practice, given two
untyped λ-terms x and y (i.e., two ‘computer programs’), we allow the formation of a new λ-term
(i.e., a new computer program) ⟨x, y⟩, understood as the ordered pair with x as its first element
and y as its second element. In order to extract information from ordered pairs, it is natural to also
introduce into our programming language the functions π1 and π2 that take an ordered pair to its
first and second elements respectively. Thus, in addition to our old formation rules, we allow the
following new formation rules for λ-terms:

1. If x and y are λ-terms, then so is ⟨x, y⟩.
2. If x is a λ-term, then so are π1(x) and π2(x).

So for example, in this expanded version of the λ-calculus we have terms like the following:

⟨z, x⟩
π1(⟨y, z⟩)
⟨z, x⟩(π1(⟨y, z⟩))
λx (⟨z, x⟩(π1(⟨y, z⟩)))
π2(λx (⟨z, x⟩ (π1(⟨y, z⟩))))

As before, we will omit parentheses where this causes no confusion, subject to our usual conven-
tions. For example, the last term on our list can perhaps be written more simply as

π2(λx (⟨z, x⟩ π1⟨y, z⟩)). (43)

The free variables of ⟨x, y⟩ are just all the free variables of x and all the free variables of y,
and the free variables of π1(x) and π2(x) are just the free variables of x. So for example, in the
λ-term (43) the free variables are z and y. If a variable occurs both free and bound, as in the term
⟨x, λx(x)⟩, renaming of bound variables can be useful in determining which occurrences of which
variables are free or bound. So we can rewrite this term in an α-equivalent form as ⟨x, λy(y)⟩,
making it easier to see that the variable x is free and the variable y bound.

We expand the notion of β-reduction in this new programming language to allow the following
reductions:

1. π1(⟨M,N)⟩ →β M

2. π2(⟨M,N)⟩ →β N

So for example, consider the term
π1(λx(x)(⟨y, z⟩)).

This β-reduces to π1(⟨y, z⟩), which then β-reduces to y. On the other hand, the term

λx(x)(π2(⟨y, z⟩))
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can be β-reduced in several ways. We have the following two β-reduction sequences:

λx(x)(π2(⟨y, z⟩)) →β λx(x)(z) →β z

λx(x)(π2(⟨y, z⟩)) →β π2(⟨y, z⟩) →β z

Note that both β-reduction sequences give the same β-normal form term z. We will see later that
the Church-Rosser Theorem holds for this new system, and so this convergence of results is not
surprising.

Thus far, we have simply added some machinery to the untyped λ-calculus. The main task
of the typed λ-calculus is the typing of untyped terms, and so in order to update the typed λ-
calculus to accommodate our new constructions, we must think about how we should assign a
type to ⟨x, y⟩. Here, there is a very natural idea: assuming that the type A can be assigned to x,
and the type B can be assigned to y, we create a brand new type - the product type A × B - and
assert that it can be assigned to ⟨x, y⟩. Given two types A and B, the product type A×B is simply
the type of ordered pairs consisting of an element of A followed by an element of type B. This
provides us with a brand new class of data structure. Up to now, the only way to form complex
types from simple types was to build function types A → B. Product types now give us a new
way of forming more complex types.

The product type is governed by the following typing rules, which must be added to the rules
of TR0:

Γ ⊢ x : A Γ ⊢ y : B

Γ ⊢ ⟨x, y⟩ : A×B

Γ ⊢ x : A×B
Γ ⊢ π1(x) : A

Γ ⊢ x : A×B
Γ ⊢ π2(x) : B

These rules tell us that if x has typeA and y has typeB, then the ordered pair ⟨x, y⟩ has typeA×B.
Conversely, if x has type A × B, then π1(x) has type A and π2(x) has type B. Nothing should be
surprising about these rules.

We have expanded the set of λ-terms, as well as the set of possible types a λ-term can be
assigned. As a result, old terms can be assigned new types. For example, the λ-term λx(x) can
now be assigned the type (A × B) → (A × B) for any types A and B, as the following typing
derivation shows

x : A×B ⊢ x : A×B
⊢ λx(x) : (A×B) → (A×B)

New terms can also be assigned new types. For exampe, the closed λ-term

⟨λx(x), λy(y)⟩

can be given the type (A → A) × (B → B) for any A and B, as the following typing derivation
shows:
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x : A ⊢ x : A
⊢ λx(x) : A→ A

y : B ⊢ y : B

⊢ λy(y) : B → B

⊢ ⟨λx(x), λy(y)⟩ : (A→ A)× (B → B)

For a slightly more complex example, consider the closed λ-term

λx(π1⟨λy(x), x⟩).

This term can be given type A → (B → A) for any A and B, as the following typing derivation
shows:

x : A, y : B ⊢ x : A

x : A ⊢ λy(x) : B → A x : A ⊢ x : A

x : A ⊢ ⟨λy(x), x⟩ : (B → A)×A

x : A ⊢ π1⟨λy(x), x⟩ : B → A

⊢ λx(π1⟨λy(x), x⟩) : A→ (B → A)

As before, λ-terms with free variables (i.e., open λ-terms) can still be typed, but the relevant
typing derivation will have a non-empty context in its conclusion, indicating the types of the free
variables. So for example, we might expect that π1⟨λx(x), z⟩ can be assigned the type A → A for
any A. The following typing derivation confirms this:

z : B, x : A ⊢ x : A

z : B ⊢ λx(x) : A→ A z : B ⊢ z : B

z : B ⊢ ⟨λx(x), z⟩ : (A→ A)×B

z : B ⊢ π1⟨λx(x), z⟩ : A→ A

Note that the conclusion of this typing derivation contains the non-empty context z : B declaring
the type of the free variable z.

Exercises for Section 2.8

1. Write each of the following λ-terms in β-normal form.
(a) π1(π2(⟨x, y)⟩)
(b) λx(π1(π1(⟨x, y⟩)))(π2(z))
(c) λx(π2(π1(⟨x, y⟩)))(⟨y, z⟩)
2. Each of the following untyped λ-terms can be assigned types. Find types for them, and
confirm your result by producing an appropriate typing derivation.
(a) λx(π1(⟨x, x⟩))
(b) λx(π1(⟨y, x⟩)) (note: this is an open λ-term)
(c) λy(⟨λx(π1(⟨x, y⟩)), y⟩)
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2.9 Do We Need Product Types?

As an aside that may be skipped if the reader wishes, one might wonder whether we really need
to add new machinery to the λ-calculus in order to encode ordered pairs. For example, given the
untyped λ-terms E and F , consider the untyped λ-term

λx(x(E)(F )).

Call this term PAIR(E,F ). We will see that this λ-term ‘stores’ E and F . In particular, letting
FIRST be the λ-term λy(y(λuλv(u))) and letting SECOND be the λ-term λy(y(λuλv(v))), and
assuming x, v are not free in E or F , we have

FIRST(PAIR(E,F )) = λy(y(λu(λv(u))))(λx(x(E)(F )))

→β λx(x(E)(F ))(λu(λv(u)))

→β λu(λv(u))(E)(F )

→β λv(E)(F )

→β E

and

SECOND(PAIR(E,F )) = λy(y(λuλv(v)))(λx(x(E)(F )))

→β λx(x(E)(F ))(λu(λv(v)))

→β λu(λv(v))(E)(F )

→β λv(v)(F )

→β F

Thus, FIRST and SECOND ‘extract’E and F respectively from PAIR(E,F ). So PAIR(E,F ) looks
like it can play the role of an ordered pair, and FIRST and SECOND can play the role of π1 and
π2.

This is fine as far as the untyped λ-calculus goes – if the untyped λ-calculus were all we cared
about, we could indeed dispense with product types in precisely this way. But unfortunately, this
approach fails for the typed λ-calculus, as FIRST, SECOND and PAIR(E,F ) cannot be typed in
a consistent manner.

To see why, suppose E has type A and F has type B. What type will PAIR(E,F ) - i.e.,
λx(x(E)(F )) receive? For the subexpression x(E)(F ) to be grammatical, x must have type A →
(B → C) for some type C. Then x(E)(F ) will have type C, and λx(x(E)(F )) will have type
(A→ (B → C)) → C. So PAIR(E,F ) will have type (A→ (B → C)) → C for some C.

Because FIRST(PAIR(E,F )) simplifies to E which is of type A, and PAIR(E,F ) has type
(A→ (B → C)) → C, it follows that FIRST must have type

((A→ (B → C)) → C) → A.
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Writing out FIRST as the λ-term λy(y(λuλv(u))), it follows that this term must be typed in the
following way:

λy(A→(B→C))→C(y(A→(B→C))→C(λuλv(u)))A (44)

(Here we use the fact that if λs(t) has type E → F , then s must have type E and t must have type
F .) How can we assign types to u and v for the expression (44) to make sense? In order for the
subexpression

y(A→(B→C))→C(λuλv(u)) (45)

to be grammatical, λuλv(u) must have type A → (B → C), and so then expression (45) gets type
C. But looking at (44), the subexpression (45) was supposed to get type A. This means that C,
which up to now was unspecified, must be A, and so PAIR(E,F ) has type (A→ (B → A)) → A.

Because SECOND(PAIR(E,F )) simplifies to F which is of typeB, and PAIR(E,F ) has type
(A→ (B → A)) → A, it follows that SECOND must have type

((A→ (B → A)) → A) → B.

Writing out SECOND as the λ-term λy(y(λuλv(v))), it follows that this term must be typed
in the following way:

λy(A→(B→A))→A(y(A→(B→A))→A(λuλv(v)))B (46)

This means that the subexpression λuλv(v) of (46) must get the type A→ (B → A). This can only
happen as follows:

λuAλvB(vA)

but then v is assigned both A and B as types, which need not be equal.
So we cannot type the terms FIRST, SECOND and PAIR in a consistent way. This problem

plagues all attempts to try to simulate ordered pairs and projection functions within the λ-calculus
λ0. (You will see the deeper reason for this in the exercises.) It is for this reason that we need to
introduce pairing and projections into the λ-calculus directly if we hope to incorporate this sort of
machinery into a version of the typed λ-calculus.

Exercises for Section 2.9

1. Show that there do not exist typable λ0-terms FIRST, SECOND and PAIR(x, y) such that
the following conditions all hold:

(i) FIRST and SECOND are closed λ0-terms
(ii) PAIR(x, y) is an open λ0-term with free variables x and y,
(iii) FIRST(PAIR(x, y)) ↠β x

(iv) SECOND(PAIR(x, y)) ↠β y

(Hint: suppose to the contrary that such typable λ0-terms exist. Then assuming that the
variables x and y have types A and B respectively, we will be able to assign PAIR(x, y) some
type P (which may depend on A and B.) Because we can input PAIR(x, y) to FIRST and
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the result is of type A, it follows that FIRST must in fact have the type P → A. Likewise,
SECOND must in fact have the type P → B. Thus, the following three sequents must be
derivable in TR0:

x : A, y : B ⊢ PAIR(x, y) : P ⊢ FIRST : P → A ⊢ SECOND : P → B

By the Curry-Howard Correspondence, the following three sequents must then also be deriv-
able in NJ(→):

A,B ⊢ P ⊢ P → A ⊢ P → B

Assuming without loss of generality that A, B are distinct propositional variables, show that
no sentence P exists with this property. This in effect amounts to showing that conjunction is
not definable from implication in NJ(→). The Major Branch Lemma appled to ⊢ P → A and
⊢ P → B will help here. In particular, using the Major Branch Lemma you should be able to
show that P has both the forms

Cn → ...→ (C2 → (C1 → B))

and
Dm → ...→ (D2 → (D1 → A)),

which is a contradiction.)

2.10 Adding Types: Sums

From the point of view of a computer programmer, there are other types it is natural to want to
manipulate beyond function types and product types. For example, given two types A and B, it is
natural to want to consider something like their union. We will denote this A+B. It is convenient
to think of this as not just a union, but as something a little more complex. In particular, unlike
a plain union, it is convenient to think of each element of A + B as an object from A or B which
also has attached to it a label indicating whether it was drawn from A or B. Just by looking at this
label we can tell whether the object is from A or B, without looking at the object itself. In such a
case, we call A+B a sum type.

One way (amongst many) to think of the elements of A+B is as something like ordered pairs
⟨a, b⟩ in which a = 1 and b is an element ofA, or a = 2 and b is an element ofB. As a result, merely
by looking at the label a we can know whether b came from A or B. On this way of doing things,
given an object x in A, x itself is not an element of A + B, but ⟨1, x⟩ is. Likewise, given an object
x in B, x itself is not an element of A + B, but ⟨2, x⟩ is. This is one way of implementing the idea
of ‘labels’ being attached to terms in A + B. So for example, on this way of doing things the sum
type A+A consists of the objects of the form ⟨i, x⟩ where i is 1 or 2, and x an object of type A.

We will not proceed in this way, but will instead think of these ‘labels’ in slightly more abstract
terms. We do this by assuming that in our programming language we have a type of if-then-else
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command that, when input with an element x of type A+B, does one thing if x is something with
the label 1 attached to it, and something else if it sees that x is something with the label 2 attached
to it. More specifically, we assume we have access to commands in our computer language that
say something like:

If x is an object z with the label 1 attached, then run the program P [z/v]; i.e., run
the program P with the free variable v replaced with z, and if x is an object z with
the label 2 attached, run the program Q[z/w]; i.e., run the program Q with the free
variable w replaced with z.

(47)

For the sake of completeness, we can also specify some sort of behavior when x has neither the
forms in question (e.g., we could have the program halt and return an error message, or just output
some fixed value and continue), though in what follows the details of what happens in this case
will not matter.

We denote the command described in (47) by

case(x, [v]P, [w]Q).

Of course, the programs P and Q will here be λ-terms, and by ‘running’ a program, we just
mean making the appropriate substitutions and then β-reducing (or βη-reducing) the resulting
expression.

The notation [v]P is perhaps unfamiliar. This is really just the program (or λ-term) P , but
with a particular variable v singled out as special. This special variable v is the one whose free
occurrences we will replace with x should the operation described in (47) require us to. Likewise
for [w]Q.

So for example, consider the command:

case(x, [z]λu(uz)[z], [v]v)

If x is the term ⟨1, x⟩, then this produces the result λu(ux). If x is the term ⟨2, x⟩, this produces the
result x.

In the case in which u does not occur free in P (for example, P is a closed term) and v does not
occur free in Q, then the command

case(x, [u]P, [v]Q)

just tells us to produce the output P if the label attached to x is 1, and the output Q if the label
attached to x is 2. So for example, the command

case(x, [v]λu(u), [v]λw(ww))

outputs λu(u) if the label attached to x is 1, and λw(ww) if the label attached to x is 2. This sort of
command mimics the if-then-else command structures found in many programming languages.

