
5/24/22, 3:38 PM Stats Bootcamp Day 7 - Empirical Bayes

file:///Users/katerinalevi/Downloads/Stats UPDATED/day7-updated.html 1/14

Stats Bootcamp Day 7 - Empirical
Bayes
Your Name
9/14/2021

Recap + Today’s Material
Empirical Bayes - Baseball example
Example from the following blog post by David Robinson:
http://varianceexplained.org/r/empirical_bayes_baseball/
(http://varianceexplained.org/r/empirical_bayes_baseball/)

You may see a long red message when you run the code below, do not worry, if you are able to run the codes after
this chunk properly you do not need to fix anything

library(dplyr)

Warning: package 'dplyr' was built under R version 4.0.2

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

library(tidyr)

Warning: package 'tidyr' was built under R version 4.0.2

library(Lahman)

Warning: package 'Lahman' was built under R version 4.0.2

http://varianceexplained.org/r/empirical_bayes_baseball/

5/24/22, 3:38 PM Stats Bootcamp Day 7 - Empirical Bayes

file:///Users/katerinalevi/Downloads/Stats UPDATED/day7-updated.html 2/14

Next1 2 3 4 5 6 ... 981Previous

career <- Batting %>%
 filter(AB > 0) %>%
 anti_join(Pitching, by = "playerID") %>%
 group_by(playerID) %>%
 summarize(H = sum(H), AB = sum(AB)) %>%
 mutate(average = H / AB)

use names along with the player IDs
career <- Master %>%
 tbl_df() %>%
 select(playerID, nameFirst, nameLast) %>%
 unite(name, nameFirst, nameLast, sep = " ") %>%
 inner_join(career, by = "playerID") %>%
 select(-playerID)

Warning: `tbl_df()` was deprecated in dplyr 1.0.0.
Please use `tibble::as_tibble()` instead.

career

name
<chr>

H
<int>

AB
<int>

average
<dbl>

Hank Aaron 3771 12364 0.30499838

Tommie Aaron 216 944 0.22881356

Andy Abad 2 21 0.09523810

John Abadie 11 49 0.22448980

Ed Abbaticchio 772 3044 0.25361367

Fred Abbott 107 513 0.20857700

Jeff Abbott 157 596 0.26342282

Kurt Abbott 523 2044 0.25587084

Ody Abbott 13 70 0.18571429

Frank Abercrombie 0 4 0.00000000

1-10 of 9,802 rows

Above we can get a look at the entire data set, displaying batting statistics for various baseball players. Now, we
are going to try sorting by batting average and take a look at who’s at the top

head(career[order(career$average, decreasing = TRUE),])

name
<chr>

H
<int>

AB
<int>

average
<dbl>

5/24/22, 3:38 PM Stats Bootcamp Day 7 - Empirical Bayes

file:///Users/katerinalevi/Downloads/Stats UPDATED/day7-updated.html 3/14

name
<chr>

H
<int>

AB
<int>

average
<dbl>

Jeff Banister 1 1 1

Doc Bass 1 1 1

Steve Biras 2 2 1

C. B. Burns 1 1 1

Jackie Gallagher 1 1 1

Roy Gleason 1 1 1

6 rows

So clearly just sorting by “average” is not meaningful. People with small sample sizes are dominating the
extremes.

NB: I am using the terms “average”, “batting average”, and “batting percentage” interchangeably.

An unprincipled approach could be to just exclude people with less than, say, 500 at bats from this.

filtered_career = career[career$AB>=500,]
head(filtered_career[order(filtered_career$average, decreasing = TRUE),])

name
<chr>

H
<int>

AB
<int>

average
<dbl>

Rogers Hornsby 2930 8173 0.3584975

Shoeless Joe Jackson 1772 4981 0.3557519

Ed Delahanty 2597 7510 0.3458056

Billy Hamilton 2164 6283 0.3444215

Harry Heilmann 2660 7787 0.3415950

Willie Keeler 2932 8591 0.3412874

6 rows

There is a more principled way to go about this though: Empirical Bayes.

Are some batting averages more likely than others? What is the probability that we will ever see a player who hits
0.800, given that no one with more than 500 at bats has batted above 0.350? I’d say very small! What is the
probability that a batter’s true average is 0.100? Very small, given history!

What I did in the above paragraph is informing our “prior” belief – in a data-dependent way. In reality, our priors
can come from many different avenues, including previous experiments. While it might be somewhat concerning
to have our prior be solely informed by just the data we are trying to analyze, there are some mitigating
circumstances here (e.g. using a parametric approximation of the prior). If we want to be extra rigorous, we could
only fit a prior based on a hold-out set.

