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Abstract

We derive conditions for identification of sophisticated, quasi-hyperbolic time preferences in a

finite horizon, dynamic discrete choice model under a set of exclusion restrictions that are commonly

used to identify time-consistent preferences. Identification is reduced to characterizing of the zero

set of two bivariate polynomial moment conditions. The number of discount function parameters in

the identified set is bounded by known features of the data distribution. We show that though the

discount function parameters are formally identified, it is hard to precisely estimate each parameter

separately. We argue that the standard approach to identify time-consistent preferences does not well

capture preference-reversals, which is the defining feature of time-inconsistent preferences.
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1 Introduction

The standard approach to identify time-consistent preferences is to use measures of the current choice

response to variation in future values, holding current pay-offs fixed, see Abbring and Daljord (2019b)

for version of this identification argument in dynamic discrete choice models. The empirical literature

on present-biased time preferences is motivated by evidence of preference reversals (e.g. Frederick

et al., 2002). In Thaler’s (1981) classic example, subjects who prefer one apple today to two apples

tomorrow tend to prefer two apples one year and one day from now to one apple one year from now.

Such preference reversals are the defining feature of time-inconsistent preferences. Observed preference

reversals are direct evidence of present-bias and would be at the core of an empirical identification

strategy.

The literature distinguishes between naive and sophisticated present-bias (e.g. O’Donoghue and

Rabin, 1999). Naive agents are not aware of their present-bias and consistently make present-biased

decisions, while believing they will make time-consistent choices in the future. Sophisticated agents

are fully aware of their present-bias and make savings choices strategically taking their future present-

biased choices into account.1

Demonstrated demand for commitment devices has been taken as evidence of sophisticated present-

bias, e.g. Malmendier and DellaVigna (2006). An agent who is at least partly aware of her own

present-bias may look for commitment devices to achieve self control. For instance, a sophisticated

agent may want to lock in her savings to avoid excessive spending by future present-biased selves,

that is, to restrict her future choice sets without receiving a current period pay-off. Demand for

commitment can be viewed as a strategic response to anticipated preference reversals.

There is a wealth of empirical lab studies of present biased discount functions in general and

βδ discount functions in particular, see Urminsky and Zauberman (2015) for a survey. There are,

to our knowledge, only three studies that estimate βδ-discount functions in dynamic discrete choice

models. Mahajan and Tarozzi (2019) uses survey evidence on beliefs and preferences along with

evidence of demand for commitment devices to identify partially naive discount functions in a non-

stationary, three-period choice model, Fang and Wang (2015) estimates partially naive preferences

in an application to mammography decisions, and Chan (2017) estimates a model of welfare benefit

choices with βδ-preferences. 2

1O’Donoghue and Rabin (1999) characterized partial naivite, an intermediate case where an agent may not be fully aware
of her own present-bias.

2Fang and Wang proposed a proof of identification of βδ time preferences under similar exclusion restrictions to the ones we
consider in this paper. Abbring and Daljord (2019a) showed that Fang and Wang (2015)’s main identification claim is void—
that it has no implications for identification of the dynamic discrete choice model— and its main proof of identification is
incorrect and incomplete. Chan builds on Fang and Wang’s intuition. We emphasize that we do not believe that the incorrect
results in Fang and Wang invalidates the results in Chan. On the contrary, we think our results confirm that the model in
Chan is formally identified and possibly also the one in Fang and Wang.
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The lack of evidence on present-biased time preferences from choice data is partly because time

preferences are non-parametrically underidentified in the standard DDC model (Rust (1994)). We

consider the joint identification of a non-parametric utility function and a sophisticated βδ discount

function using the behavioural model of Fang and Wang (2015).3 We give conditions under which

sophisticated, quasi-hyperbolic preference parameters can be formally identified from choice data. Our

identification argument relies on interpretable exclusion restrictions on primitive utilities of the kind

used for recovery of time-consistent preferences in Abbring and Daljord (2019b), and similar to the

ones used in Fang and Wang, Chan, and Mahajan and Tarozzi. Daljord et al. (2019) shows point

identification of a fully general, time separable discount function in an terminal action problem under

the same set of exclusion restrictions. We consider a more general dynamic discrete choice model in

this paper. We have not been able to establish identification for the partially naive case under these

exclusion restrictions, but see Mahajan and Tarozzi for the case of a non-stationary, three-period

model.

We show that the discount function parameters are identified as the zero set of a bivariate system

of polynomial equations. The number of discount function parameters in the identified set is finite

and bounded above by known features of the data, similar to the analogous results for time-consistent

preferences. The identification of the discount function parameters is shown to imply the identification

of a non-parametric, normalized pay-off function, analogous to Magnac and Thesmar (2002) results

for time-consistent preferences.