Note that once we have access to these sorts of case commands, we have no reason to care
about the precise mechanics by which the ‘label’ 1 or 2 is attached to an element of a sum type
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A + B. As long as we have the ability to execute one of a given pair of commands in the case
that the label is 1 and the other in case the label is 2, we can tell what label occurs in x simply by
looking at the outcome of case(x, [u]P, [v]Q) for appropriately chosen P and Q. There is no need
to talk about the mechanics of label attachment beyond that.

To see how this works in full detail, it will also be convenient to introduce an operator in1 that
takes a λ-term x to x with the label 1 attached, as well as an operator in2 that takes the λ-term x to
x with the label 2 attached. Again, the precise mechanism by which labels are being attached will
not matter. Although we can think of in1(x) as ⟨1, x⟩ and in2(x) as ⟨2, x⟩, it is more clean to simply
regard in1(x) and in2(x) as basic expressions that attach labels to x, without the need to specify
the precise mechanics by which they do so.

In addition to 1. and 2. above, we then have the following new formation rules for untyped
λ-terms:

3. If x is a λ-term, then in1(x) and in2(x) are λ-terms.
4. If x, P and Q are λ-terms and u, v variables, then case(x, [u]P, [v]Q) is a λ-term.

So for example, in this expanded version of the λ-calculus we have terms like the following:

in1(z)

⟨in1(z), x⟩
⟨in1(z), x⟩ π1(y)
λx(⟨in1z, x⟩ π1(y))
case(λx(⟨in1z, x⟩ π1(y)), [u]π2(u), [w]⟨w, v⟩)

As always, we omit parentheses where no confusion results.
The free variables of in1(x) and in2(x) are just the free variables of x. The free variables of

case(x, [u]P, [v]Q) are all the free variables of x, all the free variables of P except for u, and all the
free variables of Q except for v. So in the expression

case(λx(⟨in1z, x⟩ π1(y)), [u]π2(u), [w]⟨w, v⟩)

you should be able to verify that the free variables are z, y and v.
Note in particular that any free occurrences of v in P become bound in the expression [v]P . In

this way, [v] is a ‘binding operator’ that, much like λ-abstraction, takes a free variable and renders
it bound.

The obvious β-reduction rules to add at this point are

3. case(in1(R), [u]P, [v]Q) →β P [R/u]

4. case(in2(R), [u]P, [v]Q) →β Q[R/v]

So for example, the terms
case(λx(in1(x))(y), [z]z, [y]λz(y))

and
λx(case(x, [u]π2(u), [v]π1(v))) in2(⟨y, z⟩)
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may be β-reduced as follows:

case(λx(in1(x))(y), [z]z, [y]λz(y)) →β case(in1(y), [z]z, [y]λz(y))

→β z[in1(y)/z]

= in1(y)

λx(case(x, [u]π2(u), [v]π1(v))) in2(⟨y, z⟩) →β case(in2(⟨y, z⟩), [u]π2(u), [v]π1(v))
→β π1(v)[⟨y, z⟩/v]
= π1(⟨y, z⟩)
→β y

Next, let us think about what sorts of types we should assign λ-terms of the form in1(x), in2(x),
and case(x, P [v1], Q[v2]). We begin by thinking about the typing rules for in1(x) and in2(x). Given
types σ and τ and an object x of type σ, we use in1(x) to attach a label to x indicating that it has
type τ , thereby creating an object of the sum type σ+ τ . With this in mind, one might suspect that
the following are the typing rules for in1(x) and in2(x):

Γ ⊢ x : σ
Γ ⊢ in1(x) : σ + τ

Γ ⊢ x : τ
Γ ⊢ in2(x) : σ + τ

(48)

However, these rules cannot be quite right. Focusing on the leftmost rule, given an x of type σ, for
which type τ is in1(x) of type σ + τ? The type τ simply appears out of nowhere in the conclusion
of this rule. So if x is of type N, is in1(x) of type N+ N, or N+ B, or N+ (N → N)? We want every
introduced expression to have a definite type. There must therefore be a determinate answer to
the question of what type in1(x) has.

To resolve this ambiguity, in the context of typed computations we add superscripts to the
notation in1(x), and write inσ,τ

1 to indicate that this is an operation that takes an object of type
σ and produces an output of type σ + τ . Likewise, inσ,τ

2 is an operation that takes an object of
type τ and produces an output of type σ + τ . In the context of the untyped λ-calculus, we do not
need these superscripts, and can take at face value the rule that if x is a λ-term, then in1(x) and
in2(x) are λ-terms. In the context of the typed λ-calculus, however, we must regard not only all
variables as typed, but also all expressions of the form in1 and in2 as typed. So we will not regard
the term in1(x

N) as fully typed. By contrast, the term inN,B
1 (xN) will be regarded as fully typed,

and moreover has the type N+ B.
The correct typing rules for in1(x) and in2(x) are thus:

Γ ⊢ x : σ
Γ ⊢ inσ,τ

1 (x) : σ + τ
Γ ⊢ x : τ
Γ ⊢ inσ,τ

2 (x) : σ + τ
(49)

Having said all this, in the context of a typing derivation the superscripts on in1 and in2 can
typically be determined from context. So for example, in the leftmost of the rules (48), the only
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superscripts that could be attached to in1 to render the inference grammatical would be the su-
perscripts σ, τ . When the superscripts on in1 or in2 can be uniquely determined by context, we
typically omit them for the sake of compact notation. In such cases, the superscripts should still
be understood as present, but merely ‘invisible’. In cases in which there is any ambiguity or possi-
bility of confusion, we include all superscripts. With these conventions is mind, our original rules
(48) are perfectly acceptable; but without these conventions in mind, they do not make sense.

We now turn to the question of what type we should assign case(x, [u]P, [v]Q). The problem
is that in general this term can get two different types. Suppose, for example, that whenever z
has type σ, P [z/u] has type ρ1. And suppose that whenever z has type τ , Q[z/v] has type ρ2.
Now suppose that x is an element of type σ + τ . Then depending on whether x is an object z
of type σ with the label 1 attached to it or an object z of type τ with the label 2 attached to it,
case(x, [u]P, [v]Q) will either have type ρ1 or type ρ2. And so it looks like we cannot make a
definitive statement in advance about which type case(x, [u]P, [v]Q) will receive.

Suppose however that ρ1 and ρ2 (i.e., the type of P [z/u] if z has type σ, and the type of
Q[z/v] if z has type τ ) are actually the same type ρ. In this case, we can definitively say that
case(x, [u]P, [v]Q) gets the type ρ. This suggests the following typing rule

Γ ⊢ x : σ + τ Γ, u : σ ⊢ P : ρ Γ, v : τ ⊢ Q : ρ

Γ ⊢ case(x, [u]P, [v]Q) : ρ
(50)

The rules (49) and (50) capture the defining properties of sum types. Note that they do so without
presupposing anything about the mechanism by which labels are attached to elements in sum
types. From a type theoretic point of view, directs sum types are then typically thought of as
defined by these typing rules, rather than in terms of ordered pairs.

As before, armed with these rules we can type terms of the untyped λ-calculus. For example,
consider the term

λx(case(x, [y]in1(y), [z]in2(z)))

This can be assigned the type (A+B) → (A+B) for anyA andB, as the following typing derivation
shows:

x : A+B ⊢ x : A+B

x : A+B, y : A ⊢ y : A

x : A+B, y : A ⊢ in1(y) : A+B

x : A+B, z : B ⊢ z : B

x : A+B, z : A ⊢ in2(z) : A+B

x : A+B ⊢ case(x, [y]in1(y), [z]in2(z))) : A+B

⊢ λx(case(x, [y]in1(y), [z]in2(z)))) : (A+B) → (A+B)

In this typing derivation, in1 should of course be understood as inA,B
1 throughout, and in2 should

be understood as inA,B
2 throughout. Consider next the open λ-term

case(x, [y]⟨y, u⟩, [z]⟨u, z⟩)

This λ-term has x and u as free variables. If x has type A+A and u has type A, then this λ-term
can be assigned type A×A, as the following typing derivation sketch shows:
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x : A+A, u : A ⊢ x : A+A

...

x : A+A, u : A, y : A ⊢⟨y, u⟩ : A×A

...

x : A+A, u : A, z : A ⊢⟨u, z⟩ : A×A
x : A+A, u : A ⊢ case(x, [y]⟨y, u⟩, [z]⟨u, z⟩) : A×A

You should easily be able to reconstruct the omitted upper parts
... of this typing derivation. Note

also that the conclusion of this typing derivation contains the context x : A+A, u : A declaring
the type of the free variables x and u of case(x, [y]⟨y, u⟩, [z]⟨u, z⟩).

Exercises for Section 2.10

1. Write each of the following λ-terms in β-normal form.
(a) case(in1(x), λz(y)[y], z[z])

(b) λv(case(v, [y]y, [z]λx(z)(x)))(in2(x))

(c) λv(case(v(z), [z]π1(z), [z]π2(z)))(λx(in2(⟨x, y⟩)))
2. Each of the following untyped λ-terms can be assigned types. Find types for them, and
confirm your result by producing an appropriate typing derivation. If the λ-term is not
closed, the conclusion of your typing derivation will of course have a non-empty context.
(a) λx(case(x, [y]π1(y), [z]z))
(b) case(x, [y]⟨y, u⟩, [z]⟨v, z⟩)
(c) case(x, [u]u(y), [v]z(v))

2.11 Adding Types: The Empty Type

In type theory, it is also useful to sometimes be able to refer to the empty type, which we denote 0.
The idea is that no expression should have this type. We express this somewhat modestly with the
idea that if a term has type 0, then from this term we can construct an object of any type we please.
In particular, given an x of type 0 and a type A, we can construct a term of type A, which we call
absA(x) (the ‘absurd’ object of type A.) We thus add the following rule for λ-term formation in
the untyped λ-calculus:

5. If x is a λ-term, then so is abs(x).

and the typing rule:

Γ ⊢ x : 0

Γ ⊢ absA(x) : A

Because λ-terms must have determinate types in the typed λ-calculus, it is necessary to add a
superscript A to abs(x), just as it was necessary to add superscripts to the in operators. However,
just as with the in operators we will omit superscripts when they are obvious from the context.
We may thus rewrite our rule as
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Γ ⊢ x : 0
Γ ⊢ abs(x) : A

The free variables of abs(x) are just the free variables of x. There is no corresponding new rule of
β-reduction to be introduced.

Using this expanded λ-calculus and new typing rule, we can for example construct a λ-term
that can be given the type (A&(A→ 0)) → B for any types A and B as follows:

x : A&(A→ 0) ⊢ x : A&(A→ 0)

x : A&(A→ 0) ⊢ π2(x) : A→ 0

x : A&(A→ 0) ⊢ x : A&(A→ 0)

x : A&(A→ 0) ⊢ π1(x) : A

x : A&(A→ 0) ⊢ π2(x)(π1(x)) : 0

x : A&(A→ 0) ⊢ abs(π2(x)(π1(x))) : B

⊢ λx(abs(π2(x)(π1(x)))) : (A&(A→ 0)) → B

In this derivation, abs is of course to be understood as absB .

Exercises for Section 2.11

1. Each of the following untyped λ-terms can be assigned types. Find types for them, and
confirm your result by producing an appropriate typing derivation.
(a) λx(abs(π1(x)))
(b) λx(abs(case(x, y[y], π1(z)[z])

2.12 η Rules for Product and Sum Types.

In addition to the new rules of β-reduction we have introduced for product and sum types, there
are also new rules of η-reduction appropriate for product and sum types. We introduce these in
this section.

The primary way of constructing functions in the λ-calculus is by λ-abstraction over a λ-term.
So given a λ-term t, we can abstract over it to obtain a function λx(t). But consider an object f
of some function type A → B. Is there anything that guarantees that f is obtained by abstracting
over some λ-term? Identifying f with λx(f(x)) (where x is a variable not free in f) tells us that f
is indeed an abstraction over the term f(x) of type B with respect to a variable x of type A. So the
rule of η-reduction

λx(t(x)) →η t

(where x is not free in t) tells us that all functions in the λ-calculus are abstractions over terms.
More precisely, it allows us to say that every object f of type A → B is η-equivalent to a λ-
abstraction over a λ-term – that is, f is η-equivalent to λx(f(x)) (where we select a variable x that
is not free in f .)

Likewise, the primary way of constructing objects of a product type A × B is by taking an
object t1 of type A and an object t2 of type B and forming the object ⟨t1, t2⟩. But is there anything
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that guarantees that any object t of type A×B has this form? It is natural to identify any t of type
A×B with ⟨π1(t), π2(t)⟩. We therefore introduce the new rule of η-reduction

⟨π1(t), π2(t)⟩ →η t.

This rule guarantees that every object of type A × B can be written in the form ⟨t1, t2⟩. More
precisely, it allows us to say that every object t of type A×B is η-equivalent to an expicit ordered
pair – namely, ⟨π1(t), π2(t)⟩.

Turning to sum types, the primary way of constructing objects of a sum type A + B is either
by taking an object x of type A and forming in1(x), or by taking an object y of type B and forming
in2(y). (This case is trickier than the previous two in that we have multiple options here.) But is
there anything that guarantees that any object t of type A+B must have one of these two forms?
Note that for any t of type A+B, it is natural to identify t with

case(t, [u]in1(u), [u]in2(u)). (51)

To see why, we evaluate the term (51), considering each case individually. First, if t is of the form
in1(z), then the whole term simplifies to in1(u)[z/u], which is in1(z), and so the final result is t
itself. Likewise, if t is of the form in2(z), then the whole term simplifies to in2(u)[z/u], which is
in2(z), and so the final result is again t itself. So either way, the term (51) simplifies to t.

Because a term of the form case(t, [u]s1(u), [v]s2(v)) has the form s1(z) or s2(z) for some z
(assuming that u does not appear free in s1 or s2), identifying t with (51) then tells us that t has
either the form in1(z) or in2(z) for some z, as desired. It is thus natural to introduce the new rule
of η-reduction

case(t, [u]in1(u), [v]in2(v)) →η t. (52)

This rule guarantees that every object of type A+B has either the form in1(t) or in2(t).
Our η-rules tell us that objects of complex types have canonical forms: every element of a func-

tion type A → B has the form λx(t), every element of a product type A × B has the form ⟨t1, t2⟩,
and every element of a sum type A + B has the form in1(t) or in2(t). Later on when we have a
notion of equality in our theory we will return to the question of the meaning of the η-rules, but
the present considerations will suffice for now.

