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 CURRENT
OPINION The significance of CUX1 and chromosome 7 in

myeloid malignancies

Matthew R.M. Jottea and Megan E. McNerneya,b,c

Purpose of review

Loss of chromosome 7 has long been associated with adverse-risk myeloid malignancy. In the last decade,
CUX1 has been identified as a critical tumor suppressor gene (TSG) located within a commonly deleted
segment of chromosome arm 7q. Additional genes encoded on 7q have also been identified as bona fide
myeloid tumor suppressors, further implicating chromosome 7 deletions in disease pathogenesis. This
review will discuss the clinical implications of del(7q) and CUX1 mutations, both in disease and clonal
hematopoiesis, and synthesize recent literature on CUX1 and other chromosome 7 TSGs.

Recent findings

Two major studies, including a new mouse model, have been published that support a role for CUX1
inactivation in the development of myeloid neoplasms. Additional recent studies describe the cellular and
hematopoietic effects from loss of the 7q genes LUC7L2 and KMT2C/MLL3, and the implications of
chromosome 7 deletions in clonal hematopoiesis.

Summary

Mounting evidence supports CUX1 as being a key chromosome 7 TSG. As 7q encodes additional myeloid
regulators and tumor suppressors, improved models of chromosome loss are needed to interrogate
combinatorial loss of these critical 7q genes.

Keywords

7q, contiguous gene syndrome, CUX1, monosomy 7, myeloid neoplasia

INTRODUCTION

Loss of all or part of chromosome 7 [-7/del(7q)] is
among the most common chromosomal abnormal-
ities in high-risk myeloid disease [1]. The high fre-
quency of -7/del(7q) suggests chromosome 7
harbors tumor suppressor genes (TSGs) important
to disease pathogenesis, and -7/del(7q) has therefore
been the subject of intense investigation. However,
a major challenge in the identification of candidate
tumor suppressors is the lack of recurrent second-hit
mutations on the remaining allele [2,3]. These
observations suggest that chromosome 7 TSGs likely
act in a haploinsufficient manner, whereby single-
copy loss of a gene produces a mutant phenotype, in
contrast to Knudson’s classical two-hit hypothesis of
tumor suppressors [4].

In an alternative attempt to map candidate
TSGs, minimally deleted regions (MDR) have been
identified at the cytogenetic bands 7q22, 7q34, and
7q35–36 by aligning commonly deleted segments
of 7q [2,3]. In 2013, CUX1 was identified as one of
the most significantly differentially expressed genes
within the 7q22 MDR in -7/del(7q) leukemias, with

�50% expression compared to cases with both cop-
ies of CUX1 [5]. CUX1 is a nonclustered homeobox
transcription factor, and knockdown of the ortholog
of CUX1 in Drosophila melanogaster leads to myeloid
cell hyperplasia [5]. In addition to CUX1, 7q
contains multiple additional TSGs and myeloid reg-
ulators (Table 1) [6,7
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,74–77]. In this review we focus on
recent findings regarding CUX1 and other 7q-
encoded genes, including the splicing factor LUC7L2
and the histone lysine methyltransferase KMT2C/
MLL3. We discuss chromosome 7 deletions in clonal
hematopoiesis of indeterminate potential (CHIP),
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briefly review approaches to model del(7q), and
endorse the concept of 7q as a contiguous gene
syndrome (CGS) region in which combined loss of
multiple dose-sensitive TSGs contributes to disease.

