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An Integrated Genomic
Approach to the Assessment and

Treatment of Acute Myeloid Leukemia

Lucy A. Godley,a,f John Cunningham,b,f M. Eileen Dolan,a,f R. Stephanie Huang,a,f

Sandeep Gurbuxani,c,f Megan E. McNerney,c Richard A. Larson,a,f Hoyee Leong,f Yves Lussier,d,f

Kenan Onel,b,f Olatoyosi Odenike,a,f Wendy Stock,a,f Kevin P. White,e,f and Michelle M. Le Beaua,f

Traditionally, new scientific advances have been applied quickly to the leukemias based on the ease
with which relatively pure samples of malignant cells can be obtained. Currently, our arsenal of
approaches used to characterize an individual’s acute myeloid leukemia (AML) combines hemato-
pathologic evaluation, flow cytometry, cytogenetic analysis, and molecular studies focused on a few
key genes. The advent of high-throughput methods capable of full-genome evaluation presents new
options for a revolutionary change in the way we diagnose, characterize, and treat AML. Next-
generation DNA sequencing techniques allow full sequencing of a cancer genome or transcrip-
tome, with the hope that this will be affordable for routine clinical care within the decade.
Microarray-based testing will define gene and miRNA expression, DNA methylation patterns,
chromosomal imbalances, and predisposition to disease and chemosensitivity. The vision for the
future entails an integrated and automated approach to these analyses, bringing the possibility of
formulating an individualized treatment plan within days of a patient’s initial presentation. With
these expectations comes the hope that such an approach will lead to decreased toxicities and
prolonged survival for patients.
Semin Oncol 38:215-224 © 2011 Elsevier Inc. All rights reserved.
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The current evaluation of patients with acute
leukemia involves careful hematopathologic re-
view of leukemic cells. Leukemic cells are most

ften present in the bone marrow and peripheral blood
ut are occasionally found in other sites, such as in the
erebrospinal fluid and/or in granulocytic sarcomas,
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hich can occur almost anywhere in the body. Com-
lete assessment of leukemia consists of hematopatho-

ogic assessment of involved tissue, most typically the
one marrow core and aspirate samples, as well as
eripheral blood, and complementary studies, such as
ow cytometry and cytogenetic and molecular analy-
es, including reverse transcription–polymerase chain
eaction (PCR) and/or sequencing.1,2 A full description
f the current evaluation for patients with acute my-
loid leukemia (AML) can be found in the accompany-
ng article by Odenike et al in this issue of Seminars in
ncology.
Given the rapid progress in genomic analysis and

equencing of the human genome, one can envision a
ew approach to patients with acute leukemia that
elies more heavily on genomic-based analyses.3–10 This

article will focus on that vision—a vision for how
patients may be assessed clinically in the future, a
promising one that is approaching quickly. This assess-
ment will be based on molecular profiling of the leu-
kemic cells, as well as host factors that influence the
development and treatment of the disease (Figure 1).
Some of the techniques are described more fully in the

article by Seiwert et al in this issue of Seminars. Note
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216 L.A. Godley et al
that although this review will focus on AML, the prin-
ciples are applicable to all forms of hematopoietic
malignancies.

PROFILING THE LEUKEMIC CELLS

Whole Genome Sequencing

The development of next-generation, high-through-
put DNA sequencing offers the possibility to sequence
a genome completely, providing entire genomic
sequence information on which to characterize a pa-
tient sample. For patients with AML, this approach is
eminently feasible, given the relative ease with which
leukemic cells can be collected from the peripheral
blood or bone marrow, or by leukapheresis. In addi-
tion, populations of immature cells (hematopoietic
stem and progenitor cells) that are enriched for the
leukemic population, or mature cells can be isolated
using flow cytometry. This approach was first used to
characterize a genome from a patient with a normal
karyotype, given the assumption that cytogenetically
normal AML is driven by mutations not observable by
traditional cytogenetic techniques. From this first se-
quenced AML, 10 mutations in individual genes were
discovered, two in pathways already known to be in-
volved in AML (FLT3 and NPM1), and eight in genes
not previously implicated in AML: nonsense mutations
in CDH24 and SLC15A1; and missense mutations in