5/24/22, 3:38 PM Stats Bootcamp Day 7 - Empirical Bayes

file:///Users/katerinalevi/Downloads/Stats UPDATED/day7-updated.html 4/14

So, what do we make of Jeff Banister, who is batting 100% (1 hit on 1 try)? Is his “real” batting percentage
100%? “Real” here means “as the sample size goes to infinity what does his percentage go to.” I’m sure his “real”
batting percentage is smaller. But how much smaller?

Our goal here is to “shrink” Jeff Banister’s 100% to our best guess of his “real” batting average. We want to do
this in a way that incorporates our prior beliefs of what the distribution of “real” batting averages looks like.

Bayesian framework is perfect for this!

Let’s see what the distribution of “real” batting averages looks like:

hist(filtered_career$average, xlim=c(0,1))

Since this is between 0 and 1, there likely is a “beta” distribution here. You can see here what the beta distribution
looks like below. The only constraint on shape1 and shape2 is that they be >0.

p = seq(0,1, length=100)
plot(p, dbeta(p, shape1=5, shape2=10), type="l",
 main="Beta density")

P(real_batting = 80% | going 4 f or 5) =
P(going 4 f or 5 | real_batting = 80%)P(real_batting = 80%)

P(going 4 f or 5)

5/24/22, 3:38 PM Stats Bootcamp Day 7 - Empirical Bayes

file:///Users/katerinalevi/Downloads/Stats UPDATED/day7-updated.html 5/14

There are a couple key facts about the beta distribution (shape1 = and shape2 =): - the mean is
shape1/(shape1+shape2) - the variance is shape1 * shape2 / [(shape1+shape2)^2 * (shape1 + shape2 + 1)]

Let’s overlay this density on our observed data of “real” batting averages:

hist(filtered_career$average, xlim=c(0,1), probability = TRUE,
 main="Histogram vs Beta approximation")
lines(p, dbeta(p, shape1=5, shape2=10), type="l")

α β

5/24/22, 3:38 PM Stats Bootcamp Day 7 - Empirical Bayes

file:///Users/katerinalevi/Downloads/Stats UPDATED/day7-updated.html 6/14

Check-in 1:
Play around with the beta distribution parameters until you think you got a good approximation for the distribution
of “real” batting averages"

#Add in your answer here!

5/24/22, 3:38 PM Stats Bootcamp Day 7 - Empirical Bayes

file:///Users/katerinalevi/Downloads/Stats UPDATED/day7-updated.html 7/14

Check-in 1 Solution
There are two main ways to go about this: - Method of Moments (MoM) - Maximim Likelihood Estimator (MLE)

Method of moments:
Let’s choose shape1,shape2 such that the mean and variance of our beta distribution will equal our empirical
mean and variance.

emp_mean = mean(filtered_career$average)
emp_var = var(filtered_career$average)
c(emp_mean, emp_var)

[1] 0.2585556196 0.0006192446

Plugging into Wolfram-Alpha, I get shape1 = 79.8159 and shape2 = 228.884.

Try this out:

hist(filtered_career$average, xlim=c(0,1), breaks=20, probability = TRUE,
 main="Histogram vs Beta approximation")
lines(p, dbeta(p, shape1=79.8159, shape2=228.884), type="l")

5/24/22, 3:38 PM Stats Bootcamp Day 7 - Empirical Bayes

file:///Users/katerinalevi/Downloads/Stats UPDATED/day7-updated.html 8/14

So our beta approximation looks very good here!

Maximum Likelihood Estimation (MLE)
The MLE finds shape1, shape2 that maximizes the probability of observing the data, assuming the data is
distributed that way.

I.e.

We minimize negative log likelihood (instead of maximizing log likelihood) since a lot of optimization literature
usually minimizes quantities (even though maximization is equivalent)

For starters, let’s plug in random values for shape1, shape2 and see the NLL.

sum(-dbeta(filtered_career$average, shape1 = 500, shape2 = 500, log=TRUE))

[1] 563390.9

Using the method of moments parameters:

sum(-dbeta(filtered_career$average, shape1=79.8159, shape2=228.884, log=TRUE))

[1] -9714.071

These are much lower, and hence much better!

We can find the parameters than minimize NLL via R’s “optim” function.

First, we have to make a negative log likelihood function that we can pass to the “optim” function, where the only
input is a vector of parameters

nll = function(params){sum(-dbeta(filtered_career$average, shape1=params[1], shape2=para
ms[2], log=TRUE))}

nll(c(79.8159, 228.884))

[1] -9714.071

We can now run the optim function. We only have to provide it some initial values to search from (this shouldn’t
matter much here). We also have to specify that the parameters have to be strictly positive (we have to use the L-
BFGS-B method to put bounds).

ma P(batting_averag |α, β)xα,β ∏
i=1

n

ei

= ma log(P(batting_averag |α, β))xα,β ∑
i=1

n

ei

= mi − log(P(batting_averag |α, β))nα,β ∑
i=1

n

ei

5/24/22, 3:38 PM Stats Bootcamp Day 7 - Empirical Bayes

file:///Users/katerinalevi/Downloads/Stats UPDATED/day7-updated.html 9/14

optim(c(1,1), nll, method="L-BFGS-B", lower=0)

$par
[1] 79.4633 227.8750

$value
[1] -9714.092

$counts
function gradient
20 20

$convergence
[1] 0

$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

Notice that our NLL with these new parameters is slightly smaller and therefore slightly better than the MoM ones.
This goes to show that MoM and MLE can sometimes return similar results.