CLINICAL FEATURES AND IMPLICATIONS
OF -7/del(7q)

Chromosome 7alterations inhematologicmalignan-
cies are almost always deletions or copy-neutral loss
of heterozygosity (LOH), in contrast to solid tumors
where amplifications are observed [78]. -7/del(7q)
occurs in a wide range of myeloid diseases, including
5–10% of acute myeloid leukemias (AML) and adult
myelodysplastic syndromes (MDS), 40% of pediatric
MDS, 40% of myeloid neoplasms arising from cancer
predisposition syndromes, and 50% of therapy-
related myeloid neoplasms (t-MN) [9,79–81]. -7/
del(7q) is associated with higher-risk MDS, faster time
to transformation to AML, and poor overall survival
in AML, and is therefore considered an adverse prog-
nostic event [3,79]. Within these diseases, chromo-
some 7 deletions often co-occur with 5q deletions
and gains of chromosome 8, but also frequentlyoccur
as isolated cytogenetic events [9,79–81]. Together,
these findings strongly suggest a role for chromo-
some 7 deletions in disease pathogenesis.

A major unanswered question is to what degree
�7/del(7q) influences disease initiation and patho-
genesis. Analyses of clonal hierarchies in AML, t-MN,
and CHIP suggest chromosome 7 alterations are early
events [82–87]. In CHIP, seemingly healthy individ-
uals with no history of hematologic malignancy
harbor low-frequency alterations in genes associated
with leukemia in their blood; these individuals are at
an increased risk of development of a hematologic
malignancy, but it remains unclear why only some
individuals progress to disease [84]. Two recent stud-
ies by Gao et al. and Saiki et al. examined the com-
bined landscape of somatic variants and copy
number alterations in CHIP in large cohorts from
Memorial Sloan Kettering and BioBank Japan, respec-
tively [65

&

,66
&&

]. Both studies identified chromosome

7 deletions and LOH at similar levels as previous CHIP
studies [84–87]. Saiki et al. further found that indi-
viduals with del(7q) and 7q LOH had significantly
increased risk for the development of hematologic
malignancy, particularly myeloid disease [66

&&

]. The
risks associated with chromosome 7 abnormalities
were similar to those of 17p deletions or LOH, the
chromosome arm encoding TP53, indicating that
del(7q) is a biomarker for risk of disease progression
that warrants close monitoring [66

&&

].
There is also evidence that -7/del(7q) functions

as a driver event in disease. In a study of pediatric
MDS, 30% of patients with -7/del(7q) had no other
detectable cytogenetic or molecular abnormalities
in the coding region of the genome [9]. Though it is
possible that noncoding changes were present but
not detected, it is compelling evidence that -7/
del(7q) alone may be sufficient to promote MDS.
Spontaneous remission of monosomy 7 has also
been observed in children with MDS, albeit rarely,
with subsequent resolution of disease, further sug-
gesting -7 is critical for enabling the disease state
[88]. In addition to occurring alone, -7/del(7q) can
coexist with other somatic and karyotypic altera-
tions, most commonly complex karyotypes or RAS
pathway mutations [75,89]. Although RAS pathway
mutations function as oncogenic drivers in a num-
ber of other cancer types, RAS pathway mutations
typically arise late in AML development [79,90,91].
Additionally, RAS mutations are not typically
observed in CHIP, and, in contrast to -7/del(7q),
do not have prognostic impact in MDS and AML
[65

&

,66
&&

,92,93]. Therefore, even in the context of
additional mutations, multiple lines of evidence
point to -7/del(7q) as a driver of disease.

Cell extrinsic factors likely also influence cells
with -7/del(7q). -7/del(7q) is found in up to 50% of t-
MNs, second cancers arising after treatment for a
primary malignancy, and is particularly associated
with prior alkylating agent therapy [81]. -7/del(7q) is
also found in hematopoietic cells of benzene-
exposed workers as well as AML in elderly patients,
which often resembles t-MNs [94,95]. These data
suggest -7 may be selected for in the context of
environmental exposures and aging, similar to
PPM1D and TP53 mutations promoting fitness dur-
ing chemotherapy [96,97]. Identifying the mecha-
nism by which loss of chromosome 7 genes increases
fitness in response to different environmental pres-
sures remains an outstanding question.

