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Day 4 - Logistic Regression
Your Name
9/10/2021
if the libraries in this chunk don’t load properly, run the next chunk instead

if the above libraries loaded properly, there is no need to run this chunk

knitr::opts_chunk$set(echo = TRUE) 
knitr::opts_chunk$set(fig.show = "hold") 
knitr::opts_chunk$set(eval = FALSE) 
remove.packages("rlang") 
install.packages("rlang") 
library(rlang) 
library(faraway) 
library(ggplot2) 
library(dplyr)

Agenda
1. mathematical formulation.

motivation
Bernoulli + binomial
logistic and logit functions
odds ratio

2. logistic regression.
data investigation
performing a regression
inference
diagnostics
model selection
goodness-of-fit

3. linear separability.
4. machine learning application.

1. mathematical formulation
motivation
For the first part, we are going to look at data relating the rate of heart disease to smokers.
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data(wcgs, package="faraway")     ##install the wcgs dataset from the faraway package 
 
wcgs$y <- ifelse(wcgs$chd == "no",0,1)   
#ifelse command operates as a shortcut of an if/else function 
 
plot(jitter(y,0.1) ~ jitter(cigs), wcgs, xlab="# Cigs", ylab="Heart Disease", pch=".", m
ain="Raw Data, Heart Disease vs. # Cigs Smoked") 
 
idx1 <- wcgs$y == 0 
 
idx2 <- wcgs$y == 1 
 
plot(density(wcgs$cigs[idx1]), main="Outcome of Heart Disease against # Cigs smoked", xl
ab="# Cigs") 
 
lines(density(wcgs$cigs[idx2]), lty='dashed') 
 
legend("topright", c("Y=0", "Y=1"), lty=c('solid','dashed'), cex=1)

we see that we have two separate, but overlapping, density estimates for the rate of heart disease vs. smokers.
linear regression runs into two major problems in problems such as these:

1. the response variable here is restricted to [0,1], whereas linear regression is unbounded in 
2. the densities overlap significantly, making prediction of the outcome difficult–e.g., at 0 cigarettes, both

densities overlap considerably, so if a patient doesn’t smoke, by magnitude, we have to assume that they
will not develop heart disease. this is not a useful metric.

logistic regression was developed to handle both of these problems elegantly. we will get to how shortly, but first
we introduce some useful concepts.

what is a Bernoulli trial?
a Bernoulli trial is an experiment with two outcomes, say  for a ‘failure’ and  for a ‘success’, with
probability  of success and  of failure. e.g., flipping a fair coin has  of heads (‘success’).

what is the Binomial distribution?
the binomial is an extension of the Bernoulli trial (or, if you prefer, the Bernoulli is a binomial with a single trial).
more specifically, the binomial can be constructed from the sum of Bernoulli trials. with the coin flip, a single flip is
a Bernoulli RV. let’s suppose we turn it into a game, where you give your friend 10 chances (i.e. 10 coin flips) to
get at least 7 heads; if they do, you’ll buy them coffee. whereas each individual flip is a Bernoulli trial, one full
game is a binomial.

more generally, define  as the total number of trials, each of which is independent from the rest (above, 
). each trial has the same probability of success, and we call that probability . define  to be the number

of successes in  trials (e.g. if your friend played the game and got 6 heads, ). then we can say that  has
a binomial distribution with parameters  and ; we write it .

the probability that  equals a specific integer  (e.g. ) is given by its probability mass function,

Y

Y = 0 Y = 1

p 1 − p p = .5

m

m = 10 θ y

m y = 6 y

m θ y ∼ Bin(m, θ)

y j Pr(y = 6)
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where . for our above example with the coins, the probability that your friend gets exactly 7 heads

and at least 7 heads, respectively, are

dbinom(7, 10, .5) 
pbinom(6, 10, .5, lower.tail=FALSE)

doing some math off-screen, we can get that the expectation and variance of the binomial distribution are

notice that since  is a constant, both the expectation and the variance are entirely controlled by the  parameter.