NDC1, PTPRT, GRINL1B, GPR123, EBI2, and
CLKC.11 Ley and Mardis and their colleagues went on

to sequence a second AML genome from another cyto-
genetically normal case and found somatic mutations in
12 genes: missense mutations in CDC42, NRAS, IDH1,
IMPG2, ANKRD26, LTA4H, FREM2; a splice site muta-
tion in C19orf62; silent mutations in SRRM1 and

CDHA6; and in-frame insertions in CEP170 and
PM1.12 One hope of using this technology is that by

Figure 1. Initial leukemia analysis: current versus potentia
studying individual AML genomes, we will identify
genes commonly mutated in AML and other cancers
but heretofore unrecognized.13. Indeed, to date, IDH1

utations have been confirmed as recurrent mutations
n 14% of cytogenetically normal AMLs.14 In addition,
the IDH2 gene is mutated in 19% of AMLs with a

ormal karyotype, with mutation of either IDH gene
onferring a relatively poor prognosis.14 Thus, from
hese two AML genomes, it appears that AMLs with a
ormal karyotype have about 10 to 15 somatic muta-
ions, a number that is remarkably similar to that seen
n solid tumors.15 In the future, the identification of
enes commonly mutated in AML will reveal novel
athways that can be targeted therapeutically to im-
rove patient survival.

Gene Expression Profiling

Currently, the major ways in which we distinguish
AML subtypes involve hematopathologic diagnosis
with flow cytometry and cytogenetic/molecular analy-
ses. Inherent in the distinction among the subclasses of
AML is the notion that different subtypes of AML ex-
press different proteins, either at the cell surface, de-
fining AML types distinguishable based on flow cytom-
etry, or as a result of chromosomal rearrangements or
gene mutations. Therefore, it is logical that a technique
that can define transcriptional gene expression globally
should be able to distinguish among AML subtypes.9

(For the purposes of this article, the term “transcrip-
tional gene expression” will be shortened to “gene
expression.”) That prediction was first proven when
AML samples were shown to have different gene ex-
pression profiles compared to ALL cases.16 Additional
studies have followed and, at present, gene expression
profiling is able to predict accurately some of the major
cytogenetic subgroups of AML, including those with
MLL rearrangements, t(8;21), inv(16)/t(16;16), and

approaches.
t(15;17), but it is less accurate with other types of
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Integrated genomic approach to AML 217
AML.17 Furthermore, a gene expression signature for
ctivation of FLT3 was better able to predict prognosis
or AML cases with a normal karyotype than the detec-
ion of a FLT3 internal tandem duplication mutation by
olecular testing.18

The hope for this technology is that it will be able to
refine our subclassification scheme for AML and define
new subtypes of AML that will be more predictive of
the likelihood of remission and survival than conven-
tional prognostic factors.19,20 A second application of
the technique is that it could be used at diagnosis to
predict the chemosensitivity of a patient’s AML cells
and to help guide the choice of an induction chemo-
therapy regimen. The vision for future diagnosis would
be that gene expression profiling could be used as a
central diagnostic modality to define AML subtypes.
International cooperative studies such as the Microar-
ray Innovations in Leukemia (MILE) study will help to
standardize gene expression profiling and usher it in as
a standard clinical test.21

EPIGENETIC PROFILING

Profiling Based on DNA Methylation Patterns

In addition to expression profiling, DNA methyl-
ation patterns can also be used to distinguish cell types.
The ability to distinguish the major cytogenetic AML
subgroups based on DNA methylation distribution was
demonstrated by Figueroa et al, who performed a mi-
croarray-based HpaII tiny fragment enrichment by liga-
tion-mediated PCR (HELP) assay to classify 344 cases of
AML.22 HELP was able to distinguish 16 AML subgroups
ach with distinctive DNA methylation patterns, in-
luding some subgroups recognized by their cytoge-
etic abnormalities, those with t(8;21), inv(16), and
(15;17). Notably, the fusion proteins produced by
hese chromosomal rearrangements are known to in-
eract with DNA methyltransferase and histone
eacetylase enzymes, and therefore, it is reassuring that
n assay that detects epigenetic changes can distin-
uish these subgroups. Importantly, the HELP assay
as able to identify five new AML subgroups, as well as

hose with CEBPA alterations. Again, as seen with the
ther emerging genomic technologies, the power of
hese high-throughput techniques is that by measuring

novel feature of AML cells, new biological insights
ill be gained.