Whether the effects of -7 and del(7q) are equiv-
alent remains an open question. Monosomy 7 and
del(7q) are often grouped together clinically despite
differing mechanisms of occurrence: monosomy 7
results from a chromosome segregation failure,
whereas del(7q) results from chromosomal breakage

KEY POINTS

� Chromosome 7 alterations are early, driving events in
myeloid disease pathogenesis.

� CUX1 mutations also occur early in myeloid disease,
and sustained CUX1 loss is necessary for
disease maintenance.

� Chromosome arm 7q encodes multiple myeloid TSGs
and regulators, suggesting the existence of contiguous
gene syndrome region(s).

Significance of CUX1 and chromosome 7 Jotte and McNerney
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[98]. Some studies have assessed -7 separately from
del(7q) and report better prognosis for del(7q) in
AML and MDS [99,100], though others have found
no difference [101]. The concept that -7 is prognos-
tically worse than del(7q) is perplexing as the major-
ity of implicated chromosome 7 TSGs are located on
7q. Additionally, there is heterogeneity in the break-
points for 7q deletions; whether different deletions
spanning distinct genes carry unique prognostic
implications remains unclear.

CUX1 MUTATIONS IN MYELOID DISEASE

CUX1, previously known as CUTL1 and CCAAT
displacement protein (CDP), is a ubiquitously
expressed, nonclustered homeobox transcription
factor that is both evolutionarily and functionally
conserved from Drosophila melanogaster to humans.
This review will focus on the role of CUX1 mutations
in myeloid disease; please see ref. [102] for the role of
CUX1 in other models [102].

CUX1 is one of the few chromosome 7 genes that
is recurrently mutated in cancer, with mutations
identified in 2–4% of myeloid diseases including
AML, MDS, and MDS/myeloproliferative neoplasms
(MPN) [24,25]. CUX1 is also mutated in 1–5% of
various solid tumors [25]. CUX1 mutation patterns
fit a signature representative of TSGs, characterized
by frameshift or nonsense alterations distributed
throughout the coding frame [25,78,103] (Fig. 1).
Further, bi-allelic CUX1 mutations are rare, suggest-
ing haploinsufficiency [24]. MDS and AML patients
with inactivating CUX1 mutations have decreased
survival compared to those with wild type CUX1,
with overall survival mirroring patients with -7/
del(7q) [25]. Our lab has shown that CUX1 knock-
down in human CD34þ hematopoietic stem and
progenitor cells results in a gene signature similar
to patients with -7/del(7q) [17]. CUX1 mutations
have also been identified in CHIP, indicating
CUX1 inactivation can be an early event similar to
-7/del(7q) [20,22

&

]. Collectively, the clinical data
strongly implicate CUX1 inactivation in myeloid
disease development and support CUX1 being a
critical 7q TSG.

The cellular function of CUX1 and the role of
CUX1 loss in myeloid malignancies is still under
active exploration. Investigation of CUX1 is compli-
cated by the complexity of the locus. The CUX1 gene
is large, spanning 340 kilobases and 33 exons, with
multiple RNA and protein isoforms [104]. Hemato-
poietic cells, however, only express the full-length
p200 CUX1 protein [105

&

]. The p200 isoform con-
tains four DNA-binding domains, consisting of
three CUT-repeat domains and one homeodomain
(Fig. 1) [106]. CUX1 is further complicated by being
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one of the few mammalian genes that shares exons
with a second, independent gene, namely CASP
(Cux1 Alternative Splice Product) [107]. Exons
15–24 are unique to CUX1 and contain the four
DNA-binding domains (Fig. 1). CASP does not have
DNA-binding domains, nor is it located in the
nucleus. Instead, CASP is a highly expressed
Golgi-associated protein, thought to be involved
in vesicle transport [108]. Unfortunately, CASP
and CUX1 isoforms are routinely aggregated in
genomics datasets, such as RNA sequencing, making
it a challenge to parse out independent roles of
CUX1 and CASP. Likewise, unless antibodies are
carefully vetted for reactivity to either CUX1, CASP,
or both, investigators can be misled by subsequent
results [105