notably, this does not assume a constant value for , and in fact, this formulation allows us to define  –
i.e., the parameter controlling the binomial distribution can be a function of a set of random variables !

logistic regression
as with regular regression, call  our ‘response variable’ that can only take values of either 0 or 1, and let  be a
set of predictor variables (also called covariates), where each  has an associated set of . the
predictor variables can have any form, quantitative or qualitative, and can take any range of values, so long as
they are linearly related; in other words, as long as we can express their relationship in the form

there are an infinite number of functions ), and the one we will be using for logistic
regression is called, believe it or not, the logistic function:

x <- seq(-10, 10, by=.1) 
plot(x, ilogit(x), type="l", main="Logistic Function, CDF", ylab="cumulative probabilit
y")

we call  generally the ‘link function’, so in this case our ‘link function’ is the logistic function. it has an inverse
called the logit,

x <- seq(.01, .99, by=.01) 
plot(x, logit(x), type='l', main="logit function, PDF", xlab="probability")

as a note on jargon, we call  the linear predictor.

odds ratio

Pr(y = j) = ( ) (1 − θ
m

j
θj )m−j
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the odds ratio is a very common metric, especially in gambling circles; perhaps you’ve played the game odds
with your friends? the ratio inside the logit function, , is called the ‘odds ratio’ or ‘odds of success’. if the

probability of success is , then the odds ratio is 1:3, one success to three failures. alternatively, if the
probability of success is .8, then the odds ratio is .8/.2 = 4:1, or four successes to one failure.

perhaps you’ve seen roulette table payout odds? e.g.,

even/odd; black/red; low; high all have 1:1
the dozens and columns all have 2:1
six line is 5:1
corner 8:1
street 11:1
split 17:1
single 35:1

notice that these odds are the rates of success of the house, and are chosen to be slightly larger than the
probability of each event happening (e.g. even/odd has 1:1 odds, or 50% chance of payout, but the chance of
getting even or odd is only 48.6% due to 0 and 00 – the payout might be even, but the probability always favors
the house).

the house always wins, but at least statisticians get good example problems out of it.

summary
we are interested in modeling a binary response variable  using its predictors . we let each  be binomial with
parameters . because  is bounded to , we have to transform our predictors  to fall
inside those bounds. we do this by performing a linear regression where our response variable is the logit of ,
and our linear predictor is given by the standard linear regression formulation.

tl;dr: each response  is modeled as a binomial distribution with a probability parameter determined by the
values of its predictor .

2. Performing a Logistic Regression
let’s do a full, soup-to-nuts logistic regression on the ‘wcgs’ dataset from the faraway package. it was collected
during the ‘Western Collaborative Group Study’, where about 3100 healthy men, ages 39-59, were assessed for
their personality type; eight and half years later, information on blood pressure, cigarette consumption, and
coronary heart disease were collected.

data investigation
let’s go ahead and load the data; we’ll start by looking at just a few of the variables:

data(wcgs, package="faraway") 
summary(wcgs[,c("chd","height","cigs")])

let’s go ahead and plot some of the data:

θ( )Xi

1−θ( )Xi
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plot(height ~ chd, wcgs, main="Dist. of Height vs. Development of CHD") 
wcgs$y <- ifelse(wcgs$chd == "no",0,1) 
plot(jitter(y,0.1) ~ jitter(height), wcgs, xlab="Height", ylab="Heart Disease", pch=".", 
main="CHD vs. Height")

note the use of the jitter()  function, which adds a tiny bit of noise to the data so that we don’t overplot –
gives us an idea of how many points there are at each ‘point’, since height is reported as a discrete value.