Profiling Based on
MicroRNA Expression Patterns

Similar to the justification for gene expression pro-
filing, microRNA (miRNA) profiling is based on the
hypothesis that expression of these small, non-coding
RNAs varies widely among cells, and this variability in
expression can be used as a basis for cell classifica-

tion.23–26 Indeed, miRNA expression patterns, like gene
expression profiling, can distinguish some of the major
subclasses of AML, including those with particular cy-
togenetic or molecular features, such as MLL rearrange-
ments, trisomy 8, internal tandem duplications of FLT3,
core-binding factor rearrangements, t(15;17), and mu-
tations of NPM1 or CEBPA.27–29

The true power of genome-wide miRNA profiling
techniques, however, lies in their ability to reveal in-
sights into cellular biology not already appreciated by
current methods. Toward that end, Marcucci and col-
leagues characterized miRNA expression in patients
with normal karyotype AML and found that increased
expression of the miR-181 family was associated with
expression of genes of innate immunity, such as those
encoding interleukin-1� and the toll-like receptors

LR2, TLR4, and TLR8, and a decreased risk of failure to
chieve complete remission, relapse, or death.30 Fur-

thermore, downregulation of miR124, miR128–1,
miR194, miR219–5p, miR220a, and miR320 was linked
to an aggressive clinical course.30 In addition, Garzon et
l found that patients with high expression of miR-191
nd miR-199a had worse outcomes than those with
ower expression levels.27

Single-Nucleotide Polymorphism Arrays

The identification of recurrent chromosomal rear-
rangements in a particular patient’s AML, typically
performed by G-banding of chromosomes and karyo-
type analysis, is one of the most critical prognostic
indicators and drives recommendations regarding
the mode of consolidation chemotherapy. Genome-
based techniques seek to define chromosomal
changes that are less than 5 Mb in size and beyond
the level of detection by traditional methods.3,7 Sin-
gle-nucleotide polymorphism (SNP) arrays are mi-
croarray-based platforms that allow the detection of
single-nucleotide variations at up to 900,000 separate
genomic loci, at an average intermarker distance of
less than 700 bp. This approach allows the analysis
of DNA copy number variations (CNVs) that may not
be detectable by standard karyotype analysis, such as
amplifications and deletions, while also yielding in-
formation about smaller regions of DNA loss, includ-
ing both loss of heterozygosity (LOH) and the pres-
ence of copy-neutral LOH (sometimes referred to as
uniparental disomy [UPD]).

The technique has been applied to patients with
normal karyotype AML to determine whether cytoge-
netic abnormalities were present that were undetect-
able by standard methods. Akagi et al were able to
identify cryptic chromosomal abnormalities in 24% of
AMLs with a normal karyotype, with chromosomal
losses encompassing numerous tumor-suppressor
genes, including NF1, ETV6 (TEL), and CDKN2A/2B.31

In addition, this approach has been used to identify

cryptic copy number losses of chromosome arm 20q in
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AML patients.32 Serrano et al identified loss of heterozy-
osity without an associated CNV, indicating acquired
opy-neutral LOH in 23% of 22 AML cases with a nor-
al karyotype.33 Walter et al used similar methodology

n a larger cohort of 86 AML cases, of which 34 had a
ormal karyotype, and found six cases of copy-neutral
OH within those samples with a normal karyotype
18%).34 Cryptic CNVs were identified in 40% of the
amples overall. The largest published series of normal
aryotype AML cases involved the analysis of 157 pa-
ients, and copy-neutral LOH was identified in 12% of
ases, with 6p, 11p, and 13q being the genetic loci
ost commonly affected.35 Copy-neutral LOH was

ommonly associated with cases that had mutations in
PM1 or CEBPA, a finding also seen by the Serrano

group, albeit with fewer cases.
The method holds great promise due to its ability

to detect these abnormalities at high resolution.
However, because of their exquisite sensitivity, it is
crucial that the technique is performed on leukemia
(tumor), as well as matched normal DNA, in order to
distinguish cancer-specific lesions from constitu-
tional changes that may be otherwise undetectable.36

Moreover, balanced rearrangements, such as recur-
ring translocations, are not detected typically by this
approach. Whether the changes identified provide
prognostic information beyond that conferred by
conventional cytogenetic and molecular testing re-
mains to be determined with larger prospective anal-
yses. To date, Parkin et al have studied the largest
series of AML patients using this technique, demon-
strating that among 114 AML patients, the presence
of more than two genomic lesions detected by SNP
arrays doubled the risk of a patient’s death when
controlling for age and conventional cytogenetic
karyotype, with increased risk conferred by addi-
tional chromosomal changes.37 In addition, patients
with a TP53 mutation or a TP53 mutation combined
with LOH for chromosome arm 17p were at least
twice as likely to die than patients without these
changes.