&

].
Due in part to this complexity and the require-

ment for Cux1 during development, the establish-
ment of traditional Cux1 knockout mice has been
challenging [109]. To circumvent these issues, our lab

developed inducible shRNA-based murine models for
Cux1 knockdown, reducing CUX1 protein levels to
54% (Cux1mid) or 12% (Cux1low) in thymocytes [17].
The Cux1mid shRNA targets an exon shared by all
Cux1 and Casp transcripts and approximates CUX1
haploinsufficiency, whereas the Cux1low model
affects CUX1-encoding transcripts only (Fig. 1).
Ubiquitous shRNA expression in Cux1mid mice leads
to a normocytic anemia and splenomegaly, whereas
Cux1low mice develop an MDS/MPN-like disease with
fatal anemia, supporting the notion that Cux1 is a
dose-sensitive TSG [17]. These models further suggest
the effects of mutations in shared exons can likely be
attributed to CUX1 disruption and not CASP, as the
disease causedby theCux1low shRNA(whichdoes not
target Casp mRNA) is more severe than that in the
Cux1mid mice (which does target Casp mRNA). Addi-
tionally, there are few reported mutations in exons
unique to CASP, and there is currently no evidence
CASP plays a role in human disease (Fig. 1) [103,108].

FIGURE 1. Structures of CASP and CUX1. The genomic locus of CUX1 has two alternative start sites (exons 1A and 1B) and
contains 33 exons which encode two gene products, CUX1 and CASP. The locus organization is conserved between humans
and mice. CUX1 contains 24 exons; CASP is spliced from exons 1–14 and 25–33. The CUX1 NM_181552 mRNA exon
structure is shown with Cux1mid and Cux1low shRNA targeting locations from Ref. [17]; the LoxP Cre recombination sites from
Ref. [18&&] are shown below the genomic locus. The p200 CUX1 protein is depicted below the exon structure with the 4 DNA
binding domains depicted; exon length is drawn to scale to match the protein. Overlaid is a plot of CUX1 mutations from
AACR Project GENIE disease classes ‘Leukemia’, ‘Myelodysplastic Syndromes’, ‘Myeloproliferative Neoplasms’, and
‘Myelodysplastic/Myeloproliferative Neoplasms’ [Ref. [103]]. The distribution of mutations fits a pattern representative of
tumor suppressor genes [Ref. [78]]. A plot of CASP is shown below CUX1; there is only a single mutation within the CASP
exons not shared with CUX1. Regions shared by CUX1 and CASP are hatched.
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Recently, Supper et al. reported a Cux1 knockout
model in which exons 15–18 were excised in the
hematopoietic compartment driven by Vav1-iCre
[18

&&

]. This approach, which avoids Casp isoforms,
removes the first two DNA-binding domains and
ablates protein expression in an allele-dependent
manner in splenocytes. Similar to Cux1mid mice,
Cux1þ/�mice develop mild anemia and bone marrow
dysplasia [17,18

&&

]. This phenotype is exacerbated
upon full Cux1 loss, with Cux1�/� mice developing
an MDS/MPN-like disease, akin to Cux1low mice
[17,18

&&

]. The authors further show Cux1 loss coop-
erates with a Flt3ITD/þmutation to accelerate disease,
though it isworth noting that FLT3 mutations arenot
enriched in -7/del(7q) leukemias [18

&&

,89]. Still, this
second model provides compelling evidence for the
pathogenesis of Cux1 loss in myeloid disease.