One might be tempted to generalize (52) somewhat, and write

case(t, [u]s[in1(u)/z], [v]s[in2(v)/z]) →η s[t/z] (53)

where s, t are λ-terms and u, v, z variables such that u and v are not free in s. Note that (52) may
be obtained from (53) by letting s be the term z. This rule looks entirely reasonable. Moreover, it
has the virtue of allowing us to see a sense in which λ-terms such as

R(case(z, [x]P, [y]Q)) and case(z, [x]R(P ), [y]R(Q))

are equivalent (where P , Q and R are λ-terms and x, y, z are variables such that neither x nor y
are free in R and z is not free in P or Q.) That these are equivalent in some sense is intuitive
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– it should not matter whether we divide into cases, apply P or Q, and then input the result
into R, or whether we divide into cases, then apply R(P ) or R(Q). To see this more formally,
substitute R(case(z, [x]P, [y]Q)) for s in (53), where u and v are assumed to not appear free in
R(case(z, [x]P, [y]Q)). This gives the expression

case(t, [u]R(case(z, [x]P, [y]Q))[in1(u)/z], [v]R(case(z, [x]P, [y]Q))[in2(v)/z]) (54)

Now, because z does not appear free in P or Q, the expression R(case(z, [x]P, [y]Q))[in1(u)/z]

is R(case(in1(u), [x]P, [y]Q)), which β-reduces to R(P [u/x]). Because x is not free in R, this is
R(P )[u/x]. Likewise, s[in2(v)/z] β-reduces to R(Q)[v/y]. Thus (54) β-reduces to

case(z, [u]R(P )[u/x], [v]R(Q)[v/y]).

Renaming bound variables, we can rewrite this more simply as

case(z, [x]R(P ), [y]R(Q)). (55)

But on the other hand, using the rule (53), the expression (54) η-reduces to R(case(z, [x]P, [y]Q)).
Because the same expression both β-reduces to case(z, [x]R(P ), [y]R(Q)) and also η-reduces to
R(case(z, [x]P, [y]Q)), we then have

R(case(z, [x]P, [y]Q)) ≡βη case(z, [x]R(P ), [y]R(Q)).

On one had, this is a pleasing result. On the other hand, without further modifications this
leads to a violation of the Church-Rosser property for βη-reductions, as there is no obvious way
to complete the ’diamond’

(54)

case(z, [x]R(P ), [y]R(Q)) R(case(z, [x]P, [y]Q))

?

β η

? ?

While different approaches are possible to rectify this, the approach we will take is to prohbit the
η-reduction rule (53). In some texts, rules such as (53) as re-classified as rules of ‘commutation’ ,
along with reduction rules like

case(t, [u]P, [v]Q)(R) → case(t, [u]P (R), [v]Q(R)))

λx(case(t, [u]P, [v]Q)) → case(t, [u]λx(P ), [v]λx(Q))

and so on (with appropriate restrictions on free variables.) In general, such rules allow us to move
certain expressions in and out of binding operators. Many tricky issues arise here, which we do
not pursue further. For our purposes, we allow only the η-reduction rules:

λx(t(x)) →η t
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⟨π1(t), π2(t)⟩ →η t

case(t, [u]in1(u), [v]in2(v)) →η t

and no others. More formally, we have the following definitions

Definition 2.18: η-reduction, βη-reduction, and βη-equivalence

(a) A→η B iff for some expressions E and F

(i) A has the form E λx(t(x)) F and B has the form E t F (where x is not free in t), or
(ii) A has the form E ⟨π1(t), π2(t)⟩ F and B has the form E t F , or

(iii) A has the form E case(t, [u]in1(u), [v]in2(v)) F and B has the form E t F .

(b) A→βη B iff A→β B or A→η B.

(c) A↠βη B (i.e., A βη-reduces to B) iff for some sequence X0, X1, ..., Xn of λ-terms we have
that A = X0, B = Xn, and X0 →βη X1...→βη Xn. This includes the degenerate case in which
A and B are identical.

(d) X and Y are βη-equivalent (in symbols, X =βη Y ) iff one of the following holds:

(i) X and Y are the same term (up to α-equivalence), or
(ii) for some sequence of terms X0, X1, ..., Xn−1, Xn with U = X0 and V = Xn,

X0 ∼βη X1, X1 ∼βη X2, ..., Xn−1 ∼βη Xn.

2.13 Collecting Things Together

We have added much machinery to the untyped λ-calculus λ0, creating a more sophisticated un-
typed calculus with many rules. For convenience, we present these rules together.

Definition 2.19: Rules of the untyped λ-calculus λ1.

Rules of λ-term formation

(i) Any variable x, y, z, ... is a λ-term.
(ii) If M and N are λ-terms, then so is M(N).

(iii) If M is a λ-term and x a variable, then λx(M) is a λ-term.
(iv) If x and y are λ-terms, then so is ⟨x, y⟩.
(v) If x is a λ-term, then so are π1(x) and π2(x).

(vi) If x is a λ-term, then so are in1(x) and in2(x).
(vii) If R, P and Q are λ-terms and u, v variables, then case(R, [u]P, [v]Q) is a λ-term.
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(viii) If x is a λ-term, then so is abs(x).

Rules of β-reduction

(i) λx(M)(N) →β M [N/x]

(ii) π1⟨M,N⟩ →β M

(iii) π2⟨M,N⟩ →β N

(iv) case(in1(R), [u]P, [v]Q) →β P [R/u]

(v) case(in2(R), [u]P, [v]Q) →β Q[R/v]

Rules of η-reduction

(i) λx(M(x)) →η M where x is not free in M
(ii) ⟨π1(M), π2(M)⟩ →η M

(iii) case(M, [u]in1(u), [v]in2(v)) →η M

We call this expanded version of the untyped λ-calculus λ1.
To the untyped λ-calculus λ1, we append the following set of typing rules:

Definition 2.20: Rules of the typed λ-calculus TR1.

(i) Γ, v : τ ⊢ v : τ

(ii) Γ ⊢ x : τ → σ Γ ⊢ y : τ

Γ ⊢ x(y) : σ

(iii) Γ, v : τ ⊢ x : σ

Γ ⊢ λv(x) : τ → σ

(iv) Γ ⊢ x : σ Γ ⊢ y : τ

Γ ⊢ ⟨x, y⟩ : σ × τ

(v) Γ ⊢ x : σ × τ
Γ ⊢ π1(x) : σ

Γ ⊢ x : σ × τ
Γ ⊢ π2(x) : τ

(vi) Γ ⊢ x : σ
Γ ⊢ in1(x) : σ + τ

Γ ⊢ x : τ
Γ ⊢ in2(x) : σ + τ

(vii) Γ ⊢ x : σ + τ Γ, u : σ ⊢ y : ρ Γ, v : τ ⊢ z : ρ

Γ ⊢ case(x, [u]y, [v]z) : ρ

(viii) Γ ⊢ x : 0
Γ ⊢ abs(x) : τ

where v, v1, v2 are variables, x, y, z are terms of λ1, and σ, τ, ρ are types.

This system of typing rules is sometimes called λ(I). We will refer to it as TR1. It is an expansion
of the smaller typing system λ(→) (i.e., TR0) considered earlier.

As before, there is a bound-typed version of this set of typing rules
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Definition 2.21: Rules of the typed λ-calculus TRbt
1 .

(i) Γ, v : τ ⊢ v : τ

(ii) Γ ⊢ x : τ → σ Γ ⊢ y : τ

Γ ⊢ x(y) : σ

(iii) Γ, v : τ ⊢ x : σ

Γ ⊢ λvτ (x) : τ → σ

(iv) Γ ⊢ x : σ Γ ⊢ y : τ

Γ ⊢ ⟨x, y⟩ : σ × τ

(v) Γ ⊢ x : σ × τ
Γ ⊢ π1(x) : σ

Γ ⊢ x : σ × τ
Γ ⊢ π2(x) : τ

(vi) Γ ⊢ x : σ
Γ ⊢ in1(x) : σ + τ

Γ ⊢ x : τ
Γ ⊢ in2(x) : σ + τ

(vii) Γ ⊢ x : σ + τ Γ, u : σ ⊢ y : ρ Γ, v : τ ⊢ z : ρ

Γ ⊢ case(x, [uσ]y, [vτ ]z) : ρ

(viii) Γ ⊢ x : 0
Γ ⊢ abs(x) : τ

where v, v1, v2 are variables, x, y, z are terms of λ1, and σ, τ, ρ are types.

There is also a corresponding generalization of the Church-style λ-calculus:

Definition 2.22: Rules of the typed λ-calculus λtype
1 .

Types
The propositional types are those that may be obtained from the fundamental types τ1, τ2, ...
and the empty type 0 under the operations taking two types A and B to the types A → B,
A×B and A+B.

Terms
The set of simply typed λ-terms are defined inductively as follows:

(i) For any variable v and any type τ , vτ is a λ-term of type τ .
(ii) If [M ]α→β and [N ]α are λ-terms, then [[M ]α→β([N ]α)]β is a λ-term.

(iii) If [M ]β is a λ-term and xα a variable, then [λxα([M ]β)]α→β is a λ-term.
(iv) If [M ]α, [N ]β are λ-terms, then [⟨[M ]α, [N ]β⟩]α×β is a λ-term.
(v) If [M ]α×β is a λ-term, then [π1([M ]α×β)]α and [π2([M ]α×β)]β are λ-terms.

(vi) If [M ]α and [N ]β are λ-terms, then [inα,β
1 ([M ]α)]α+β and [inα,β

2 ([N ]β)]α+β are λ-terms.
(vii) If [R]α+β , [P ]γ , and [Q]γ are λ-terms and uα, vβ variables, then
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[case([R]α+β, [uα][P ]γ , [vβ][Q]γ)]γ is a λ-term.
(viii) If [M ]0 is a λ-term, then so is [absα([M ]0)]α.

Rules of β-reduction

(i) λxσ([M ]τ )([N ]σ) →β [M ]τ [[N ]σ/xσ]

(ii) π1(⟨[M ]σ, [N ]τ ⟩σ×τ ) →β [M ]σ

(iii) π2(⟨[M ]σ, [N ]τ ⟩σ×τ ) →β [N ]τ

(iv) case(inα,β
1 ([S]α)α+β, [uα][P ]γ , [vβ][Q]γ) →β [P ]γ [[S]α/uα]

(v) case(inα,β
2 ([S]β)α+β, [uα][P ]γ , [vβ][Q]γ) →β [Q]γ [[S]β/vβ]

Rules of η-reduction

(i) λxσ([M ]σ→τ (xσ)) →η [M ]σ→τ where xσ is not free in M
(ii) ⟨π1([M ]σ×τ ), π2([M ]σ×τ )⟩ →η [M ]σ×τ

(iii) case([M ]σ+τ , [uσ]inσ,τ
1 (uσ), [vτ ]inσ,τ

2 (vτ )) →η [M ]σ+τ

We call this version of the Church-style typed λ-calculus λtype
1 . Although in this definition

we have written everything out in full detail, as with λ
type
0 we will in practice omit brackets and

types for clarity when they can be easily reconstructed. In particular, as before it will suffice to
indicate the types of bound variables when they are first introduced, as well as the types of free
variables. Note however that in our expanded version of the λ-calculus we now have two sources
of bound variables. First, there are variables connected with λ-operators, as before. Second, we
have variables that are bound within a case term. Recall that in

case(x, [u]P, [v]Q),

[u] and [v] are regarded as ‘binding operators’ much like λ, and their scopes are all of P and
Q respectively. Thus, if we are to type all bound variables at the moment the relevant binding
operators are introduced, we must type the variables [u] and [v] in case(x, [u]P, [v]Q). For example,
consider the open λ1-term

λy case(x, [u]u, [v]vy)

We can type all the bound variables of this expression as follows:

λyBcase(x, [uA]u, [vB→A]vy)

The free variable x obviously must have type A + (B → A) (because in case(x, [u]P, [v]Q) the
type of x must be the sum of the types of u and v), and thus we may regard this term as a fully
typed λ

type
1 -term – explicitly writing down the type of the free variable x is in this case optional.

However, where it does not produce excessive clutter, for maximum clarity we generally indicate
the type of each free variable explicitly, even when it is otherwise deducible. So for the term in
question we will generally write

λyBcase(xA+(B→A), [uA]u, [vB→A]vy)

That this is grammatically typed is shown by the following typing derivation of TR1
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x:A+(B→A), y:B ⊢ x:A+(B→A) x:A+(B→A), y:B, u:A ⊢ u:A

...

x:A+(B→A), y:B, v:B → A ⊢vy:A
x:A+(B→A), y:B ⊢case(x, [u]u, [v]vy):A

x:A+(B→A) ⊢λy case(x, [u]u, [v]vy):B → A

or perhaps even more clearly by the following typing derivation of TRbt
1

x:A+(B→A), y:B ⊢ x:A+(B→A) x:A+(B→A), y:B, u:A ⊢ u:A

...

x:A+(B→A), y:B, v:B → A ⊢vy:A
x:A+(B→A), y:B ⊢case(x, [uA]u, [vB→A]vy):A

x:A+(B→A) ⊢λyB case(x, [uA]u, [vB→A]vy):B → A

For another example, consider the similar untyped λ1-term

λy case(xz, [u]u, [v]vy)

as before, the bound variables may be typed as follows

λyBcase(xz, [uA]u, [vB→A]vy)

However, knowing that xz has type A+ (B → A) does not allow us to determine the types of the
free variables x and z. In order for this term to be fully typed, we must therefore indicate the types
of at least one of these terms explicitly. So for example, we regard the term

λyBcase(xzD, [uA]u, [vB→A]vy)

as a fully typed λtype
1 -term, as in this expression x must obviously have type D → (A+ (B → A)).

Just as before, for maximum clarity it is better to indicate the type of each free variable explicitly,
in which case we write

λyBcase(x(A+(B→A))→DzD, [uA]u, [vB→A]vy).

The reader is invited to write out the corresponding typing derivation in either TR1 or TRbt
1 .

Note that in addition to familiar examples of untypable terms such as x(x), in λ1 we now have
a large class of new untypable terms. For example,

π1(λx(E))

cannot be typed for any λ-term E, because when fully typed, π1 only acts on objects whose types
have the form A×B, while λx(E) always has a type of the form A→ B. In the exercises you will
see examples of other terms in λ1 that cannot be typed for similar reasons.