Because reciprocal chromosomal translocations do
not involve a net loss of genetic material, but instead
have a rearrangement of the chromosomes, SNP arrays
will not detect most recurring reciprocal chromosomal
translocations unless they contain large deletions at the
breakpoints. Thus, in the future, SNP arrays will likely
be used in conjunction with cytogenetic/fluorescence
in situ hybridization (FISH) analysis and/or high-
throughput sequencing to characterize the full comple-
ment of genetic abnormalities present in a leukemia
sample. Whole genome/transcriptome sequencing (see
below) can identify cryptic translocations and juxtapo-
sitions of DNA sequences that are not detectable by
cytogenetic analysis, and therefore may serve as an
important adjunct to traditional methods, with increas-

ing utility in the future.
Transcriptome/Exon Capture/
Array-Based Genomic Resequencing

The introduction of high-throughput DNA sequenc-
ing technologies in recent years has made full-scale
exon sequencing feasible.38 Two general approaches
can be envisioned. If genes of a certain class are the
focus, resequencing can be directed at those genes in
particular. Otherwise, a genome-wide approach can be
taken, without bias to the gene class of interest. Both
schemes have been applied to AML, and several groups
have performed large-scale resequencing of AML ge-
nomes, allowing the identification of somatic muta-
tions.

Because of the relatively high frequency of mutation
of genes encoding tyrosine kinases, several groups
have led resequencing efforts focused on genes encod-
ing these receptors. Ley and colleagues performed re-
sequencing of 26 tyrosine kinase genes in AML pa-
tients, identifying novel mutations in JAK1, DDR1, and
NTRK1, each seen at a frequency of 2%.39,40 Jiang et al
ocused on the FLT3 gene and identified novel point
utations at amino acid N841, at least one of which

esulted in constitutive activation of the encoded re-
eptor.41

By taking an unbiased approach, Yamashita et al
have identified 11 somatic mutations in 19 cases of
AML and one case of a myeloproliferative disorder,
including JAK3 mutations present in 3% of AML cases
and an R882H mutation found in DNMT3A, one of the
de novo DNA methyltransferases.42

The spectrum of mutated genes in different AML
cytogenetic groups remains unknown. Similarly, we do
not yet know how many of these mutated genes are
shared across samples or are unique to each individual
case. Large numbers of patients may be required to
recognize the true incidence of these alterations. Fur-
thermore, we do not yet know whether whole ge-
nome/transcriptome sequencing will be effective in
defining multiple subclones within a single patient. The
hope is that the identification of somatic mutations in
leukemias will yield new insights into disease patho-
genesis and will highlight new pathways and/or impli-
cate pathways characterized in other systems that can
become therapeutic targets.

Assessing Chemosensitivity

One of the roadblocks to successful treatment of
AML is the inherent drug resistance of the tumor cells.
Despite decades of research into the disease, standard
induction chemotherapy regimens have remained
largely unchanged, and consist of combinations of cyt-
arabine and an anthracycline or anthracenedione. Clin-
ically, drug sensitivity is measured empirically by the
degree of clearance of leukemic blasts in the peripheral
blood and bone marrow at designated time points after

treatment.
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New technologies may be able to measure inherent
chemosensitivity rapidly at diagnosis to facilitate the
choice of drug combinations and predict clinical re-
sponse. For example, a chemosensitivity index, Ci, has

een developed that allows a predictive accuracy of
8% for treatment response and is a strong prognostic
actor in overall survival.43 Briefly, a patient’s leukemic

cells are incubated in vitro with a chemotherapy drug
of interest, and the Ci is calculated from the area under
he curve as an exact measure for the total dose re-
ponse relation. In the future, assays such as this may
e combined with information about a patient’s ge-
etic composition (see below) to predict response to
articular agents.