Let’s store our MLE parameters:

mle_params = optim(c(1,1), nll, method="L-BFGS-B", lower=0)$par
mle_params

[1] 79.4633 227.8750

Using a built-in function for MLE
You may see a red message saying “NaNs produced”, do not worry it will not affect your code

MASS::fitdistr(filtered_career$average, "beta",
 start = list(shape1 = 1, shape2 = 10))

Warning in densfun(x, parm[1], parm[2], ...): NaNs produced

Warning in densfun(x, parm[1], parm[2], ...): NaNs produced

Warning in densfun(x, parm[1], parm[2], ...): NaNs produced

shape1 shape2
79.462866 227.874304
(1.715888) (4.930722)

Why MLE versus MoM?
MLE has some nice statistical properties:

5/24/22, 3:38 PM Stats Bootcamp Day 7 - Empirical Bayes

file:///Users/katerinalevi/Downloads/Stats UPDATED/day7-updated.html 10/14

Invariance under MLE. if is the MLE for , then is also the MLE for (assuming is a one-to-one
function)

Asymptotic normality of MLE. for many distributions the MLE will follow a normal distribution asymptotically
(similar to the CLT). So, we can do confidence intervals on the MLE.

MLE is consistent. As sample size goes to infinity, MLE will get arbitrarily close to the true parameter value.

Using our new prior
Bayesian review (shape1 = and shape2 =):

Generalizing:

Recall that the mean of the beta distribution is shape1/(shape1+shape2) So:

So! The posterior mean is a weighted average between the prior mean and our naive batting average.

We can adjust the weights of this average by adjusting while maintaining . Making
big will put more weight on our prior.

career

name
<chr>

H
<int>

AB
<int>

average
<dbl>

Hank Aaron 3771 12364 0.30499838

Tommie Aaron 216 944 0.22881356

Andy Abad 2 21 0.09523810

θ ̂ θ f ()θ ̂ f (θ) f

α β

P(real_batting = 80% | going 4 f or 5) =
P(going 4 f or 5 | real_batting = 80%)P(real_batting = 80%)

P(going 4 f or 5)

∝ P(going 4 f or 5 | real_batting = 80%)P(real_batting = 80%)

= () (1 − 0.8 ⋅

5

4
0.84)1

(1 − 0.80.8α−1)β−1

B(α, β)

∝ (1 − 0.80.84+α−1)1+β−1

∼ Beta(4 + α, 1 + β)

P(real_batting = p%|H, AB) ∼ Beta(H + α, AB − H + β)

E[real_batting|H, AB] =
H + α

AB + α + β

= +
H

AB + α + β

α

AB + α + β

= ∗ + ∗

AB

AB + α + β

H

AB

α + β

AB + α + β

α

α + β

= ∗ + (1 −) ∗

AB

AB + α + β

H

AB

AB

AB + α + β

α

α + β

α, β α/(α + β) = 0.259 α + β

5/24/22, 3:38 PM Stats Bootcamp Day 7 - Empirical Bayes

file:///Users/katerinalevi/Downloads/Stats UPDATED/day7-updated.html 11/14

Next1 2 3 4 5 6 ... 981Previous

Next1 2 3 4 5 6 ... 981Previous

name
<chr>

H
<int>

AB
<int>

average
<dbl>

John Abadie 11 49 0.22448980

Ed Abbaticchio 772 3044 0.25361367

Fred Abbott 107 513 0.20857700

Jeff Abbott 157 596 0.26342282

Kurt Abbott 523 2044 0.25587084

Ody Abbott 13 70 0.18571429

Frank Abercrombie 0 4 0.00000000

1-10 of 9,802 rows

posterior_mean = function(x){(x[1]+mle_params[1])/(x[2]+mle_params[1]+mle_params[2])}