After showing that the parameters are formally identified, we note that it is hard to separate the

discount function parameters in finite samples using this identification strategy. Though the product

βδ can be estimated to a high degree of precision, we show that due to how the parameters enter

largely interchangeably in the identifying moment conditions, the parameters are likely to be estimated

individually at comparably low levels of precision. We find that the same exclusion restriction approach

that is effective in recovering a discount factor does not reflect an experimental design that is well suited

to recover βδ-preferences. We show these features theoretically and illustrate them in a simulation.

2 Model

We study a finite horizon dynamic discrete choice model in which agents may suffer from sophisticated

present-bias. Our model is similar to Fang and Wang’s (2015), but is nonstationary, and assumes that

agents are sophisticated.

3Though Abbring and Daljord (2019a) shows that Fang and Wang’s results on identification are incorrect, it proposes an
excellent empirical model of present biased preferences.
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2.1 Primitives

Time is indexed by t = 1, . . . , T ; with T <∞. In each period t, the agent chooses an action dt from a

finite set D = {1, . . . ,K}. Prior to making this choice, the agent draws and observes vectors of state

variables xt and εt = {ε1,t, . . . , εK,t}. The observable (to the econometrician) states xt have finite

support X and evolve as a controlled (by dt) first order Markov process. For notational simplicity

only, we take this process to be stationary, with Markov transition distribution Qk if k ∈ D is chosen.

The utility shocks εk,t are independent from xt and prior states and choices, over time, and across

choices, and have type 1 extreme value distributions.4

If, in period t and state x, the agent chooses k, she collects a flow of utility uk,t(x) + εk,t. We

normalize uK,t(x) = 0 for all t ∈ 1, . . . , T and x ∈ X . This normalization is substantive, but is

standard in the literature and cannot be rejected by the type of observational data on choices and

states that we will assume available in this paper.5

The agent’s discount function has two parameters: a non-negative and finite standard discount

factor δ and a present-bias parameter β ∈ (0, 1]. Since the horizon is finite, we do not require that

the discount factor δ is smaller than one. If β = 1, the model reduces to one with standard geometric

discounting. The present-bias parameter is bounded away from zero to distinguish present-bias from

myopia.

2.2 Choices

Choices in dynamic discrete choice models are regulated by value functions. Since present-biased time

preferences are time inconsistent, these value functions do not follow from a standard dynamic pro-

gram. It is common to think about the values as summarizing the pay-offs to players in a Stackelberg-

like game played between selves in different time periods (e.g. Elster, 1985).

Let σ̃t : X × RK → D be an arbitrary choice strategy and σ̃t = {σ̃τ}Tτ=t an arbitrary strategy

profile. The agent’s current choice specific value function, which regulates the choices, is

wk,t(x; σ̃t+1) = uk,t(x) + βδ

∫
vt+1(x

′; σ̃t+1)dQk(x
′|x) (1)

for t < T , with terminal value wk,T (x) = uk,T (x). The agent trades off current utility versus future

values by factor βδ, but the stream of all future utilities are discounted geometrically by factor δ

4Our analysis straightforwardly extends to the case in which the vectors εt are independent over time, with known
continuous distributions Gt on a common support RK . Note that the exact choice of Gt, for t = 1, . . . , T , does not impose
testable restrictions on the type of data that we assume are available in this paper.

5The way uK,t is normalized affects the model’s implied behavioural responses to many, but not all, counterfactual
interventions (e.g. Norets and Tang, 2014; Aguirregabiria and Suzuki, 2014; Kalouptsidi et al., 2016).
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according to the perceived long run value function, which equals

vt+1(x; σ̃t+1) = Eεt+1

[
uσ̃t+1(x,εt+1),t+1(x) + εσ̃t+1(x,εt+1),t+1

+ δ

∫
vt+2(x

′; σ̃t+2)dQσ̃t+1(x,εt+1)(x
′|x)

]
(2)

for t+ 1 < T , with terminal value vT (x; σ̃T ) = EεT
[
uσ̃T (x,εT ),T (x) + εσ̃T (x,εT ),T

]
.

The perceived long run value depends on the current self’s perceptions of its future selves’ strategies

σ̃t+1. At the time of decision, each of these future selves have present-biased preferences which are in

conflict with the current self’s time consistent long run time preferences.