while we could do some intensive R formatting, we can also just use the ggplot  library to make much more
helpful graphs much more quickly:

ggplot(wcgs, aes(x=height, color=chd, fill=chd)) + geom_histogram(position="dodge", binw
idth=1) + labs(title="CHD vs. Height") 
ggplot(wcgs, aes(x=cigs, color=chd, fill=chd)) + geom_histogram(position="dodge", binwid
th=5, aes(y=..density..)) + labs(title="CHD vs. # Cigs") 
 
ggplot(wcgs, aes(x=height,y=cigs))+geom_point(alpha=0.2, position=position_jitter())+fac
et_grid(~ chd)

based on these graphs, why are we choosing logistic regression? well, we have two goals:

1. predict heart disease outcome for a given individual
2. explain the relationship between heart disease and the other variables

in this example, we observe that for the same height and cigarette usage, both outcomes occur, and both
outcomes occur frequently. therefore, it makes better sense to model the probability of getting heart disease
rather than the rate of getting heart disease itself. in other words, instead of predicting whether or not you have
heart disease, we want to find out “what are the odds that you have heart disease, given that you’re tall and
smoke <#> cigarettes per day?”

performing a regression
we already developed the theory behind logistic regression; as a reminder,

unlike OLS, there isn’t a closed-form solution that allows us to solve for the optimal ; instead we use
computational methods. the gist of it is that we use the Maximum Likelihood Estimate (MLE):

we solve this iteratively to find the s and their associated SEs. of course, this is the ‘royal we’, as we let R take
care of all that using glm  (‘general linear model’):

lmod <- glm(chd ~ height + cigs, family = binomial, wcgs) 
summary(lmod)

let’s investigate these coefficient values – how do we interpret them? let’s start by varying the height and plotting
contours for # of cigs smoked:

log( ) = = β
θi

1 − θi

ηi Xi

β
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(beta <- coef(lmod)) 
 
plot(jitter(y,0.1) ~ jitter(height), wcgs, xlab="Height", ylab="Heart Disease",pch=".",
 main="Heart Disease vs. Height") 
curve(ilogit(beta[1] + beta[2]*x + beta[3]*0),add=TRUE) 
curve(ilogit(beta[1] + beta[2]*x + beta[3]*20),add=TRUE,lty=2) 
legend("topleft", c("Nonsmoker", "Pack a Day"), lty=c('solid','dashed'), cex=.8)

we can then compare that to the opposite, varying # of cigs and plotting height contours:

plot(jitter(y,0.1) ~ jitter(cigs), wcgs, xlab="Cigarette Use", ylab="Heart Disease",pch=
".", main="CHD vs. # Cigs/Day") 
curve(ilogit(beta[1] + beta[2]*60 + beta[3]*x),add=TRUE) 
curve(ilogit(beta[1] + beta[2]*78 + beta[3]*x),add=TRUE,lty=2) 
legend("topright", c('60in tall', "78in tall"), lty=c('solid','dashed'), cex=.8)

let’s return to our logistic model, and the idea of odds:

therefore,  can be interpreted as follows: a one-unit increase in  (i.e. height) will increase the odds of success
(i.e. the odds of developing CHD) by a factor of . therefore, the exponentiated coefficients will be more useful
in the interpretation:

exp(beta)

therefore, the odds of developing CHD increase by 2.55% (remember, we multiply the odds by 1.0255) for each
added inch in height keeping # cigs the same. similarly, the odds of developing CHD increase by 2.34% for each
additional cigarette smoked per day, controlling for height.

sidenote:  for small , and we see that ,  give very close appx. to our
exponentiated coefficients. this is a good way to estimate the effect size when doing a rapid regression.

how much do our odds of developing CHD increase when we smoke a pack a day? well,

exp(beta[3]*20)

they increase by nearly 60%. HOWEVER: this regression is not nearly sufficient to develop any causation
re:cigarettes causing CHD. just like with OLS, we can only conclude that the two are associated. there are ways to
show causality; this is not one of them.