On a molecular level, CUX1 preferentially binds
enhancer elements and acts as a transcriptional acti-
vator or repressor in a context-dependent manner
[15,17,110].Recently, our lab reported that CUX1 loss
also impacts the epigenetic landscape of cells, both
basally and in the context of irradiation-induced
DNA damage [16

&

]. After irradiation, CUX1�/� cells
show an impaired DNA damage response with
decreased H3K27me2/3 and H3K9me2/3 at double-
strand breaks, marks normally associated with DNA
repair [16

&

,111,112]. These changes indicate a novel
epigenetic, nontranscriptional role for CUX1. Fur-
ther, Cux1-deficient cells continue to proliferate after
alkylating agent exposure, ultimately leading to alky-
lator-induced t-MN in Cux1-deficient mice [16

&

].
Given the epidemiologic connection between -7/
del(7q) t-MNs and alkylating agent chemotherapy,
this study provides a missing mechanistic link
between del(7q) and t-MN – ie. CUX1 is required
for normal recognition and repair of chemotherapy-
induced DNA damage [16

&

,113
&

]. Importantly, resto-
ration of CUX1 levels postgenotoxic stress prevented
transformation in this model, indicating that (i) sus-
tained CUX1-deficiency is required for t-MN mainte-
nance, and (ii) targeting putative negative regulators
of CUX1 may be a therapeutic avenue for myeloid
disease with CUX1 mutations or deletions [16

&

]. The
cellular functions of CUX1 and consequences of
CUX1 loss are summarized in Fig. 2 [114].

7q AS A CONTIGUOUS GENE SYNDROME
REGION

A CGS is a genetic disorder caused by large-scale
chromosomal alterations affecting copy number,
leading to dosage imbalance of multiple neighbor-
ing genes [115]. In addition to CUX1, multiple bona
fide TSGs and myeloid regulators have been identi-
fied on 7q, many of which are also mutated in

myeloid and solid tumors and yield hematopoietic
phenotypes when deleted in mice (Table 1). We
propose reframing chromosome 7 MDRs as CGS
regions in cancer, similar to those observed on 5q
and 8p [116,117]. Here we highlight the recent
literature on the 7q-encoded genes EZH2, LUC7L2,
and KMT2C/MLL3, and discuss potential interac-
tions with combined CUX1 deficiency.

Similar to CUX1, the 7q genes EZH2 and, less
commonly, LUC7L2, are also mutated in CHIP and
are located in 7q MDRs [3,22

&

]. Of note, EZH2 is
among the only 7q genes observed to have recurrent
bi-allelic inactivation in myeloid disease, suggesting
a canonical tumor-suppressive role for EZH2 in these
diseases [3,4]. In the recent CHIP study from Gao
et al., everyeventof chromosome 7 copy-neutralLOH
co-localized with an EZH2 mutation, implicating this
alteration was selected to eliminate the remaining
wild-type EZH2 allele [65

&

]. EZH2 encodes the cata-
lytic component of the Polycomb Repressive Com-
plex 2, a major H3K27 methyltransferase complex,
and loss of Ezh2 in murine hematopoietic stem cells
results in myelodysplasia with late development of
myelodysplastic disorders [62]. As inactivating muta-
tions in EZH2 also carry a poor prognosis in MDS,
there may be a compounding interaction upon com-
bined loss of EZH2 and CUX1 in the context of
del(7q), particularly as both proteins converge on
the regulation of H3K27 methylation [16

&

,70].
LUC7L2 encodes a splicing factor, and inactivat-

ing LUC7L2 mutations have been identified in both
MDS and AML [52,56]. Splicing factor mutations
occur in over 50% of MDS cases but are challenging
to characterize due to poor overlap of alternative
splicing events [118]. Two new studies indepen-
dently report an unexpected downregulation of gly-
colysis genes following LUC7L2 loss, with the
subsequent shifting of metabolism toward oxidative
phosphorylation [53

&

,54
&

]. Both studies identify
exon skipping as a mechanism of decreased gene
expression, and link alternative splicing events to
glucose metabolism, a novel mechanism not previ-
ously ascribed to splicing factor mutations
[53

&

,54
&

,118]. Recent studies have also shed new
light on the H3K4 methyltransferase KMT2C/
MLL3. KMT2C mutations are not frequently
detected in CHIP, though mutations are found in
AML and Kmt2c haploinsufficiency enhances leuke-
mogenesis [73