There are many results about λ1, λtype
1 and TR1 that are straightforward generalizations of

earlier theorems about λ0, λtype
0 and TR0. In many cases, their proofs only involve only minor

modifications of the corresponding proofs in the previous chapter. Occasionally, when a result
about our expanded λ-calculus has a straightforward and essentially identical proof to that given



130 CHAPTER 2. INTUITIONISTIC PROPOSITIONAL LOGIC ...

in the previous chapter, we simply use the result directly. (For example, the fact that every λ-term
is α-equivalent to one that obeys the Baredregt variable convention remains true in λ1, and the
proof is for all intents and purposes identical to that of the corresponding fact about λ0.) Doing
so helps us to avoid having to relist a mass of theorems every time we expand the λ-calculus. We
state some of the more important and less trivial generalizations here, in each leaving the proof to
the the Appendix or the exercises.

Lemma 2.23:

For any λ1-terms U , V , t and variable x, if U →β V then U [t/x] ↠β V [t/x], and if U →η V

then U [t/x] ↠η V [t/x].

Theorem 2.24: The Church-Rosser Theorem for β- and βη-reductions in λ1.

In the untyped λ-calculus λ1, if X ↠β Y1 and X ↠β Y2, then there is a term Z such that
Y1 ↠β Z and Y2 ↠β Z. Likewise, if X ↠βη Y1 and X ↠βη Y2, then there is a term Z such
that Y1 ↠βη Z and Y2 ↠βη Z.

Corollary 2.25

In λ1, U =β V iff there is a term Z such that U ↠β Z and V ↠β Z, and U =βη V iff there is a
term Z such that U ↠βη Z and V ↠βη Z.

Theorem 2.26: The Church-Rosser Theorem for β- and βη-reductions in λtype
1 .

In the typed λ-calculus λtype
1 , if X ↠β Y1 and X ↠β Y2, then there is a term Z such that

Y1 ↠β Z and Y2 ↠β Z. Likewise, if X ↠βη Y1 and X ↠βη Y2, then there is a term Z such
that Y1 ↠βη Z and Y2 ↠βη Z.

Corollary 2.27

In λtype
1 , U =β V iff there is a term Z such that U ↠β Z and V ↠β Z, and U =βη V iff there is

a term Z such that U ↠βη Z and V ↠βη Z.
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Theorem 2.28: Strong Normalizability of λtype
1 under β-reduction.

There is no infinite sequence τ1, τ2, ... of terms in the typed λ-calculus λtype
1 for which

τ1 →β τ2 →β τ3 →β ...

Using η-reduction postponement (Lemma 2.34, to be discussed shortly), it can be shown as
before that if a term has an infinite βη-reduction sequence, then it also has an infinite β-reduction
sequence. (The analog for this in λ0 was proved in the exercises for section 1.7, and the argument
goes through unchanged.) The following is therefore a consequence of Theorem 2.28

Theorem 2.29: Strong Normalizability of λtype
1 under βη-reduction.

There is no infinite sequence τ1, τ2, ... of terms in the typed λ-calculus λtype
1 for which

τ1 →βη τ2 →βη τ3 →βη ...

We also have

Theorem 2.30

Suppose E is a λ1-term obeying the Barendregt variable convention, and that Γ ⊢ E : X in
TR1. Then there is a proof of Γ′ ⊢ E : X in TR1 for some Γ′ ⊆ Γ such that (i) there is no silent
replacement of λ-terms by α-equivalent terms in this proof, (ii) the variables whose types are
declared in Γ′ are precisely the free variables of E, and (iii) all the elements of Γ′ are distinct,
and (iv) every variable declaration in the proof is either an element of Γ′, or has the form v : τ

where v is a bound variable of E.

Theorem 2.31: Soundness and Completeness of TR1.

Suppose E is an untyped λ1-term whose free variables are v1, ..., vn, and let τ1, ..., τn be types.
Then the following are equivalent:

(i) E can be typed into a λtype
1 term with overall type X in which the free variables v1, ..., vn

are assigned types τ1, ..., τn respectively.
(ii) There is a proof of Γ ⊢ E : X in TR1, where the context Γ includes the variable declara-

tions v1 : τ1, v2 : τ2, ..., vn : τn.
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Theorem 2.32: Soundness and Completeness of TRbt
1 .

Suppose E is a bound-typed λ1-term whose free variables are v1, ..., vn, and let τ1, ..., τn be
types. Then the following are equivalent:

(i) It is possible to assign types of λtype
1 to all the variables of E in such a way that the free

variables v1, ..., vn of E are assigned types τ1, ..., τn, and E itself has type X .
(ii) There is a proof of Γ ⊢ E : X in TRbt

1 , where the context Γ includes the variable declara-
tions v1 : τ1, v2 : τ2, ..., vn : τn.

Theorem 2.33: Subject Reduction Theorem for TR1.

In TR1, if Γ ⊢M : σ and M ↠βη N , then Γ ⊢ N : σ.

As in the previous chapter, many of these theorems have analogs for the bound-typed λ-calculus
that we do not state separately, with the exception of the Soundness and Completeness Theorems
2.31 and 2.32.

One result that (perhaps surprisingly) does not generalize straightforwardly from λ0 to λ1 is
the η-reduction postponement lemma (Lemma 1.24.) Consider the following reduction sequence
in λ1

⟨π1(λx(x)), π2(λx(x))⟩(x) →η λx(x)(x) →β x

The reduction from ⟨π1(λx(x)), π2(λx(x))⟩(x) to x cannot be achieved by a sequence of β-reductions
followed by a sequence of η-reductions. (Note that term ⟨π1(λx(x)), π2(λx(x))⟩(x) is actually in
β-normal form.) There is therefore no simple analog of Lemma 1.24 for λ1. However, perhaps
surprisingly it turns out that although η-reduction postponement fails for the untyped system λ1,
it holds for the typed system λ

type
1 . (Note that the expression ⟨π1(λx(x)), π2(λx(x))⟩ cannot be prop-

erly typed, as λx(x) has the type τ → τ for some τ , and π1 and π2 can only operate on terms of
type τ × σ.)

In particular, we have

Lemma 2.34: η-reduction postponement in λtype
1 .

For all λtype
1 -terms X,Y, Z, if X →η Y →β Z in λ

type
1 , then there is a λtype

1 -term Y ′ such that
X ↠β Y

′ ↠η Z (where ↠η is a sequence of η-reductions.)

This is proved in the appendix. It follows from this that if a typed term can be reduced to βη-
normal form, then there is a way of reducing it to βη-normal form that involves performing a
sequence of β-reductions followed by a sequence of η-reductions.
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Exercises for Section 2.13

1. For each of the following λ1-terms, indicate if it can be typed or not. If it can be typed,
write out the corresponding λtype

1 term. If it cannot, explain why not.

(i) π1(x)(y)
(ii) y(π1(x))
(iii) π1(λx(x))
(iv) ⟨x, y⟩z
(v) z⟨x, y⟩
(vi) in1(x)(y)

(vii) y(in1(x))

(viii) case(⟨x, y⟩, [u]u, [v]v)
(ix) case(x, [u]⟨u, u⟩, [v]λz(v))
(x) case(x, [u]w(⟨u, u⟩), [v]v)

2. Prove Lemma 2.23

3. Verify that Corollaries 2.25 and 2.27 do in fact follow from their respective theorems.

4. Prove Theorem 2.30.

5. Prove Theorem 2.33.

2.14 The Curry-Howard Correspondence: Version II

If we take the rules of TR1 and as before in each judgment x : τ erase the λ-term x and keep only
the type τ , we get the following:

Γ, τ ⊢ τ

Γ ⊢ τ → σ Γ ⊢ τ
Γ ⊢ σ

Γ, τ ⊢ σ

Γ ⊢ τ → σ

Γ ⊢ σ Γ ⊢ τ
Γ ⊢ σ & τ

Γ ⊢ σ & τ
Γ ⊢ σ

Γ ⊢ σ & τ
Γ ⊢ τ

Γ ⊢ σ
Γ ⊢ σ ∨ τ

Γ ⊢ τ
Γ ⊢ σ ∨ τ

Γ ⊢ σ ∨ τ Γ, σ ⊢ ρ Γ, τ ⊢ ρ

Γ ⊢ ρ
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Γ ⊢ ⊥
Γ ⊢ τ

where Γ is an (unordered) list of formulae. Here, × has been replaced by &, + has been replaced
by ∨, and 0 has been replaced by ⊥. What we have here are of course just the axioms and rules of
inference for full intuitionistic propositional logic NJ.

For much of the remainder of this book, we will regard the symbols & and ×, the symbols ∨
and +, and the symbols 0 and ⊥ as interchangeable. For the sake of emphasis, in the context of a
typing derivation or when discussing types we will (typically) use the symbols ×,+ and 0, and in
the context of a proof in logic we will (typically) use the symbols &,∨ and ⊥. Thinking of these as
just different ways of writing the same thing will allow us to avoid having to clutter notation with
cumbersome syntactical ‘translation’ functions. Adopting this convention, starting with the rules
of TR1 and erasing all λ-terms and keeping only the types, we then literally get the rules of NJ.

The relationship between TR1 and NJ is then similar to the relationship between TR0 and
NJ(→). Every proof in TR1 contains as its ‘skeleton’ a proof in NJ, and we will see that every
proof in NJ is the ‘skeleton’ of some proof in TR0. In fact, we have the following more general
form of the Curry-Howard Correspondence:

Theorem 2.35: The Curry-Howard Correspondence for TR1 and NJ, Part 1.

If TR1 proves
x1 : A1, ..., xn : An ⊢ s : B

then NJ proves
A1, ..., An ⊢ B

Proof

In any proof in TR1, if one takes each assertion of the form z : B and discards the term z

leaving only the type B, the result is a proof of NJ.

Theorem 2.36: The Curry-Howard Correspondence for TR1 and NJ, Part 2.

If NJ proves
A1, ..., An ⊢ B

Then for any distinct variables x1, ..., xn, there is some λ1-term s such that TR1 proves

x1 : A1, ..., xn : An ⊢ s : B



2.14 THE CURRY-HOWARD CORRESPONDENCE: VERSION II 135

Proof

The proof is a straightforward induction on the construction of proofs in NJ, and is com-
pletely analogous to the proof of Theorem 2.8. The base case, and the case in which the final
step of the proof is an application of (→E) or (→I) are dealt with precisely as in the proof of
Theorem 2.8.

It suffices to consider the case in which the final step of the NJ proof is an application of
one of the rules (&E), (&I), (∨I), (∨E) or (⊥E).

For example, suppose that a proof of A1, ... , An ⊢ B has as its final step an application of
(&I). This means that B has the form C&D and the proof has the form:

...
A1, ... , An ⊢ C

...
A1, ... , An ⊢ D

(&I)
A1, ... , An ⊢ C&D

By inductive hypothesis we have proofs of both the following sequents:

x1 : A1, ... , xn : An ⊢ s : C and x1 : A1, ... , xn : An ⊢ t : D.

Combining these gives the proof

...
x1 : A1, ... , xn : An ⊢ s : C

...
x1 : A1, ... , xn : An ⊢ t : D

x1 : A1, ... , xn : An ⊢ ⟨s, t⟩ : C ×D

as desired.
In a similar way, proofs whose final steps are (&E), (∨I), (∨E), or (⊥E)

A1, ..., An ⊢ C&D
(& E)

A1, ..., An ⊢ C

A1, ..., An ⊢ C&D
(& E)

A1, ..., An ⊢ D

A1, ..., An ⊢ C
(∨ I)

A1, ..., An ⊢ C ∨D
A1, ..., An ⊢ D

(∨ I)
A1, ..., An ⊢ C ∨D

A1, ..., An ⊢ C ∨D A1, ..., An, C ⊢ E A1, ..., An, D ⊢ E
(∨ E)

A1, ..., An ⊢ E

A1, ..., An ⊢ ⊥
(⊥ E)

A1, ..., An ⊢ C

are transformed to TR1 typing derivations

Γ ⊢ s : C ×D (& E)
Γ ⊢ π1(s) : C

Γ ⊢ s : C ×D (& E)
Γ ⊢ π1(t) : D
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Γ ⊢ s : C (∨ I)
Γ ⊢ in1(s) : C +D

Γ ⊢ s : D (∨ I)
Γ ⊢ in2(s) : C +D

Γ ⊢ s : C +D Γ, y : C ⊢ s′ : E Γ, z : D ⊢ s′′ : E
(∨ E)

Γ ⊢ case(s, [y]s′, [z]s′′) : E

Γ ⊢ s : 0 (⊥ E)
Γ ⊢ abs(s) : C

where Γ is x1 : A1, ..., xn : An.

These results show how we can move between proofs in intuitionistic logic NJ and typing
derivations in TR1. Moving from a typing derivation in TR1 to a proof in NJ is trivial; it suffices
to simply delete λ-terms and keep types. Moving from a proof in NJ to a typing derivation in
TR1 is done as before, by simply assigning variables appropriately to the formulae (now viewed
as types) in the leaves of the NJ proof, and then using the typing rules to generate the λ-terms
progressively deeper in the proof.

To demonstrate this with a slightly more complex example, we have seen already that we can
prove (¬A ∨ ¬B) → ¬(A&B) in NJ by combining the subproofs

A&B, ¬A ⊢ ¬A
A&B, ¬A ⊢ A&B

(& I)
A&B, ¬A ⊢ A

(→ E)
A&B, ¬A ⊢ ⊥

and

A&B, ¬B ⊢ ¬B
A&B, ¬B ⊢ A&B

(& I)
A&B, ¬B ⊢ B

(→ E)
A&B, ¬B ⊢ ⊥

to give

¬A ∨ ¬B ⊢ ¬A ∨ ¬B

...
A&B, ¬A ⊢⊥

...
A&B, ¬B ⊢⊥

(∨ E’)¬A ∨ ¬B, A&B ⊢ ⊥
(→ I)

¬A ∨ ¬B ⊢ ¬(A&B)
(→ I)

⊢ (¬A ∨ ¬B) → ¬(A&B)

The leaves of this larger proof consist of the formulae

¬A ∨ ¬B, A&B, ¬A, ¬B

Let w, x, y, z be variables of these types, i.e.,

w : ¬A+ ¬B, x : A×B, y : ¬A, z : ¬B

The first subproof is transformed into the typing derivation
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x : A×B, y : ¬A ⊢ y : ¬A
x : A×B, y : ¬A ⊢ x : A×B

x : A×B, y : ¬A ⊢ π1(x) : A

x : A×B, y : ¬A ⊢ y(π1(x)) :⊥

The second subproof is likewise transformed into the typing derivation

x : A×B, z : ¬B ⊢ z : ¬B
x : A×B, z : ¬B ⊢ x : A×B

x : A×B, z : ¬B ⊢ π2(x) : B

x : A×B, z : ¬B ⊢ z(π2(x)) :⊥

putting these together yields:

w :¬A+ ¬B ⊢ w :¬A+ ¬B

...
x :A×B, y :¬A ⊢ y(π1(x)) :⊥

...
x :A×B, z :¬B ⊢ z(π2(x)) :⊥

w :¬A+ ¬B, x : A×B ⊢ case(w, [y]y(π1(x)), [z]z(π2(x))) :⊥
w :¬A+ ¬B ⊢ λx case(w, [y]y(π1(x)), [z]z(π2(x))) :¬(A×B)

⊢ λwλx case(w, [y]y(π1(x)), [z]z(π2(x))) : (¬A+ ¬B) → ¬(A×B)

where for the sake of compactness typing declarations have been omitted from contexts when not
needed. This of course is a typing derivation in TR1.