PROFILING THE HOST

Candidate Gene Approach

Among the different subtypes of AML, therapy-re-
lated myeloid neoplasms (t-MNs), those that arise after
treatment with chemotherapy and/or radiation for an-
other condition, may have the most influence from
inherited host factors.44,45 For this reason, much effort

as gone into identifying the germline loci and path-
ays that increase a patient’s risk for developing this

omplication of prior treatment. Most studies in the
ast have focused on determining the frequency of a

ew key polymorphisms in genes that comprise path-
ays that are critical for hematopoiesis or drug metab-
lism (reviewed by Seedhouse and Russell46). For ex-
mple, several groups have reported an increased
requency of an inactivating polymorphism (187Ser) in
he gene encoding NAD(P)H:quinone oxidoreductase,
QO1.47–49 The NQO1 enzyme converts quinones de-

rived from benzene into hydroquinones, which are less
toxic. Therefore, people expressing an inactive form of
NQO1 would be expected to be more susceptible to
the carcinogenic effects of benzene and possibly other
chemicals. Homozygous variant carriers may be partic-
ularly vulnerable to leukemogenic changes induced by
carcinogens, and heterozygotes are at risk for treat-
ment-induced mutation or loss of the remaining wild-
type allele in their hematopoietic stem cells. A large
Japanese study of patients with AML de novo and t-AML
found that the NQO1 polymorphism was more strongly
associated with t-AML than polymorphisms in GSTM1,
GSTT1, and CYP3A4.50 Furthermore, patients carrying
the NQO1–187Ser allele who had been exposed to
chemotherapy had significantly shorter telomeres in
their neutrophils and lymphocytes and were more
likely to develop clonal hematopoiesis than patients
with wild-type NQO1 alleles.51 These findings provide a

olecular link between NQO1 genotype and an in-
creased risk of developing t-AML.

Guillem et al identified a haplotype in MTHFR, the

gene encoding methylene tetrahydrofolate reductase,
which conferred an increased risk in particular patient
populations.52 This enzyme regulates cellular folate me-
tabolism, and therefore, is critical to the action of
methotrexate and other chemotherapy drugs that are
dependent on folate pools. Two SNPs were included in
the haplotype: 677C/T and 1298A/C. An increased risk
of developing t-AML was associated with the 677T/
1298A haplotype in breast cancer patients and the
677C/1298C haplotype in patients with a primary he-
matopoietic malignancy.

Several groups have examined the genes encoding
components of DNA repair pathways, like hMSH2 and
hMLH1. Patients with t-AML who have been previously
treated with O(6)-guanine alkylating agents, such as
cyclophosphamide and procarbazine, have an in-
creased frequency of a variant C SNP that occurs within
an intron splice acceptor of the hMSH2 gene.53 A vari-
ant SNP at position –93 of the hMLH1 promoter was
found in 75% of patients with t-AML who had received
methylating chemotherapy as part of prior therapy for
Hodgkin disease.54 In contrast, this variant SNP was
ound in only 30% of patients with t-AML without prior
xposure to methylating agents. In patients who had
een treated with a methylating agent, the presence of
he variant –93 SNP conferred a significantly increased
isk of developing t-AML, with an odds ratio of 5.3.

Because de novo AML is so heterogeneous, a system-
tic review of these predisposing factors is usually not
ndertaken. However, certain inherited susceptibilities
redispose to AML, and a careful family history may
uggest one of these in rare cases.55 Inherited RUNX1

mutations, found in familial platelet disorder (OMIM
601399), may be discovered through the identification
of unaffected family members with mildly lowered
platelet counts.56,57 Children with neurofibromatosis
type 1 who have germline NF1 mutations that result in
altered RAS signaling are at an increased risk of devel-
oping a myeloproliferative neoplasm or t-MN.58 In ad-

ition, patients with Fanconi anemia, who have muta-
ions in one of 11 genes that encode proteins involved
n DNA damage and repair, are at increased risk of
eveloping t-MN.59 Li-Fraumeni syndrome involves in-
erited TP53 mutations and predisposes to breast can-
ers, brain tumors, osteosarcomas, and leukemias, in-
luding an increased risk for developing t-AML.60

Furthermore, constitutional genetic variations in the
p53 pathway affect t-AML risk.61 The MDM2 SNP309

olymorphism is located within a binding site for the
P1 transcription factor in the MDM2 core promoter,
nd SP1 binds more effectively to the G allele com-
ared to the T allele,62–64 resulting in more efficient
ranscription of MDM2 and consequently lower basal
evels of TP53. The TP53 Arg72Pro polymorphism al-
ers the ability of the TP53 protein to induce apoptosis
ersus cell-cycle arrest.65–67 Although neither polymor-

phism alone influenced risk of t-AML, an interactive

effect was detected such that MDM2 TT TP53 Arg/Arg
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double homozygote variants, and individuals carrying
both a MDM2 G allele and a TP53 Pro allele are at
increased risk of t-AML (P for interaction � .009). In
addition, the risk of developing t-AML was 2.7-fold
higher in TP53 Pro/Pro homozygotes who received
radiotherapy compared to TP53 Arg/Arg homozygotes
(P � .04). These data indicate that the MDM2 and TP53
variants interact to modulate responses to genotoxic
therapy and are determinants of risk in t-AML.