another note about interpretation: we have just calculated odds ratios. this means that we only have the odds
relative to the predictor variables, we do not have magnitudes. smoking a pack a day does not mean you have a
60% chance of developing CHD; it means your odds of developing CHD if you smoke a pack a day are 60%
higher than your odds of developing CHD if you don’t smoke. if the odds of a nonsmoker developing CHD is 1:99
(1%), the chance you develop CHD if you smoke a pack a day is only 2:123 (1.6%).

the relative risk is related to the odds ratio, and is the ratio of probabilities. we can calculate the probability by
calculating the logistic function:

log( ) = log(odds)
θ

1 − θ

odds

= + +β0 β1x1 β2x2

= eβ0 eβ1
x1 eβ2

x2

β1 x1
eβ1

exp(x) ≈ 1 + x x = .0252β1 = .231β2
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c(ilogit(sum(beta*c(1,68,20))),ilogit(sum(beta*c(1,68,0)))) # actual probabilities 
ilogit(sum(beta*c(1,68,20)))/ilogit(sum(beta*c(1,68,0))) # relative risk

the relative risk of 1.54 is quite similar to the odds ratio of 1.59; for low probability outcomes, these two values will
be similar, but this is certainly not the case for larger probabilities.

inference
we can use the likelihood ratio statistic to develop the ‘Deviance’, an extension of residuals that measure how
well the data fit the model:

where  are the fitted values from the model. more broadly, this statistic can be used to test how well the model
fits, but unfortunately, for math reasons, the logistic regression Deviance is just a function of fitted values and
cannot be used for these purposes; we have to use other tests. however, we can still use the Deviance to
compare two models to one another. recall the summary output:

summary(lmod)

the Null Deviance  is a model with no predictors, just an intercept term. for math reasons, the difference
between the Deviance of the larger model  and the Deviance of the smaller model  is  distributed (at
least asymptotically), with dof = difference in number of parameters between larger and smaller model (in our
model, we add two predictors relative to the intercept-only model, so we have 2 dof):

1-pchisq(32.2,2)

this value is tiny, so we are confident there is a relationship between the predictors and the response. we can use
the ANOVA to compare models to one another:

lmodc <- glm(chd ~ cigs, family = binomial, wcgs) 
anova(lmodc,lmod, test="Chi")

it would seem that height does not play a significant role in predicting CHD when cigarettes are already
accounted for, so we can drop it from our model. we can use the drop1  function to test each predictor
independently:

drop1(lmod,test="Chi")

this is a better alternative to the Z-test reported in the summary()  window, but in this case they give us similar
results. in many cases, especially those with sparse data (e.g. rare events), the standard errors get overestimated,
shrinking the z-values and causing us to potentially miss out significant events. (nb: called the Hauck-Donner
effect).

again for Hauck-Donner reasons, while we can use the asymptotic normality CIs,

D = −2 logit( ) + log(1 − )∑
i=1

n

p̂ i p̂ i p̂ i

p̂ i

DL DS χ2
L−S

± se( )β̂ 
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we prefer to use the likelihood-based CIs from confint :

confint(lmod)

diagnostics
as with OLS, our first step is to check the residuals (not deviances! not here). there are two types:

1. linear predictor scale, 
predict(lmod)

2. predicted probability, 
predict(lmod, type='response')

we choose to use the 2nd, and calculate the raw residuals, plotting them against the fitted values:

linpred <- predict(lmod) 
#equivalence: predprob <- ilogit(linpred) 
 
predprob <- predict(lmod, type="response") 
rawres <- wcgs$y - predprob 
# equivalent: rawres <- residuals(lmod, type="response") 
 
plot(rawres ~ linpred, xlab="linear predictor", ylab="residuals", main="Raw Resid. wrt L
inear Predictor")

(we only plotted vs. the linear predictor here because it gives us better, cleaner spacing than the probabilities. feel
free to use either).

this is not a helpful chart, since our options are either 0 or 1. we don’t expect normally distributed residuals, since
our variance is , giving us highest variance near  and variances near 0 at either end. instead, let’s

take a look at the deviance residuals, , where . these residuals are the

default of residuals(lmod) .