As before, we can use this version of the Curry-Howard correspondence to solve technical
problems about TR1 by using intuitionistic logic. For example, for arbitrary types A and B the
type (A + B) → A is not inhabited, as (A ∨ B) → A is not a theorem of intutionistic (or classical)
logic. In this way, understanding the structure of NJ gives us a tool for understanding the structure
of TR1.

Conversely, understanding the structure of TR1 can help us to understand the structure of NJ.
We begin with a more superficial and familiar type of example. Is A → (B → (A&B)) intuition-
istically provable? This question can be answered easily enough by examining the rules of NJ.
But let us consider this question through the lens of the Curry-Howard correspondence. By the
Curry-Howard correspondence, our question is equivalent to whether we can find a term in our
expanded λ-calculus that can be assigned the type A → (B → (A × B)). In fact, it is not hard
to see that λxλy(⟨x, y⟩) is such a term. If x has type A and y has type B, then this term has type
A→ (B → (A×B)), as the following typing derivation shows:

x : A, y : B ⊢ x : A x : A, y : B ⊢ y : B

x : A, y : B ⊢ ⟨x, y⟩ : A×B

x : A ⊢ λy(⟨x, y⟩) : B → (A×B)

⊢ λxλy(⟨x, y⟩) : A→ (B → (A×B))

Deleting λ-terms then yields the following proof of A→ (B → (A&B)) in NJ

A,B ⊢ A A,B ⊢ B

A,B ⊢ A&B

A ⊢ B → (A&B)

⊢ A→ (B → (A&B))
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We will see more substantive applications of TR1 to our understanding of NJ in the next sections
when we return to the topic of proof normalization.

Exercises for Section 2.14

1. The following sentences X are all theorems of NJ. For each of them, first construct a proof
in NJ. (You have already constructed proofs for some of these in earlier exercises.) Then
transform each of these proofs of X into a typing derivation in TR1 of ⊢ M :X for some
λ1-term M .

(a) p→ (p ∨ q)
(b) ¬(p ∨ q) → ¬p
(c) (p&¬p) → q

(d) ((p→ r)&(q → r)) → ((p ∨ q) → r)

(e) ¬¬(p ∨ ¬p)

2. Are all the λ1-terms M obtained in problem 1.(a)-(e) in β-normal form? If not, in each case
find a different NJ proof for which the relevant λ1-term M is in β-normal form.

2.15 Proof Normalization Revisited

Earlier, we examined NJ(→) proofs in which an application of the (→I) rule was immediately
followed by an application of the (→E) rule, with the conclusion of the (→I) rule used as the major
premise:

Γ, A ⊢ B
(→I)

Γ ⊢ A→ B Γ ⊢ A (→E)
Γ ⊢ B

The typing derivations corresponding to such proofs look like:

Γ, u : A ⊢ e : B

Γ ⊢ λu(e) : A→ B Γ ⊢ f : A

Γ ⊢ λu(e)(f) : B

The term λu(f)(g) is of course β-reducible. We concluded that typing derivations of β-normal
form terms corresponded to NJ(→) proofs without the pattern of reasoning in question. This was
formally stated as Theorem 2.13.

This basic idea generalizes to our other connectives. Consider a proof in which an application
of the (&I) rule is immediately followed by an application of the (&E) rule:

Γ ⊢ A Γ ⊢ B (&I)
Γ ⊢ A&B (&E)
Γ ⊢ A
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A typing derivation corresponding to this proof will look like:

Γ ⊢ e : A Γ ⊢ f : B

Γ ⊢ ⟨e, f⟩ : A×B

Γ ⊢ π1(⟨e, f)⟩ : A

Note that in this case too the final term π1(⟨e, f)⟩ is not in β-normal form.
Finally, consider a proof in which an application of the (∨I) rule is immediately followed by an

application of the (∨E) rule, with the conclusion of the (∨I) rule used as the major premise. Here
there are two possibilities:

Γ ⊢ A (∨I)
Γ ⊢ A ∨B Γ, A ⊢ C Γ, B ⊢ C

(∨E)
Γ ⊢ C

and
Γ ⊢ B (∨I)
Γ ⊢ A ∨B Γ, A ⊢ C Γ, B ⊢ C

(∨E)
Γ ⊢ C

The typing derivations corresponding to these will look like:

Γ ⊢ e : A

Γ ⊢ in1(E) : A+B Γ, u : A ⊢ f : C Γ, v : B ⊢ g : C

Γ ⊢ case(in1(e), [u]f, [v]g) : C

and

Γ ⊢ e : B

Γ ⊢ in2(E) : A+B Γ, u : A ⊢ f : C Γ, v : B ⊢ g : C

Γ ⊢ case(in2(e), [u]f, [v]g) : C

Again, the final term case(in1(e), [u]f, [v]g) or case(in2(e), [u]f, [v]g) is not in β-normal form.
With this in mind, we consider the following definition

Definition 2.37: Normal Proof of NJ.

A proof in NJ is normal just in case

(i) it contains no occurrence of a (→I) rule introducing a conditional X → Y which is imme-
diately followed by an application of the (→E) rule with this conditional X → Y as its
major premise.

(ii) it contains no occurrence of a (&I) rule immediately followed by an application of the
(&E) rule.

(iii) it contains no occurrence of a (∨I) rule introducing a disjunction X ∨ Y which is imme-
diately followed by an application of the (∨E) rule with this disjunction X ∨ Y as its
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major premise.

As before we have

Lemma 2.38: The Subterm Lemma for TR1

In any typing derivation of TR1 with conclusion of the form Γ ⊢ s : A, if s′ is a subterm of s
then the typing derivation contains a sequent of the form Γ′ ⊢ s′ : B, where Γ′ ⊆ Γ.

and

Theorem 2.39

Given a typing derivation T in TR1 whose conclusion is a sequent of the form ∆ ⊢ g : C,
let P be the NJ proof obtained from T by deleting all terms and keeping types. Then P is a
normal proof iff g is in β-normal form.

As before, we may conclude

Theorem 2.40: Proof Normalization Theorem for NJ

If A1, ..., An ⊢ B has a proof in NJ, then it has a normal proof in NJ.

Proof

Suppose P1 is a non-normal proof of A1, ..., An ⊢ B. By the Curry-Howard Correspondence
(in particular, Theorem 2.36), this may be transformed into a typing derivation with conclu-
sion

x1 : A1, ..., xn : An ⊢ s : B

for some λ-term s. By Theorem 2.39, s is not in β-normal form. Let s′ be the β-normal form
of s. By Theorem 2.33 (the Subject Reduction Theorem) there is a typing derivation of

x1 : A1, ..., xn : An ⊢ s′ : B

in TR1. Because s′ is in β-normal form, it follows from Theorem 2.39 that the NJ proof ob-
tained by taking this typing derivation and removing all terms and keeping types is a normal
proof of A1, ..., An ⊢ B.

As before, this gives us an algorithm for proof normalization. Consider for example the fol-
lowing non-normal proof of A→ (B → A) in NJ
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A, B ⊢ A
(→ I)

A ⊢ B → A A ⊢ A (& I)
A ⊢ (B → A)&A

(& E)
A ⊢ B → A (→ I)

⊢ A→ (B → A)

This is non-normal because it involves the (& I) rule immediately followed by the (& E) rule. This
has the corresponding typing derivation

x : A, y : B ⊢ x : A

x : A ⊢ λy(x) : B → A x : A ⊢ x : A

x : A ⊢ ⟨λy(x), x⟩ : (B → A)×A

x : A ⊢ π1⟨λy(x), x⟩ : B → A

⊢ λx(π1⟨λy(x), x⟩) : A→ (B → A)

The term λx(π1⟨λy(x), x⟩) in the conclusion is not in β-normal form. It β-reduces to λxλy(x),
which is in β-normal form. The term λxλy(x) may be given the type A→ (B → A) as follows

x : A, y : B ⊢ x : A

x : A ⊢ λy(x) : B → A

⊢ λxλy(x) : A→ (B → A)

which corresponds to the NJ proof

A, B ⊢ A
(→ I)

A ⊢ B → A (→ I)
⊢ A→ (B → A)

This proof is indeed normal.
Let us turn to an examination of the structure of normal proofs. Recall the definition of a major

branch, which requires no changes

Definition 2.41: Major Branch

A major branch of a proof is a branch of the proof with the property that if the conclusion of an
inference lies on the branch and that inference has a major premise, then that major premise
also lies on in the branch.

As before, we easily see that each proof has at least one major branch. We also have the follow-
ing:
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Lemma 2.42: The Major Branch Lemma.

In any normal proof in NJ, a major brach will consist of a (possibly empty) sequence of elimi-
nation rules (i.e., (→ E), (& E), (∨ E) and (⊥ E) rules) followed by a (possibly empty) sequence
of introduction rules (i.e., (→ I), (& I) and (∨ I) rules.)

Proof

We first argue that along a major branch in a normal proof, a (→ I) rule cannot be immediately
followed by any elimination rule. To see why, note that because the conclusion of a (→ I) rule
has the form ∆ ⊢ ϕ→ ψ, it cannot be immediately followed by a (& E) or a (⊥ E) rule. Because
the only premise of a (∨ E) rule that appears on a major branch is the major premise, which
always has the form Γ ⊢ ϕ ∨ ϕ, it cannot be followed by a (∨ E) rule either. If it is followed
by an elimination rule, it must therefore be followed by a (→ E) rule. But this happening
would contradict the fact that the proof is normal. So a (→ I) rule cannot be followed by any
elimination rule.

In a precisely similar way, it may be argued that along a major branch, a (& I) rule cannot
be followed by any elimination rule, and that a (∨ I) rule cannot be followed by any elimina-
tion rule. It thus follows that along a major branch of a normal proof, an introduction rule
can only be followed by another introduction rule. It follows that any major brach of a nor-
mal must consist of a (possibly empty) sequence of elimination rules followed by a (possibly
empty) sequence of introduction rules.

As before, the Major Branch Lemma gives a wealth of information about what is provable in
NJ. For example:

Theorem 2.43: Consistency of NJ

No atomic sentence X is provable in NJ.

Recall that the only atomic sentences in our language are the propositional variables X,Y, Z, ...
and the sentence ⊥. The proof is essentially identical to the consistency proof given for NJ(→)

(i.e., Theorem 2.17).

Proof

Suppose NJ proves S where S is either a propositional variable or the symbol ⊥. We then
know from Theorem 2.40 that there is a normal proof P whose conclusion is ⊢ S. The last
step of P cannot be an introduction rule, as each introduction rule introduces a non-atomic
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sentence into the conclusion. The last step of the proof is therefore an elimination rule. Using
the Major Branch Lemma (Lemma 2.42), it then follows that any major branch of P must
consist solely of elimination rules. But along a major branch, the elimination rules all leave
the left hand side of sequents unchanged. Because the left hand side of every leaf is non-
empty, it follows that the conclusion of P must have a non-empty left hand side, which is a
contradiction.

The following result is also of interest

Theorem 2.44

The only atomic sentence X for which ¬X provable in NJ is ⊥.

Proof

Suppose NJ proves ¬X where X is an atomic sentence distinct from ⊥. Consider a normal
proof of ⊢ ¬X . A major branch of this proof could not consist entirely of elimination rules,
because the left hand side of ⊢ ¬X is empty. Therefore the proof must end in an introduction
rule. Because ¬X is a conditional, the only possible introduction rule the proof could end in
is (→ I). The proof therefore has the form:

...
X ⊢ ⊥ (→ I)⊢ ¬X

The sequent X ⊢⊥ cannot be the conclusion of an introduction rule, and so must be the
conclusion of an elimination rule. Thus, any major branch must consist entirely of elimination
rules, followed by the (→ I) inference at the end of the proof. Because elimination rules do
not change the left hand side of a sequent along a major branch, the proof must have the form

X ⊢ X
...

X ⊢ ⊥ (→ I)⊢ ¬X
For atomic sentences X , the only case in which an elimination rule can be performed on
the leaf X ⊢ X on a major branch is the case in which X is ⊥ (in which case a (⊥ E) can be
performed). Because we are assuming thatX is distinct from ⊥, it follows that no elimination
rule can be performed on the leafX ⊢ X , and thus it is impossible to deriveX ⊢⊥ solely using
elimination rules. On the other hand, if X is ⊥, then

⊥ ⊢ ⊥ (→ I)⊢ ¬ ⊥
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is a derivation of ¬X in NJ.

From this, we easily have

Theorem 2.45: Underivability of Double Negation Elimination

If X is atomic sentence distinct from ⊥, then ¬¬X → X is not provable in NJ.

Proof

Suppose to the contrary that ¬¬X → X is provable in NJ for some atomic sentenceX distinct
from ⊥, and consider a normal proof of ⊢ ¬¬X → X . The last step in this proof cannot be
an elimination rule, as this would mean that any major branch of this proof would consist
entirely of elimination rules, and thus the concluding sequent would have non-empty left
hand side. So the final rule must be an introduction rule. Given that ¬¬X → X is neither a
conjunction nor a disjunction, the only possibility is that the last rule is (→ I):

¬¬X ⊢ X (→ I)⊢ ¬¬X → X

Because the right hand side of the sequent ¬¬X ⊢ X is atomic, it cannot be the result of an
introduction rule, and must be the result of an elimination rule. Any major branch of the
proof must therefore consist entirely of elimination rules followed by a single (→ I). Because
along a major branch the left hand side of a sequent remains unchanged when performing
elimination rules, any major branch must therefore have the form

¬¬X ⊢ ¬¬X
...

¬¬X ⊢ X (→ I)⊢ ¬¬X → X

The only elimination rule that can be applied to the leaf ¬¬X ⊢ ¬¬X along a major branch is
(→ E), which means that ¬¬X (i.e., (X →⊥) →⊥) must be the major premise, and the proof
has the form

¬¬X ⊢ ¬¬X

...
¬¬X ⊢¬X (→ E)¬¬X ⊢⊥

...
¬¬X ⊢ X (→ I)⊢ ¬¬X → X
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Thus we have that ¬¬X ⊢⊥ is derivable in NJ. Using (→ I) we then have that ⊢ ¬¬¬X is
derivable in NJ, and using the fact that ⊢ ¬¬¬X → ¬X is derivable in NJ and (→ E), we
finally have that ⊢ ¬X is derivable in NJ. This however contradicts Theorem 2.44.