Genome-Wide Association Studies

Genome-wide association studies (GWAS) are cur-
rently being used to assess several aspects of host
biology.68 For example, GWAS have been performed to
dentify inherited sequence variants that predispose to
isease. Again, these approaches have been applied
arly on to the t-MNs, since these patients have already
emonstrated a predilection for cancer development.

In the first such GWAS to identify inherited se-
uence variants that predispose to the development of
-MNs, Knight et al used multiple patient cohorts to
dentify multiple genetic loci that are linked with dis-
ase.69 In the future, patients may be screened for the

presence of these alleles and counseled about their risk
of developing t-MN prior to receiving chemotherapy
for their first diagnosis of cancer. Further, physicians
may, in the future, avoid the use of particular chemo-
therapy agents or regimens depending on the genotype
of the patient and if suitable alternative therapies are
available.

GENETIC VARIANTS AND
INDIVIDUAL DRUG SENSITIVITY

Both candidate gene approaches and GWAS have
been used to determine genetic variants in particular
genes and/or genetic loci that may be related to the
variability seen in drug sensitivity among individuals. As
an example, we will review the studies relating to
cytarabine and daunorubicin, the drugs typically used
for AML induction chemotherapy.

The Dolan group has harnessed the power of genet-
ics by studying cytotoxicity within lymphoblastoid cell
lines derived from members of family pedigrees to
determine that 29% of the variation in daunorubicin
sensitivity in vitro is due to genetic factors.70,71 Further-
more, expression of CYP1B1, specifically, and the pres-
ence of particular SNPs correlated with cellular sensi-
tivity to daunorubici.71 Naoe and colleagues have
shown that polymorphisms within GSTT1 correlate
with progression-free survival and overall survival for
AML patients treated with daunorubicin-containing
chemotherapy regimens.72

Hartford et al have used a GWAS to identify popula-
tion-specific genetic variants that correlate with in vitro

sensitivity to cytarabine.73 In this work, multiple SNPs
were identified that correlated with altered gene ex-
pression of potential target genes. Among the identified
SNPs, four of them accounted for about half of the
variability seen in susceptibility to cytarabine. Interest-
ingly, the most “usual” suspects, ie, SNPs that are likely
to regulate genes in the cytarabine metabolic pathway
(eg, DCK, CDA, NT5C2, DCTD, RRM1, and RRM2),
were not significantly associated with cytarabine sensi-
tivity at the genome-wide level. However, SNPs that
affect DCK expression and activity were identified to

e associated with cellular sensitivity to cytarabine at a
ess stringent P value.74

THE NEED FOR ANALYSIS
OF CONSTITUTIONAL SAMPLES

As we embark on more genomic analysis of patient
samples, the need for analysis of constitutional DNA
becomes critical to distinguish somatic from inherited
mutations. Techniques such as transcriptome sequenc-
ing, exon capture approaches, and array-based rese-
quencing schemes will all identify single–base pair
variants and CNVs, some not detectable by other meth-
ods. Because de novo AML and t-MN can involve so-
matic mutations of the same genes that cause inherited
leukemia predisposition (eg, TP53, RUNX1, and
CEBPA), sequencing of constitutional DNA becomes
essential to be able to distinguish inherited from so-
matic mutations.