this next part is a bit weird, but the gist of it is that we group residuals together into bins. each bin is based on
similar predictor values, and the number of bins is chosen to match the size of the data. we choose 100 bins so
that each bin has ~30 data points, and we will take advantage of the dplyr  library:

wcgs <- mutate(wcgs, residuals=residuals(lmod), linpred=predict(lmod)) 
gdf <- group_by(wcgs, cut(linpred, breaks=unique(quantile(linpred,(1:100)/101)))) # make 
bins 
 
# get means of residuals and linear predictors 
diagdf <- summarise(gdf, residuals=mean(residuals), linpred=mean(linpred)) 
plot(residuals ~ linpred, diagdf, xlab="linear predictor", main="Binned Residuals")

we also plot the binned residuals vs each of the predictors:

η

θ = (η)logit−1

θ(1 − θ) θ = .5

= sign( − )ri yi p̂ i r2
i

‾‾√ Deviance = ∑i r2
i
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#height 
gdf <- group_by(wcgs, height) 
diagdf <- summarise(gdf, residuals=mean(residuals)) 
ggplot(diagdf, aes(x=height,y=residuals)) + geom_point() 
 
#investigate the outlier bin 
filter(wcgs, height==77) %>% select(height, cigs, chd, residuals) 
 
#cigs 
group_by(wcgs, cigs) %>% summarise(residuals=mean(residuals), count=n()) %>% ggplot(aes
(x=cigs, y=residuals, size=sqrt(count))) + geom_point()

we see occasionally ‘outlying’ points, but the bin sizes are quite small, and easily ignored. the main trend binned
residuals are normally distributed around zero, indicating a good model.

let’s try and detect unusual points:

qqnorm(residuals(lmod))

unforunately, the Q-Q plot so useful in OLS is useless here; we see two obvious clusters, the lower one for 
and the higher one for . instead, we will use the ‘half normal plot’ to vizualize our residuals:

halfnorm(hatvalues(lmod))

the gist of this plot is that we should see a continuous sequence of points; any ‘clustering’ behavior is an
indication of points that are not following the trend. we see two such points above, and can filter them:

filter(wcgs, hatvalues(lmod) > 0.015) %>% select(height, cigs, chd)

we see that these two men smoke the largest number of cigarettes. these two points aren’t especially extreme,
and we have a large enough dataset (~3100 points) that we can safely ignore them. it is more trouble than it’s
worth to remove them from our dataset.

model selection
we will use ‘backward selection’ to find our model:

1. start with the full model, including all available predictors, and interaction terms if desired
2. compare this model with all models with one fewer predictor; compute the p-value for each dropped

predictor (e.g. via drop1 )
3. eliminate the predictor with the largest p-value greater than some threshhold (e.g. ); if the criteria

cannot be met, then stop and use this model. otherwise, return to step 2

HOWEVER: this is a horrible method to use, no matter how easy it is. while it is often used, it does not identify the
best set of predictors for predicting future responses. it does not reliably indicate which predictors are the best
explanation of the response. there is no ‘true’ model, and this can convince us (falsely) that there is. why?
because the predictors are eliminated in a data-dependent way!!!

AIC

Y = 0

Y = 1

p = .05
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the AIC (Akaike Information Criterion) is a popular workaround to these problems, which uses likelihoods and
number of parameters q: . we select the model with the smallest AIC;
when the AIC stops shrinking, we stop trying new models.