career$posterior_mean = apply(career[,c(2,3)], 1, posterior_mean)
career

name
<chr>

H
<int>

AB
<int>

average
<dbl>

posterior_mean
<dbl>

Hank Aaron 3771 12364 0.30499838 0.3038719

Tommie Aaron 216 944 0.22881356 0.2361178

Andy Abad 2 21 0.09523810 0.2481078

John Abadie 11 49 0.22448980 0.2538692

Ed Abbaticchio 772 3044 0.25361367 0.2540667

Fred Abbott 107 513 0.20857700 0.2273005

Jeff Abbott 157 596 0.26342282 0.2617661

Kurt Abbott 523 2044 0.25587084 0.2562214

Ody Abbott 13 70 0.18571429 0.2450409

Frank Abercrombie 0 4 0.00000000 0.2552314

1-10 of 9,802 rows

career[order(career$posterior_mean, decreasing = FALSE),]

name
<chr>

H
<int>

AB
<int>

average
<dbl>

posterior_mean
<dbl>

Bill Bergen 516 3028 0.17040951 0.1785316

5/24/22, 3:38 PM Stats Bootcamp Day 7 - Empirical Bayes

file:///Users/katerinalevi/Downloads/Stats UPDATED/day7-updated.html 12/14

Next1 2 3 4 5 6 ... 981Previous

name
<chr>

H
<int>

AB
<int>

average
<dbl>

posterior_mean
<dbl>

Ray Oyler 221 1265 0.17470356 0.1910933

John Vukovich 90 559 0.16100179 0.1956087

John Humphries 52 364 0.14285714 0.1958227

George Baker 74 474 0.15611814 0.1964108

Henry Easterday 203 1129 0.17980514 0.1966551

Buck Gladmon 56 380 0.14736842 0.1970839

Charlie Armbruster 53 355 0.14929577 0.1999934

Bill Traffley 116 663 0.17496229 0.2014383

Mike Ryan 370 1920 0.19270833 0.2017939

1-10 of 9,802 rows

Let’s visualize how this operates as a shrinkage estimator:

plot(career$average, career$posterior_mean)
lines(seq(0,0.35, length.out=100),seq(0,0.35, length.out=100), col=2)

5/24/22, 3:38 PM Stats Bootcamp Day 7 - Empirical Bayes

file:///Users/katerinalevi/Downloads/Stats UPDATED/day7-updated.html 13/14

plot(seq(0,0.35, length.out=100),seq(0,0.35, length.out=100), type="l", col="red")

“Bayesian” Confidence intervals / Posterior
Credible Intervals
Let’s say we want to get a 95% “confidence interval” of what Hank Aaron’s true batting average is.

career[1,]

name
<chr>

H
<int>

AB
<int>

average
<dbl>

posterior_mean
<dbl>

Hank Aaron 3771 12364 0.3049984 0.3038719

1 row

He has a lot of at bats, so we’d expect the interval to be tight.

We saw earlier that the posterior distribution of any player’s batting average followed a beta distribution:
.

We can figure out what the 2.5% quantile (or “percentile”) is of this distribution and similarly the 97.5% of this
distribution.

Let’s do this for Hank Aaron:

qbeta(c(0.025, 0.975), shape1=3771+mle_params[1], shape2=12364-3771+mle_params[2])

[1] 0.2958936 0.3119088

So, there is a less than 2.5% chance that Hank Aaron’s true batting average is less than 29.6%, given that he
batted 30.5% in 12,364 at bats.

Similarly, there is a less than 2.5% chance that his true batting average is above 31.2%, given his history.

Check-in 2
What is the bayesian confidence interval for the real batting average of a player who had 0 hits in 1 at bat?

#Add in your answer here!

Beta(H + α, AB − H + β)

5/24/22, 3:38 PM Stats Bootcamp Day 7 - Empirical Bayes

file:///Users/katerinalevi/Downloads/Stats UPDATED/day7-updated.html 14/14

Check-in 2 solution
A player who had just one at bat would have a much wider bayesian confidence interval:

qbeta(c(0.025, 0.975), shape1=0+mle_params[1], shape2=1-0+mle_params[2])

[1] 0.2105133 0.3078927

Shortcomings of this analysis
We approximated the prior only with players who have more than 500 at bats. Since the players with less than
500 at bats might be worse than the players with 500 at bats (e.g. they didn’t have a longer career because they
weren’t good enough to stay in professional baseball), our prior is likely “biased” for players with <500 at bats.

We can’t simply include the players with fewer than 500 at bats in our beta fitting procedure, since it will treat the
players that bat the 40% in 10 at bats the same as a player batter 40% in 1,000 at bats.

There is a principled approach to solving this, and that is the beta-binomial distribution. The blog post from the
beginning includes a section on it in its appendix.

Different eras may have different prior distributions. Perhaps before 1920 the distribution looks different than the
post-2000 distribution.

A player’s “real” batting average may change over the course of their career (players usually get better, and then
decline in old age)

Why did we look at posterior mean to
estimate the “true” batting average? Why not
posterior mode? Or posterior median?
Posterior mean corresponds to optimizing squared error, posterior median to mean absolute error, and posterior
mode to 0-1 loss.