A VISION OF THE
FUTURE FOR LEUKEMIA ASSESSMENT

One can envision a new approach to the character-
ization of an individual’s AML in which initial classifi-
cation is performed using a combination of traditional
methods, like hematopathologic review and cytoge-
netic and molecular methods, complemented by next-
generation DNA sequencing techniques and genome-
wide microarray-based testing (Figure 2). Disease
classification, in the future, may depend on a full char-
acterization of gene and miRNA expression, DNA meth-
ylation patterns, chromosomal rearrangements, and
predisposition to disease and chemosensitivity. The
diagnosis, characterization of the initial disease, devel-
opment of a treatment plan, and subsequent patient
follow-up are likely to involve an iterative process, one
in which genetic and genomic analyses are used at each
stage of treatment, with the resulting information in-
forming the next stage of therapy.75 Multiple assays will
probably be used simultaneously along with oncoinfor-
matic analyses to give an integrated description of the
genetic and epigenetic alterations that are present at
initial presentation and subsequent stages. It is unlikely
that whole genome/transcriptome sequencing will be
used routinely after therapy or when patients are in

remission, since the burden of disease will be lowest
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then, and as performed today, this technique is best for
defining the majority cell population. Molecular assays
to detect specific mutations and/or FISH analysis will
likely be used to detect specific mutations identified in
the original leukemic clone. In the future, these analy-
ses may be automated so that these data are available
within days/weeks of identifying a new AML patient,
conferring the ability to customize therapy based on

Malignant
cells

Non-malignant
cells

Microarray-based Profiling

Transcriptional expression

Epigenetics

SNP/CNVs

Chemosensitivity of
malignancy

Identification of
cellular pathways

to leukemogenesis

Predisposition to
malignancy

Inherited sensitivity to
chemotherapy
(pharmacogenomics)

Individualized Therapy

Whole Genome Sequencing

Figure 2. A vision of potential future automated leukemia
analysis. Initial samples of malignant leukemia cells will be
collected by venipuncture, bone marrow biopsy, or leu-
kapheresis. Nonmalignant cells will be collected from oral
washes or biopsies of the skin or bone marrow. DNA and
RNA will be isolated from these cells and will be subjected
to an array of approaches to characterize the leukemia, as
well as to define the constitutional make-up of the patient.
Whole genome or transcriptome sequencing will define the
genetic subtype of leukemia and the presence of chromo-
somal or genetic changes. Microarray profiling will enable
characterization based on transcriptional expression, distri-
bution of epigenetic modifications, copy number varia-
tions, and an initial assessment of chemosensitivity. These
analyses also may identify pathways that contribute to leu-
kemogenesis. Analysis of nonmalignant cells will determine
genetic predisposition to disease and chemosensitivity.
Combined, these approaches will lead to optimized, indi-
vidualized treatment plans for patients, which will result in
decreased toxicity and increased survival.
individual molecular parameters.
Some of the techniques described above provide
overlapping information. For example, information
about gene expression is obtained both from microar-
ray-based gene expression profiling, as well as from
transcriptome sequencing. Whether both techniques
will be used in the future, or whether one approach
will predominate in the clinical setting may be influ-
enced by the bioinformatic tools and specialized equip-
ment and training needed to perform the analyses. The
widespread adaptation of these methods will also re-
quire that companies produce and market machines
and software tools needed for the assays. At present,
neither gene expression profiling nor transcriptome
sequencing is a routine analytical diagnostic tool.
Whether this reflects the fact that we have not yet
developed the informatics tools to classify patients
completely, or whether this is related to practical as-
pects of availability, cost, and the expertise needed to
perform the assays, is not clear. Physicians also may not
be motivated yet to incorporate the vast amount of
genetic data into their treatment programs until the
field at large demonstrates that the information gained
provides prognostic/treatment data beyond that cur-
rently obtained by cytogenetic and/or molecular anal-
ysis.

The actual adaptation of moving from applying
genomic-based methods to achieve more sophisticated
characterization of leukemic cells to using such analy-
ses in clinical decision-making is challenging. These
genomic approaches will have to be combined with
advances in drug development,75 so that when a profile
s obtained that suggests a poor prognosis and relative
esistance to cytarabine, physicians have effective alter-
ative chemotherapy regimens to offer a patient. The
ere characterization of disease will not improve pa-

ient survival unless we develop an array of efficacious
reatment plans, ones aimed at killing cells with various
rowth characteristics.

One promise of the use of these high-throughput
pproaches and sophisticated informatics platforms is
hat they can be used, not just for clinical assessment of
ndividuals, but also to define new cellular and molec-
lar pathways that lead to leukemogenesis, identify
ew therapeutic targets, and discover new biomarkers
hat can be used to monitor treatment response.75 Per-
onalized medicine based on a global assessment of the
iseased cells and the patient’s genetic make-up is
easible and will hopefully bring with it advances in
atient survival as treatments are geared to individuals.
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