&&

,75]. Chen et al. characterized two
novel knockout models of Kmt2c and report
increased self-renewal in hematopoietic stem cells
and a selective advantage of Kmt2c mutant cells in
the presence of chemotherapy, though the mice do
not develop any overt malignancies [73

&&

]. Chang
et al. reported that, similar to CUX1, KMT2C is
recruited to sites of DNA damage, and loss of KMT2C
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results in decreased expression of DNA damage
response genes [72

&

,74]. Given CUX1 involvement
in the DNA damage response, combined loss of
CUX1 and KMT2C may synergize and further pro-
mote development of a t-MN [16

&

,73
&&

]. Collec-
tively, these findings indicate -7/del(7q) likely
deregulates multiple cellular pathways involved in
myeloid disease including cell signaling, energy
metabolism, RNA splicing, DNA repair, and epige-
netic regulation. Whether combinatorial loss of 7q
genes acts in an additive or epistatic fashion remains
an important, unanswered question.

MODELING del(7q)

Given the existence of multiple 7q TSGs, it is essen-
tial to innovate new models to interrogate com-
bined gene deficiency. The lack of chromosomal
synteny between humans and mice is a barrier to
generating mouse models with large-scale deletions,
and the variations in 7q deletion locations and

length make determining boundaries challenging
[119,120]. Alternative models include the use of
induced pluripotent stem cells derived from del(7q)
MDS patients, however, these cells are difficult to
culture and can undergo spontaneous dosage cor-
rection, restoring the missing chromosome 7 seg-
ment to the diploid state [50]. Recently, CRISPR-
Cas9 has been used to simultaneously target multi-
ple loci on different chromosomes to model CHIP
[121,122]; multiplex CRISPR-Cas9-based gene dele-
tion may therefore be a novel means to model
del(7q) that circumvents the challenges of
other approaches.

CONCLUSION

As efforts to define the role of -7/del(7q) continue,
clinical evidence is mounting that chromosome 7
deletions and CUX1 mutations can be early, driving
events. Emerging data indicate that certain pres-
sures, such as genotoxic therapy, can select for

FIGURE 2. Cellular functions of CUX1 and consequences of CUX1 loss in hematopoietic cells. CUX1 is involved in
transcription, DNA damage repair, proliferation, and differentiation. One target gene of CUX1 is PIK3IP1, which inhibits PI3K
activity [Refs. [17,18&&]]. Loss of CUX1 results in decreased PIK3IP1 expression and increased PI3K-AKT signaling, promoting
proliferation and resembling the ‘Sustained proliferative signaling’ Hallmark of Cancer [Ref. [114]]. CUX1 also downregulates
expression of CFLAR, an antiapoptotic protein that inhibits caspase-8 [Ref. [18&&]]. Loss of CUX1 results in alleviation of CFLAR
repression and apoptosis resistance, promoting the hallmark ‘Resisting cell death’ [Ref. [114]]. CUX1 also regulates epigenetic
histone marks and functions in epigenetic-driven DNA repair; CUX1 loss results in sustained DNA damage, resembling the
hallmark ‘Genomic instability’ [Ref. [114]]. CUX1 loss also results in ineffective erythropoiesis and impaired differentiation,
though the mechanism remains unknown [Refs. [17,18&&]]. CUX1 is depicted alone on the DNA strand for simplicity.
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CUX1-deficient clones, and this fitness advantage
likely corresponds with the inherent drug resistance
of malignancies arising from these clones. To under-
stand the spectrum of environmental exposures that
select for CUX1-deficient clones and to identify at-
risk individuals, it is imperative that clinical and
research CHIP sequencing panels probe for both
CUX1 and del(7q) going forward. Finally, several
7q TSGs have functions that converge on similar
pathways. Although mechanistic studies of 7q genes
have traditionally focused on individual genes, stud-
ies investigating combined gene deletions are war-
ranted to refine our understanding of how -7/
del(7q) drives malignancy.
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