Note that the sequent ¬¬ ⊥→⊥ is indeed provable in NJ. The proof is

¬¬ ⊥ ⊢ ¬¬ ⊥
¬¬ ⊥,⊥ ⊢ ⊥

(→ I)¬¬ ⊥ ⊢ ¬ ⊥ (→ E)¬¬ ⊥ ⊢ ⊥ (→ I)⊢ ¬¬ ⊥→⊥
Some further applications of the Major Branch Lemma will be given in the exercises. One of

the most interesting things about our proofs of Theorems 2.43, 2.44 and 2.45 is that they show the
unprovability of certain sequents on purely syntactic grounds. No semantic considerations of any
sort are invoked. That is to say, we do not construct ‘models’ in which certain sentences are false,
thereby somehow showing that these sentences cannot be derived. Instead, our proofs merely
consider the syntactic form of the sentences in question to argue for their unprovability.

Exercises for Section 2.15

1. Each of the following proofs in NJ is not normal. Use the techniques of this section to
transform them into normal proofs.

(a)

B, C, C → A ⊢ C

A,B, C, C → A ⊢ C
(→ I)

B, C, C → A ⊢ C → A
(→ E)

B, C, C → A ⊢ A B, C, C → A ⊢ B
(&I)

B, C, C → A ⊢ A&B
(&E)

B, C, C → A ⊢ A

(b)

A&B ⊢ A&B (&E)
A&B ⊢ A (∨I)
A&B ⊢ A ∨B

A&B,A ⊢ A&B
(&E)

A&B,A ⊢ B

A&B,B ⊢ B
(&I)

A&B,B ⊢ A&B
(&E)

A&B,B ⊢ B
(∨E)

A&B ⊢ B

2. Using the Major Branch Lemma, show that the following sequents are not derivable in NJ,
where X and Y are distinct atomic sentences, with neither equal to ⊥.

(i) X ⊢ Y
(ii) ⊢ X ∨ ¬X
(iii) ¬(X&Y ) ⊢ X , and likewise ¬(X&Y ) ⊢ Y . (Hint: consider the normal proof with the

fewest number of sequents.)
(iv) ¬(X&Y ), X ⊢ Y



146 CHAPTER 2. INTUITIONISTIC PROPOSITIONAL LOGIC ...

(v) ¬(X&Y ), X ⊢ ⊥, and likewise ¬(X&Y ), Y ⊢ ⊥
(vi) ⊢ ¬(X&Y ) → (¬X ∨ ¬Y )

3. By using the Major Branch Lemma, show that Pierce’s Rule is not derivable in NJ. (You
should be able to adapt the proof that it is not provable in NJ(→).)

4. Show that if X is a sentence constructed from atomic sentences (including ⊥) using only
the connective →, then if NJ proves ⊢ X , then NJ(→) proves ⊢ X .

2.16 The BHK Interpretation Revisited

We finally return to topic of the BHK conditions for intutionistic logic. Armed with everything
we have presented so far, we will see that there is a sense in which these laws can be vindicated in
a concrete and natural way.

Recall the four BHK conditions:

BHK1 : To prove A&B is to prove A and to prove B.
BHK2 : To prove A ∨B is to prove A or to prove B.
BHK3 : To prove A→ B is to construct a way of transforming a proof of A into a proof of B.
BHK4 : There is no proof of ⊥.

There are two main obstacles in making rigorous sense of these claims. To see the first, let us
consider BHK1. It is not true that in intuitionistic logic, any proof of A&B literally consists of a
proof of A and a proof of B, conjoined into a proof of A&B by the (&I) rule. This is because we
can introduce unnecessary detours into a proof. For example, a proof of A and a proof of B can
lead to a proof of A&B as follows:

⊢ A ⊢ B (& I)⊢ A&B ⊢ A (& I)
⊢ (A&B)&A

(& E)⊢ A&B

The problem with this proof of course is that it is not normal. A natural idea then is to think of the
BHK conditions as claims about normal proofs.

A second obstacle in making sense of the BHK conditions revolves around BHK3. This claim
tells us that proofs of conditionals are functions of a certain sort. But NJ proofs are not functions
in any literal sense – they are trees of sequents. We turn to the question of how to make sense of
BHK3 shortly.

We begin with the following theorem
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Theorem 2.46: BHK Theorem

The following are all true

(i) If a normal proof in NJ has a conclusion of the form ⊢ X&Y , then it must have the form

...
⊢ X

...
⊢ Y (& I)⊢ X&Y

where the proofs of the sequents ⊢ X and ⊢ Y are also normal.
(ii) If a normal proof in NJ has a conclusion of the form ⊢ X ∨ Y , then it must have one of

the forms:

...
⊢ X (∨ I)⊢ X ∨ Y

or
...
⊢ Y (∨ I)⊢ X ∨ Y

where the proof of the sequent ⊢ X or ⊢ Y is also normal.
(iii) If a normal proof in NJ has a conclusion of the form ⊢ X → Y , then it must have the

form

...
X ⊢ Y (→ I)⊢ X → Y

where the proof of the sequent X ⊢ Y is also normal.
(iv) No normal proof in NJ has the form

...
⊢ ⊥

Proof

For (i), suppose a normal proof in NJ has a conclusion of the form ⊢ X&Y , and consider a
major branch of this proof. This major branch cannot consist entirely of elimination rules, as
the conclusion ⊢ X&Y has an empty left hand side. Therefore the final rule of inference in
this branch must be an introduction rule. Because X&Y has the form of a conjunction, the
only introduction rule which could prove the sequent ⊢ X&Y is the (& I) rule. The proof
must therefore have the form
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...
⊢ X

...
⊢ Y (& I)⊢ X&Y

Because subproofs of normal proofs are also normal proofs, the proofs of the sequents ⊢ X

and ⊢ Y are also normal.
The proofs of (ii) and (iii) involve essentially the same form of argument. That (iv) is true

follows from Theorem 2.43.

Theorem 2.46 shows that we may view BHK1, BHK2 and BHK4 as true claims about normal
proofs.

Let us turn to condition BHK3. Is there a sense in which a normal proof of A→ B is a function
that takes us from a normal proof of A to a normal proof of B? While a normal proof of A → B

is not literally a function from normal proofs of A to normal proofs of B, it is easily seen to encode
such a function. For given any proofs of A → B and A in NJ, we can produce a proof of B in NJ
by invoking (→ E):

⊢ A→ B ⊢ A (→ E)⊢ B

This proof need not be normal, but normalizing it in the way described in the previous sections
yields a normal proof. Thus, given any proof of A→ B, we have an algorithm that takes a normal
proof of A to a normal proof of B. In this sense, BHK3 is also vindicated.

Thus we see that all of BHK1-4 may be interpreted as true claims about normal proofs of NJ.
In this sense, the proof system NJ does indeed capture the ideas behind the BHK interpretation,
and we are therefore right to think of NJ as a formalization of ‘constructive’ or ‘intuitionistic’
reasoning. One advantage (among many) of the formalism of type theory and the Curry-Howard
correspondence is the way in which it allows us to see all of this particularly clearly.

Exercises for Section 2.16

1. Show the following.

(i) It is not true in general that if NJ proves a sequent of the form ∆ ⊢ X ∨ Y , then it must
prove either ∆ ⊢ X or ∆ ⊢ Y .

(ii) If each sentence in ∆ has the form ¬Z, then if NJ proves ∆ ⊢ X ∨ Y , it must also prove
either ∆ ⊢ X or ∆ ⊢ Y .

2.17 Other Resources

For a good discussion of propositional intuitionistic logic and the Curry-Howard Correspondence,
see chapters 2 and 4 of Sorenson and Urzyczyn’s Lectures on the Curry-Howard Isomorphism [10] and
chapter 6 of Selinger’s Lecture Notes on the Lambda Calculus [9]. Another good reference focusing
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mainly on the connection with intuitionistic logic is Mints’ A Short Introduction to Intuitionistic Logic
[7]. For a discussion of the themes of this chapter more from the point of view of computer science,
chapters 8 through 14 of Pierce’s Types and Programming Languages [8] is a good introduction.

2.18 Appendix

In this section, we provide proofs for several results in the main text.

Lemma 2.34: η-reduction postponement in λ1.

For all λtype
1 -terms X,Y, Z, if X →η Y →β Z in λ

type
1 , then there is a λtype

1 -term Y ′ such that
X ↠β Y

′ ↠η Z (where ↠η is a sequence of η-reductions.)

Proof of Lemma 2.34.

As very little of the argument explicitly uses the fact that we are working in the typed λ-
calculus λtype

1 , we will omit typing superscripts in what follows for ease of readability, instead
explicitly drawing attention to facts about typing when needed.

Suppose that we have λtype
1 -terms X,Y, Z with X →η Y →β Z. Then X can be written

in the form Et′F and Y in the form EtF where E and F are sequences of symbols, and t′ is
an η-redex – i.e., a term with one of the forms λx(t(x)) (with x not free in t), ⟨π1(t), π2(t)⟩, or
case(t, [u]in1(u), [v]in2(v)). Thus we write

Et′F →η EtF →β Z

where Z is a λ-term.
The β-reduction EtF →β Z occurs by reducing some β-redex s which occurs a subex-

pression of EtF . We then have either that (i) s is a subexpression of t (where this includes the
possibility that s = t), (ii) t is a proper subexpression of s, or (iii) s and t are disjoint.

Consider first case (i). Assume that when the β-reduction in question is performed on the
subexpression s of t, we get t→β t

′′. We can then represent our reduction sequence as

Et′F →η EtF →β Et
′′F

Because t →β t
′′, we may then reverse the order of the β- and η-reductions for each of our 3

possible types of η-reduction as follows

Et′F = E

λx(t(x))

⟨π1(t), π2(t)⟩
case(t, [u]in1(u), [v]in2(v))

F ↠β E

λx(t′′(x))

⟨π1(t′′), π2(t′′)⟩
case(t′′, [u]in1(u), [v]in2(v))

F ↠η Et
′′F
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In the case in which t′ is λx(t(x)), we must use the fact that x is not free in t′′. This is true
because x is not free in t and no β-reduction introduces a new free variable.

Consider next case (iii). If s and t are disjoint, then s is either a subexpression of E or a
subexpression of F . Suppose without loss of generality that s is a subexpression of E, so that
E can be written as GsH . Then our reduction sequence has the form

GsHt′F →η GsHtF →β Gs
′HtF

where s →β s
′ and t′ →η t. In this case, the order of the β- and η-reductions may easily be

reversed as follows
GsHt′F →β Gs

′Ht′F →η Gs
′HtF

Case (ii) (t is a proper subexpression of s) requires the most care. In this case we have

Et′F →η EtF →β Z

where the β-redex s being reduced inEtF →β Z has t as a proper subexpression. We consider
each of the possible form of β-redex in turn.

First, suppose s has the form λz(M)(N). Because t is a proper subexpression of s, we
have that (a) t is λz(M), (b) t is a subexpression of M , or (c) t is a subexpression of N .

In case (a) we use some facts about typing. (This is one of the three points in the proof that
relies on the fact that we are working in the typed setting.) If t is λz(M), then the type of t has
the form α → β. The only η-reduction that returns an object of such a type is the reduction
rule λx(E(x)) →η E. Thus, t′ has the form λx(λz(M)(x)) and the reduction sequence has the
form

Eλx(λz(M)(x))F →η Eλz(M)F →β Z

where F has the form (N)F ′, i.e.,

Eλx(λz(M)(x))(N)F ′ →η Eλz(M)(N)F ′ →β EM [N/z]F ′

where x does not occur free in λz(M). Assuming as we may that x and z are distinct variables,
this means that x does not occur free in M . But then we also have the reduction sequence

Eλx(λz(M)(x))(N)F ′ →β Eλx(M [x/z])(N)F ′ →β EM [x/z][N/x]F ′ = EM [N/z]F ′,

where EM [x/z][N/x]F ′ = EM [N/z]F ′ follows from the fact that x does not occur free in
M . This is a sequence of β-reductions followed by an (empty) sequence of η-reductions, as
desired.

In case (b), because M contains t as a subexpression, we can write M as G[t/u], where u
is a completely new variable. Our reduction sequence then has the form

Eλz(G[t′/u])(N)F ′ →η Eλz(G[t/u])(N)F ′ →β EG[t/u][N/z]F
′
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which can be rewritten

Eλz(G[t′/u])(N)F ′ →β EG[t
′/u][N/z]F ′ →β EG[t/u][N/z]F

′

where we have used Lemma 2.23 to get G[t′/u][N/z] →β G[t/u][N/z], using the fact that
G[t′/u] →β G[t/u].

In case (c), using similar considerations our reduction sequence can be written in the form

Eλz(M)(G[t′/u])F ′ →η Eλz(M)(G[t/u])F ′ →β EM [G[t/u]/z]F ′

which can be rewritten

Eλz(M)(G[t′/u])F ′ →β EM [G[t′/u]/z]F ′ →η EM [G[t/u]/z]F ′

This completes the argument for case (iii) in which s has the form λz(M)(N).
Next, suppose in case (ii) that s has the form π1⟨M,N⟩. Because t is a proper subexpres-

sion of s, we have that (a) t is ⟨M,N⟩, (b) t is a subexpression of M , or (c) t is a subexpression
of N .

In case (a) we again invoke the fact that we are working in the typed setting. If t is ⟨M,N⟩,
then the type of t has the form α × β. The only η-reduction that returns an object of such a
type is the reduction rule ⟨π1(S), π2(S)⟩ →η S. Thus, t′ has the form ⟨π1⟨M,N⟩, π2⟨M,N⟩⟩
and the reduction sequence has the form

E π1⟨π1⟨M,N⟩, π2⟨M,N⟩⟩F →η Eπ1⟨M,N⟩F →β EMF

But then we also have the reduction sequence

E π1⟨π1⟨M,N⟩, π2⟨M,N⟩⟩F ↠β Eπ1⟨M,N⟩F →β EMF

This is a sequence of β-reductions followed by an (empty) sequence of η-reductions, as de-
sired.

In case (b), our reduction sequence can be written in the form

E′π1⟨G[t/u], N⟩F ′ →η E
′π1⟨G[t/u], N⟩F ′ →β E

′G[t/u]F ′

which may be rewritten

E′π1⟨G[t/u], N⟩F ′ →β E
′G[t/u]F ′ →η E

′G[t/u]F ′.