# combine height and weight into BMI 
wcgs$bmi <- with(wcgs, 703*wcgs$weight/(wcgs$height^2)) 
 
lmod <- glm(chd ~ age + height + weight +bmi + sdp + dbp + chol + dibep + cigs +arcus, f
amily=binomial, wcgs)  
lmodr <- step(lmod, trace=0) 
summary(lmodr)

we have dropped only two regressors: weight and diastolic blood pressure.

another caveat: AIC works great for predictive purposes, and is one method among several that excel in that
arena. however, notice that we have eliminated the diastolic blood pressure as a predictor of having CHD – we
may be tempted to assume that dBP has no relation to the chance of heart disease. well, try regressing on it
alone:

drop1(glm(chd ~ dbp, family=binomial, wcgs), test="Chi")

this assumption turns out to be quite false; dBP is related to CHD. we should not be so bold to assume that our
model selection methods are choosing causal, or even correlated, predictors for CHD in terms of risk factors.
this is not a medical/scientific analysis! there isn’t an ‘experiment’ we are investigating. we are simply uncovering
relationships between CHD and the measured predictors. model selection is not a stand-in for determining risk
factors, let alone causative inference.

goodness-of-fit
we will not discuss most goodness-of-fit methods, as they are complicated and not really that interesting, imo.
but we can discuss scoring methods:

we create a 2x2 table for classification by the model vs. true classification:

wcgsm <- na.omit(wcgs) 
wcgsm <- mutate(wcgsm, predprob=predict(lmod,type="response")) 
wcgsm <- mutate(wcgsm, predout=ifelse(predprob < 0.5, "no", "yes")) 
xtabs( ~ chd + predout, wcgsm) 
 
#correct classification rate:   
(2882+2)/(2882+3+253+2) 
 
#1 - false positive rate, specificity 
2882/(2882 + 3) 
 
#1 - false negative rate, sensitivity 
2/(253 + 2)

AIC = −2 log L + 2q ∝ Deviance + 2q
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thresh <- seq(0.01,0.5,0.01) 
Sensitivity <- numeric(length(thresh)) 
Specificity <- numeric(length(thresh)) 
for(j in seq(along=thresh)){ 
  pp <- ifelse(wcgsm$predprob < thresh[j],"no","yes") 
  xx <- xtabs( ~ chd + pp, wcgsm) 
  Specificity[j] <- xx[1,1]/(xx[1,1]+xx[1,2]) 
  Sensitivity[j] <- xx[2,2]/(xx[2,1]+xx[2,2]) 
} 
 
matplot(thresh,cbind(Sensitivity,Specificity),type="l",xlab="Threshold",ylab="Proportio
n",lty=1:2, main="Sensitivity vs Specificity, fxn of threshold") 
legend("bottomleft", c("Sensitivity", "Specificity"), lty=c('solid', 'dashed'), col=c('b
lack', 'red'), cex=.8)

plot(1-Specificity,Sensitivity,type="l", main="ROC") 
abline(0,1,lty=2)

3. Linear Separability
let’s take a look at the famous iris dataset, the one we looked at two lessons ago, again:

irisr <- filter(iris, Species != "virginica") %>%  select(Sepal.Width, Sepal.Length,Spec
ies) 
(p <- ggplot(irisr, aes(x=Sepal.Width, y=Sepal.Length, shape=Species)) +geom_point())

we go ahead and perform a logistic regression, to see if we can separate the two species using the sepal
dimensions:

lmod <- glm(Species ~ Sepal.Width + Sepal.Length, family=binomial, irisr) 
summary(lmod)

and it…fails?

it turns out the residual deviance is 0, indicating a perfect fit. zero deviance, however, blows up the standard
errors to infinity, hence the error and meaningless coefficients. when we can perfectly bisect our data, we say that
the data is “linearly separable”, which makes interpretation impossible. it almost implies that we can perform
perfect predictions on new data (which is a Holy Grail – desirable beyond all things, but not real), and we can’t
quantify the certainty of our predictions because the standard errors are nonsense. we must resort to other
methods.

there are several schools of thought, some of which use souped-up versions of logistic regression to perform
“exact logistic regressions” (see the package elrm ). we will use a bias-reduction method, implemented in the
brglm  library:
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library(brglm) 
bmod <- brglm(Species ~ Sepal.Width + Sepal.Length, family=binomial, irisr)  
summary(bmod) 
 
#plotting 
p + geom_abline(intercept=(0.5+24.51)/9.73, slope=8.9/9.73)