Case (c) is completely symmetric. The case in which s has the form π2⟨M,N⟩ is also com-
pletely symmetric.
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Next, suppose in case (ii) that s has the form case(in1(R), [u]P, [v]Q). Because t is a proper
subexpression of s, we have that (a) t is the subexpression in1(R), (b) t is a subexpression of
R, (c) t is a subexpression of P , or (d) t is a subexpression of Q.

In case (a), we again use some facts about typing. If t is in1(R), then the type of t
must have the form α + β. The only η-reduction that returns an object of such a type is
the reduction rule case(t, [x]in1(x), [y]in2(y)) →η t, and thus we know that t′ has the form
case(in1(R), [x]in1(x), [y]in2(y)), which both η and β reduces to in1(R). The reduction se-
quence thus has the form

E′case(case(in1(R), [x]in1(x), [y]in2(y)), [u]P, [v]Q)F ′

→η E
′case(in1(R), [u]P, [v]Q)F ′ →β E

′P [R/u]F ′

which may be rewritten

E′case(case(in1(R), [x]in1(x), [y]in2(y)), [u]P, [v]Q)F ′

→β E
′case(in1(R), [u]P, [v]Q)F ′ →β E

′P [R/u]F ′.

This is a sequence of β-reductions followed by an (empty) sequence of η-reductions, as de-
sired.

In case (b), we may rewrite R as G[t/w] (where w is a new variable), and the reduction
sequence has the form

E′case(in1(G[t
′/w]), [u]P, [v]Q)F ′ →η E

′case(in1(G[t/w]), [u]P, [v]Q)F ′ →β E
′P [G[t/w]/u]F ′

which can be rewritten

E′case(in1(G[t
′/w]), [u]P, [v]Q)F ′ →β E

′P [G[t′/w]/u]F ′ →η E
′P [G[t/w]/u]F ′

In case (c), our reduction sequence then has the form

E′case(in1(R), [u]G[t
′/w], [v]Q)F ′ →η E

′case(in1(R), [u]G[t/w], [v]Q)F ′ →β E
′G[t/w][R/u]F ′

which may be rewritten

E′case(in1(R), [u]G[t
′/w], [v]Q)F ′ →β E

′G[t′/w][R/u]F ′ →η E
′G[t/w][R/u]F ′

where again we have used Lemma 2.23 to get G[t′/w][R/u] →η G[t/w][R/u], using the fact
that G[t′/w] →η G[t/w].

In case (d) our reduction sequence has the form

E′case(in1(R), [u]P, [v]G[t
′/w])F ′ →η E

′case(in1(R), [u]P, [v]G[t/w])F
′ →β E

′P [R/u]F ′
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which may be rewritten

E′case(in1(R), [u]P, [v]G[t
′/w])F ′ →β E

′P [R/u]F ′.

This completes the argument for case (iii) in which s has the form case(in1(R), [u]P, [v]Q).
The final case in which the redex s has the form case(in2(R), [u]P, [v]Q) is completely sym-
metric.

Theorem 2.24: The Church-Rosser Theorem for β- and βη-reductions in λ1.

In the untyped λ-calculus λ1, if X ↠β Y1 and X ↠β Y2, then there is a term Z such that
Y1 ↠β Z and Y2 ↠β Z. Likewise, if X ↠βη Y1 and X ↠βη Y2, then there is a term Z such
that Y1 ↠βη Z and Y2 ↠βη Z.

Proof of Theorem 2.24.

In this proof, all λ-terms are understood to be terms of the untyped λ-calculus λ0. As before,
we assume all terms obey the Barendregt variable convention. The proof follows the same
strategy as the proofs of Theorems 1.13 and 1.20, with which familiarity is assumed.

For ease of reference, we list all redexes and their corresponding rules of βη-reduction
together:

(i) the redex λx(M)(N) reduces to M [N/x]

(ii) the redex π1⟨M,N⟩ reduces to M
(iii) the redex π2⟨M,N⟩ reduces to N
(iv) the redex case(in1(R), [u]P, [v]Q) reduces to P [R/u]
(v) the redex case(in2(R), [u]P, [v]Q) reduces to Q[R/v]

(vi) the redex λx(M(x)) reduces to M where x is not free in M
(vii) the redex ⟨π1(M), π2(M)⟩ reduces to M
(viii) the redex case(M, [u]in1(u), [v]in2(v)) reduces to M

We use the term ‘type (n) redex’ to refer to the redexes in this list. (For example, a type (vii)
redex is one of the form ⟨π1(M), π2(M)⟩.)

As before, we define a more general notion of βη-reduction that we denote ⇒βη. To begin,
note that as before for a given λ-term e the set of β- or η-redexes contained in e form a finite
set of trees when ordered under the relation of inclusion (with the innermost redexes located
at the uppermost leaves of these trees.) We would like it to be the case that whenever one
redex r lies higher than another redex r′ in one of these trees, then when the redex r′ is written
in the appropriate form (i)-(viii), we have that r is a subexpression of M,N,P,Q or R. This
guarantees that if r is reduced, r′ still maintains its original form as one of our redex types.
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As in the proof of Theorem 1.20, the problem is that there are redexes r′ containing re-
dexes r as subexpressions such that r itself is not necessarily a subexpression of the relevant
M,N,P,Q or R. To help us systematically identify all such cases, we begin by enumerating
all subexpressions of redexes that are not subexpressions of the relevant M,N,P,Q or R.

(1) λx(M) is a proper subexpression of a type (i) redex
(2) ⟨M,N⟩ is a proper subexpression of a type (ii) or (iii) redex
(3) in1(R) and in2(R) are proper subexpressions of type (iv) and (v) redexes
(4) M(x) is a proper subexpression of a type (vi) redex
(5) π1(M) and π2(M) are proper subexpression of a type (vii) redex
(6) in1(u) and in2(u) are proper subexpression of a type (viii) redex

We consider each of these cases in turn. In case (1), the only way λx(M) can be a redex is
if it is a type (vi) redex. In case (2), the only way a term ⟨M,N⟩ can be a redex is if it is a type
(vii) redex. In case (3), the terms in1(R) and in2(R) never have the form of a redex. In case
(4), the only way a term M(x) can be a redex is if it is a type (i) redex. In case (5), the only
way π1(M) or π2(M) can be a redex is if it is a type (ii) or (iii) redex. And in case (6), in1(u)

and in2(u) can never have the form of a redex.
Thus, the redexes and corresponding subredexes we need to pay special attention to are

the following, listed with their types and with the problematic subredexes explicitly indicated

(a) the type (i) redex λx(M(x))

η-redex

(N)

(b) the type (ii) or (iii) redex πi ⟨π1(M), π2(M)⟩
η-redex

(c) the type (vi) redex λx(λz(M)(x)

β-redex

)

(d) the type (vii) redex ⟨π1⟨M,N⟩
β-redex

, π2⟨M,N⟩
β-redex

⟩

In (a), it is assumed that x is not free in M , and in (c) it is assumed that x is not free in λz(M).
These redexes correspond to redex trees that contain the following structures

λx(M(x))(N)

λx(M(x))

πi⟨π1(M), π2(M)⟩

⟨π1(M), π2(M)⟩

λx(M(x))(N)

λx(M(x))

⟨π1⟨M,N⟩, π2⟨M,N⟩⟩

π2⟨M,N⟩π1⟨M,N⟩

In analogy with the proof of Theorem 1.20, we declare redexes of the form (a)-(d) prohibited. If
we perform a 1-step reduction on any non-prohibited redex, then any other non-prohibited
redex below it maintains its form as a redex. We can therefore perform a 1-step β- or η-
reduction on as many (or as few) of the non-prohibited redexes contained in the redex trees
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of e that we want, working from the innermost redexes outwards – that is, working from the
uppermost redexes downwards. As before, if doing so produces a term e′, we will say that
e ⇒β e

′. If in this way we reduce all the non-prohibited redexes contained in e, we call the
resulting term e∗ (or [e]∗), which we call the complete reduction of e. (Again, the order in which
we perform β-reductions associated with disjoint redexes does not matter.) By definition, we
then have e⇒β e

∗.
We now have a sequence of lemmas to those contained in the proofs of Theorem 1.13 and

1.20. Recall that s→βη t means s→β t or s→η t.
Lemma 1: For any λ-terms s and t, s→βη t entails s⇒βη t.
Proof: The reduction s →βη t corresponds to the case in which a single redex r in the re-
dex trees of s is reduced, with the result being t. If the redex r is not prohibited, then it is
immediate that s⇒βη t.

In order to deal with the case in which r is prohibited, we argue for the following slightly
modified version of (23) used in the proof of Theorem 1.20

If s→βη t via the reduction of a prohibited redex r, then there are disjoint redexes
r′1, ..., r

′
n properly contained in r such that s→βη t via the reduction of the redexes

r′1, ..., r
′
n.

(56)

To argue for this principle, it suffices to consider the four possible forms (a), (b), (c) or (d) that
the prohibited redex r might have. In the case in which r has the form (a) or (c), the analysis
given in the discussion of (23) in the proof of Theorem 1.20 shows that (56) holds.

In case (b), r has the form of the β-redex πi⟨π1(M), π2(M)⟩. This β-reduces to πi(M). Note
however that if in r the η-redex r′ = ⟨π1(M), π2(M)⟩ is η-reduced, the result is also πi(M),
and so (56) holds.

In case (d), r has the form of the η-redex ⟨π1⟨M,N⟩, π2⟨M,N⟩⟩. This η-reduces to ⟨M,N⟩.
Note however that if in r the disjoint β-redexes r′1 = π1⟨M,N⟩ and r′2 = π2⟨M,N⟩ are β-
reduced, the result is also ⟨M,N⟩, and so (56) holds.

Thus, (56) holds in general. Of course, any one of the redexes r′1, ..., r
′
n given in (56) may

also be prohibited. In this case, the principle (56) can be applied again to any such prohibited
r′i. Because we cannot have an infinite sequence u, u′, u′′, ... of redexes, each a subredex of the
previous one on the list, it follows that if s →βη t via the reduction of a prohibited redex r,
then there must be a set of disjoint, non-prohibited redexes r∗1, ..., r

∗
m properly contained in r

such that s→βη t via the reduction of the redexes r∗1, ..., r
∗
m. Thus, s⇒βη t.

Lemma 2: For any λ-terms s and t, s⇒βη t entails s↠βη t.
Proof: Identical to that given in the proof of Theorem 1.13
Lemma 3: For any λ-terms s, s′, t, t′, if s⇒βη s

′ and t⇒βη t
′, then s[t/v] ⇒βη s

′[t′/v].
Proof: Identical to that given in the proof of Theorem 1.20
Lemma 4: For any λ-terms s and t, if s⇒βη t then t⇒βη s

∗.
Proof: As in the proof of Theorem 1.20, we use the notation W (X,Y, ...) to compactly denote
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redexes and W r(X,Y, ...) their reductions as follows

type (i) redex : W (M,N) = λx(M)(N) W r(M,N) =M [N/x]

type (ii) redex : W (M,N) = π1⟨M,N⟩ W r(M,N) =M

type (iii) redex : W (M,N) = π2⟨M,N⟩ W r(M,N) = N

type (iv) redex : W (P,Q,R) = case(in1(R), [u]P, [v]Q) W r(P,Q,R) = P [R/u]

type (v) redex : W (P,Q,R) = case(in2(R), [u]P, [v]Q) W r(P,Q,R) = Q[R/v]

type (vi) redex : W (M) = λx(M(x)) W r(M,N) =M

type (vii) redex : W (M) = ⟨π1(M), π2(M)⟩ W r(M,N) =M

type (viii) redex : W (M) = case(M, [u]in1(u), [v]in2(v)) W r(M,N) =M

in type (vi) redexes, x is of course assumed not to be free in M .
First we show

(P1) If a redex r = W (X,Y, ...) is not prohibited and another redex r′ is properly contained
in r, then r′ is properly contained in one of X,Y, ....

(P2) For any redex W (X,Y, ...), if X ⇒βη X
′, Y ⇒βη Y

′, ... then

W r(X,Y, ...) ⇒βη W
r(X ′, Y ′, ...).

The property (P1) follows from our characterization of prohibited redexes. For a type
(i) redex, property (P2) amounts to the claim that if M ⇒βη M ′ and N ⇒βη N ′, then
M [N/x] ⇒βη M ′[N ′/x], which follows from Lemma 3. Likewise for type (iv) and (v) re-
dexes. For a type (ii) redex, property (P2) amounts to the trivial claim that if M ⇒βη M

′ and
N ⇒βη N

′, then M ⇒βη M
′. Likewise for type (iii), (vi) (vii), and (viii) redexes. So both (P1)

and (P2) are true in general. Having established these, the remainder of the proof of Lemma
4 is identical to that given in Theorem 1.20.

Given Lemma 4, the proof of Lemma 5 and remainder of the proof is the same as before,
with only trivial notational changes.

Theorem 2.26: The Church-Rosser Theorem for β- and βη-reductions in λtype
1 .

In the typed λ-calculus λtype
1 , if X ↠β Y1 and X ↠β Y2, then there is a term Z such that

Y1 ↠β Z and Y2 ↠β Z. Likewise, if X ↠βη Y1 and X ↠βη Y2, then there is a term Z such
that Y1 ↠βη Z and Y2 ↠βη Z.

Proof of Theorem 2.26.

To prove Theorems 2.26, it suffices to use the proof of Theorems 2.24 and and note that noth-
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ing more than notational alterations are required in the typed case. In particular, every term
used in these proofs can be typed appropriately if required.

Theorem 2.28: Strong Normalizability of λtype
1 .

There is no infinite sequence τ1, τ2, ... of terms in the typed λ-calculus λtype
1 for which

τ1 →β τ2 →β τ3 →β ...

Proof of Theorem 2.28.

This proof is adapted from Wojdyga [11]. We show that if there were an infinite sequence
of terms τ1, τ2, ... in the typed λ-calculus λtype

1 for which τ1 →β τ2 →β τ3 →β ..., then there
would also be an infinite sequence of terms τ ′1, τ

′
2, ... in the typed λ-calculus λtype

0 for which
τ ′1 →βη τ

′
2 →βη τ

′
3 →βη ..., thereby contradicting the strong normalizability result for λtype

0

proved in Theorem 1.33.
Pick a fundamental simple type of λtype

0 and denote it ⊥. To each type P of λtype
1 (i.e.,

each propositional type) we associate a type ∥P∥ of λtype
0 (i.e., a simple type) by applying the

following rules:

• ∥P∥ = ⊥ if M is a fundamental type or 0
• ∥P1 → P2∥ = ∥P1∥ → ∥P2∥
• ∥P1 × P2∥ = (∥P1∥ → (∥P2∥ →⊥)) →⊥
• ∥P1 + P2∥ = (∥P1∥ →⊥) → ((∥P2∥ →⊥) →⊥)

We then have
Lemma 1: For each type P of λtype

1 , ∥P∥ can be written uniquely in the form

P1 → (P2 → (...→ (Pn →⊥)...)).

Proof: A straightforward induction on the construction of P .
To each λ-term τ of λtype

1 , we associate a λ-term ∥τ∥ of λtype
0 by applying the following

rules

(1) ∥vτ∥ = v∥τ∥

(2) ∥Mα→β(Nα)∥ = ∥Mα→β∥(∥Nα∥)
(3) ∥λxα(Mβ)∥ = λx∥α∥(∥Mβ∥)
(4) ∥⟨Mα, Nβ⟩∥ = λz∥α∥→(∥β∥→⊥)(z(∥Mα∥)(∥Nβ∥))
(5) ∥π1(Mα×β)∥ = λzα1

1 ...λzαn
n (∥Mα×β∥(λu∥α∥λv∥β∥(uz1...zn)))

where ∥α∥ = α1 → (α2 → (...→ (αn →⊥)...)).
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(6) ∥π2(Mα×β)∥ = λzβ1
1 ...λzβn

n (∥Mα×β∥(λu∥α∥λv∥β∥(vz1...zn)))
where ∥β∥ = β1 → (β2 → (...→ (βn →⊥)...)).

(7) ∥inα,β
1 (Mα)∥ = λu∥α∥→⊥λv∥β∥→⊥(u∥Mα∥)

(8) ∥inα,β
2 (Nβ)∥ = λu∥α∥→⊥λv∥β∥→⊥(v∥Nβ∥)

(9) ∥case(Rα+β, [uα][P ]γ , [vβ][Q]γ)∥ =

λzγ11 ...λz
γn
n (∥Rα+β∥(λu∥α∥(∥P γ∥z1...zn))(λv∥β∥(∥Qγ∥z1...zn)))

where ∥γ∥ = γ1 → (γ2 → (...→ (γn →⊥)...)).
(10) ∥absα([M ]0)∥ = λzα1

1 ...λzαn
n (∥M0∥)

where ∥α∥ = α1 → (α2 → (...→ (αn →⊥)...)).

where the bound variables z, z1, ..., zn, u, v introduced on the right hand side of these expres-
sions are assumed to not appear anywhere on the left hand side. (Again, we do not write all
the superscripts in these typed λ-terms, but include enough superscripts that the type of any
subexpression may be easily determined.)

We then have
Lemma 2: For each λ-term P of λtype

1 of type τ , ∥P∥ is a term of λtype
0 of type ∥τ∥.

Proof: By induction on the construction of P . There are 10 cases to consider, corresponding to
each of the 10 cases in the definition of ∥τ∥ just given. The arguments are all straightforward.

For an easy example, in case (2) we must show that ∥Mα→β(Nα)∥ is a λtype
0 term of type

∥β∥. By inductive hypothesis ∥Mα→β∥ and ∥Nα∥ are λtype
0 terms of type ∥α → β∥ and ∥β∥

respectively. The type ∥α → β∥ is by definition ∥α∥ → ∥β∥. It follows immediately that
∥Mα→β(Nα)∥ = ∥Mα→β∥(∥Nα∥) is a λtype

0 term of type ∥β∥.
For a harder example, consider case (5). We must show that ∥π1(Mα×β)∥ is a λtype

0 term of
type ∥α∥. If ∥α∥ = α1 → (α2 → (... → (αn →⊥)...)), then if u has type ∥α∥ and z1, ..., zn have
types α1, ..., αn, then uz1...zn is a term of type ⊥. Thus λu∥α∥λv∥β∥(uz1...zn)) is a term of type
∥α∥ → (∥β∥ →⊥). By inductive hypothesis, ∥Mα×β∥ has type ∥α× β∥ which is by definition
(∥α∥ → (∥β∥ →⊥)) →⊥, and so ∥Mα×β∥(λu∥α∥λv∥β∥(uz1...zn)) has type ⊥. Because z1, ..., zn
have types α1, ..., αn, it then follows that λzα1

1 ...λzαn
n (∥Mα×β∥(λu∥α∥λv∥β∥(uz1...zn))) has type

α1 → (α2 → (...→ (αn →⊥)...)), i.e., type ∥α∥. Thus ∥π1(Mα×β)∥ is a λtype
0 term of type ∥α∥.

Straightforward reasoning of this sort suffices for verifying the remaining 8 cases.
The following lemma also holds
Lemma 3: IfM τ ,Nσ are λtype

1 terms and xσ a variable, then ∥M τ∥[∥Nσ∥/x∥σ∥] = ∥M τ [Nσ/xσ]∥.
Proof: Straightforward induction on the construction of the λ-term M τ . .

If σ and τ are λ-terms of λtype
0 , we write σ ↠+

βη τ just in case there is a βη-reduction of σ
to τ involving at least one step (i.e., there is one such reduction which is not a trivial 0-step
reduction.) We then have
Lemma 4: For terms M,N of λtype

1 , if M →β N , then ∥M∥ ↠+
βη ∥N∥.

Proof: We consider each of the 5 β-reduction rules of λtype
1 in turn. First, consider the reduc-

tion rule
λxσ(M τ )(Nσ) →β M

τ [Nσ/xσ].
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Then

∥λxσ(M τ )(Nσ)∥ = ∥λxσ(M τ )∥(∥Nσ∥) = λx∥σ∥(∥M τ∥)(∥Nσ∥)
→β ∥M τ∥[∥Nσ∥/x] = ∥M τ [Nσ/x]∥

as desired. Next consider the reduction rule

π1(⟨Mσ, N τ ⟩σ×τ ) →β M
σ

Then

∥π1(⟨Mσ, N τ ⟩σ×τ )∥ = λzσ1
1 ...λzσn

n (∥⟨Mσ, N τ ⟩∥(λu∥σ∥λv∥τ∥(uz1...zn)))

= λzσ1
1 ...λzσn

n (λz∥σ∥→(∥τ∥→⊥)(z(∥Mσ∥)(∥N τ∥))(λu∥σ∥λv∥τ∥(uz1...zn)))

→β λz
σ1
1 ...λzσn

n (λu∥σ∥λv∥τ∥(uz1...zn)(∥Mσ∥)(∥N τ∥))
↠β λz

σ1
1 ...λzσn

n (∥Mσ∥z1...zn) →η λz
σ1
1 ...λz

σn−1

n−1 (∥Mσ∥z1...zn−1) →η ...→η ∥Mσ∥

where ∥σ∥ = σ1 → (σ2 → (... → (σn →⊥)...)), as desired. The argument for the reduction
rule

π2(⟨Mσ, N τ ⟩σ×τ ) →β N
τ

is symmetric. Next consider the reduction rule

case(inα,β
1 (Sα)α+β, [uα]P γ , [vβ]Qγ) →β P

γ [Sα/uα]

Then

∥case(inα,β
1 (Sα)α+β, [uα]P γ , [vβ]Qγ)∥

= λzγ11 ...λz
γn
n (∥inα,β

1 (Sα)α+β∥(λu∥α∥(∥P γ∥z1...zn))(λv∥β∥(∥Qγ∥z1...zn)))

= λzγ11 ...λz
γn
n (λu∥α∥→⊥λv∥β∥→⊥(u∥Sα∥)(λu∥α∥(∥P γ∥z1...zn))(λv∥β∥(∥Qγ∥z1...zn)))

↠β λz
γ1
1 ...λz

γn
n (λu∥α∥(∥P γ∥z1...zn)∥Sα∥) →β λz

γ1
1 ...λz

γn
n (∥P γ∥[∥Sα∥/u∥α∥]z1...zn)

↠η ∥P γ∥[∥Sα∥/u∥α∥] = ∥P γ [Sα/uα]∥

where ∥γ∥ = γ1 → (γ2 → (... → (γn →⊥)...)), as desired. The argument for the reduction
rule

case(inα,β
2 (Sβ)α+β, [uα]P γ , [vβ]Qγ) →β Q

γ [Sβ/vβ]

is symmetric.
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To prove the strong normalizability of λtype
1 under β-reductions, suppose to the contrary

that there is an infinite sequence τ1, τ2, ... of simply typed λ-terms such that

τ1 →β τ2 →β τ3 →β ...

Then by Lemma 4,
∥τ1∥ ↠+

βη ∥τ2∥ ↠+
βη ∥τ3∥ ↠+

βη ...

contradicting the strong normalizability result for λtype
0 proved in Theorem 1.33.

Theorem 2.31: Soundness and Completeness of TR1.

Suppose E is an untyped λ1-term whose free variables are v1, ..., vn, and let τ1, ..., τn be types.
Then the following are equivalent:

(i) It is possible to assign types of λtype
1 to all the variables of E in such a way that the free

variables v1, ..., vn of E are assigned types τ1, ..., τn, and E itself has type X .
(ii) There is a proof of Γ ⊢ E : X in TR1, where the context Γ includes the variable declara-

tions v1 : τ1, v2 : τ2, ..., vn : τn.

Proof of Theorem 2.31.

First we prove (i) → (ii). The proof is by induction on the construction of the λ-term E. If E
is a variable, or has one of the forms E1(E2) or λv(E), then the argument given in the proof
of Theorem 1.43 suffices.

Suppose E has the form ⟨E1, E2⟩, and that by assigning the free variables v1, ..., vn of
⟨E1, E2⟩ the types τ1, ..., τn respectively, E can be assigned the type X×Y . Then by inductive
hypothesis we have

Γ1 ⊢ E1 : X and Γ2 ⊢ E2 : Y

for some contexts Γ1, Γ2 such that for any j, if vj is free in E1 (resp. E2), then vj : τj appears
in Γ1 (resp. Γ2). Letting E1 and E2 be λ-terms obeying the Barendregt variable convention
and α-equivalent to E1 and E2, by Theorem 2.30 there are proofs

Γ′
1 ⊢ E1 : X and Γ′

1 ⊢ E2 : Y

such that Γ′
1 (resp. Γ′

2) is just the set of typing declarations vj : τj for the vj that are free in E1

(resp. E2.) Let Γ be the context
v1 : τ1, ..., vn : τn.
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By adding additional variable declarations to the contexts of these proofs, we have

Γ ⊢ E1 : X and Γ ⊢ E2 : Y.

from which we may infer Γ ⊢ ⟨E1, E2⟩ : X × Y (where this may involve silent renaming of
variables). So (i) → (ii) holds in this case.

SupposeE has the form π1(E
′), and that by assigning the free variables v1, ..., vn of π1(E′)

the types τ1, ..., τn respectively, π1(E′) can be assigned type X , with E′ being assigned type
X × Y . Then by inductive hypothesis, we have

Γ ⊢ E′ : X × Y

where Γ includes the variable declarations v1 : τ1, ..., vn : τn. We then immediately have

Γ ⊢ π1(E′) : X

as desired, and so (i) → (ii) holds in this case.
Similarly straightforward arguments of this sort can be used to deal with the cases in

which E has the form π2(E
′), in1(E

′), in2(E
′) or abs(E′).

Suppose next that E has the form case(in1(R), [u]P, [v]Q). Without loss of generality, we
assume that E obeys the Barendregt variable convention. Assume that by assigning the free
variables v1, ..., vn ofE the types τ1, ..., τn respectively,E can be assigned the type Z. Suppose
that in this case R is assigned type X + Y , P is assigned type Z, and Q is assigned type Z.
Then by inductive hypothesis and Theorem 2.30 we have

Γ1 ⊢ R : X + Y and Γ2, u : X ⊢ P : Z and Γ3, v : Y ⊢ Q : Z

where each of Γ1, Γ2 and Γ3 consists of the variable declarations vj : τj for any vj that appears
free in R, P and Q respectively. Because E (and thus all its subterms) obeys the Barendregt
variable convention, neither u or v appear among the vj , and so the contexts Γ2, u : X and
Γ3, v : Y are grammatical. We thus obtain

Γ1,Γ2,Γ3 ⊢ case(in1(R), [u]P, [v]Q) : Z

as desired. The case in whichE has the form case(in2(R), [u]P, [v]Q) is of course symmetrical.
This completes the argument that (i) → (ii).

Now we prove (ii) → (i). The proof is by induction on the construction of proofs. If
Γ ⊢ E : X has the form Γ′, v : X ⊢ v : X , or is the result of an (App) or (Abs) inference, then
the argument given in the proof of Theorem 1.43 suffices. The proofs for the remaining cases
are all similar, and we simply consider the most complex case in which the proof is the result
of a case inference
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Γ ⊢ R : σ + τ Γ, u : σ ⊢ P : ρ Γ, v : τ ⊢ Q : ρ

Γ ⊢ case(R, [uσ]P, [vτ ]Q) : ρ

Assume then that we have
Γ ⊢ case(R, [uσ]P, [vτ ]Q) : ρ,

where if v1, ..., vn are the free variables of case(R, [uσ]P, [vτ ]Q), then Γ includes typing decla-
rations v1 : τ1, ..., vn : τn. Suppose that the last step in the proof of this sequent is indeed the
case rule, so that we have

Γ ⊢ R : σ + τ and Γ, u : σ ⊢ P : ρ and Γ, v : τ ⊢ Q : ρ

Then by inductive hypothesis, consistent with the free variables of R being assigned types
in accordance with Γ, theterm R may be assigned the type σ + τ , consistent with the free
variables of P being assigned types in accordance with Γ, u : σ, the term P may be assigned
the type ρ, and consistent with the free variables of Q being assigned types in accordance
with Γ, v : τ , the term Q may be assigned the type ρ. It follows that consistent with the free
variables of case(R, [uσ]P, [vτ ]Q) being assigned types in accordance with Γ, this term may
be assigned the type ρ, as desired. Thus (ii) → (i) holds.

Theorem 2.32 Soundness and Completeness of TRbt
1 .

Suppose E is a bound-typed λ1-term whose free variables are v1, ..., vn, and let τ1, ..., τn be
types. Then the following are equivalent:

(i) If the variables v1, v2, ..., vn are assigned types τ1, τ2, ..., τn respectively, then E must be
assigned type σ.

(ii) There is a proof of Γ ⊢ E : X in TRbt
1 , where the context Γ includes the variable declara-

tions v1 : τ1, v2 : τ2, ..., vn : τn.

Proof of Theorem 2.32.

This proof is largely analogous to that of Theorem 2.31 and so is omitted.
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