Since the agent is sophisticated, her perceptions of her future strategies are correct in equilib-

rium. Thus, in a sophisticated intrapersonal equilibrium, her selves use a perception perfect strategy

(O’Donoghue and Rabin, 1999), which is a strategy profile σ∗1 such that each σ∗t is a best response to

her perceived future strategy profile σ∗t+1:

σ∗t (x, εt) = arg max
k∈D
{wk,t(x;σ∗t+1) + εk,t}. (3)

Here, wk,T (x;σ∗T+1) should be read as wk,T (x).

It is easy to show, by backward induction from time T , that a perception perfect strategy exists

and is unique (up to the resolution of ties in the decision in (3)).

3 Identification

For given primitives Q1, . . . , QK ; β; δ; and u1,t, . . . , uK−1,t; t = 1, . . . , T ; the model implies unique

conditional choice probabilities

pk,t(x) = Pr(dt = k|xt = x) = Eεt [1{σ∗t (x, εt) = k}] (4)

for all k ∈ D; t = 1, . . . . , T ; and x ∈ X . Together with the state transition probabilities Q1, . . . , QK ;

these conditional choice probabilities fully determine the joint distribution of observed states and

choices.

This paper studies the extent to which, conversely, the model primitives are uniquely determined—

identified— from the state transition and choice probabilties. Observed state transitions directly

identify Qk and thus, because they were assumed rational, the agent’s expectations. We therefore

focus on the identification of the utility functions uk,t and the discount parameters β and δ from the

conditional choice probabilities for given Q1, . . . , QK .
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3.1 Basic Results

The choice probabilities only depend on the primitives through the value contrasts wk,t(x;σ∗t+1) −
wK,t(x;σ∗t+1). In particular, (4) implies that6

ln

(
pk,t(x)

pK,t(x)

)
= wk,t(x;σ∗t+1)− wK,t(x;σ∗t+1) (5)

for all k ∈ D/{K}; t = 1, . . . , T ; and x ∈ X . With the restriction that the choice probabilities add up

to one over choices, (5) gives

− ln(pK,t(x)) = ln

(∑
k∈D

exp
[
wk,t(x;σ∗t+1)− wK,t(x;σ∗t+1)

])
. (6)

With − ln(pK,t(x)) in hand, (5) determines pk,t(x) from the value contrasts.

Conversely, as in the case without present-bias (Hotz and Miller, 1993), using (5), the current choice

specific value contrasts can be uniquely recovered from the observed choice probabilities. Altogether,

this implies that we can focus our identification analysis on the question to what extent the discount

parameters and utilities are uniquely determined from the value contrasts wk,t(x;σ∗t+1)−wK,t(x;σ∗t+1),

for given Qk.

It is well known that the dynamic discrete choice model with geometric discounting (β = 1)

is not identified (Rust, 1994, Lemma 3.3, and Magnac and Thesmar, 2002, Proposition 2). The

underidentification carries over to its generalization with present-bias. Specifically, the following

version of Magnac and Thesmar’s (2002) Proposition 2 holds.

Theorem 1. For given Q1, . . . , QK ; β; δ; and pk,t(x); k ∈ D; t = 1, . . . . , T ; and x ∈ X ; there exists

unique utility functions u1,t, . . . , uK−1,t; t = 1, . . . , T ; such that (1), (2), (3), and (4) hold.

Proof. Using (5), pk,T , k ∈ D, gives the unique wk,T − wK,T , k ∈ D, that are consistent with (4).

Using the terminal condition of (1) and the normalization uK,T = 0, this gives wk,T = uk,T , k ∈ D.

The strategy σ∗T follows up to ε-almost sure equivalence from (3). Finally, vT follows from (2).

Next, iterate the following argument for t = T − 1, . . . , 1. Suppose that we have constructed

unique uk,t+1, k ∈ D, unique vt+1, and unique (up to ε-almost sure equivalence) σ∗t+1 = (σ∗t+1, . . . , σ
∗
T )

consistent with (1), (2), (3), and (4) and the choice probabilities. For each x ∈ X , using (5), pk,t(x),

6The functional form of the mapping between value contrasts and choice probabilities is specific to the assumption that
the εk,t have independent type 1 extreme value distributions, but the results given here extend to general known Gt.
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k ∈ D, gives the unique wk,t(x;σ∗t+1)− wK,t(x;σ∗t+1), k ∈ D, that are consistent with (4). Using (1),

wk,t(x;σ∗t+1)− wK,t(x;σ∗t+1) (7)

= uk,t(x)− uK,t(x) + βδ

∫
vt+1(x

′;σ∗t+1)
[
dQk(x

′|x)− dQK(x′|x)
]
, k ∈ D.

Because the last term in the right hand side of (7) is known at this point and uK,t(x) is normalized

to zero, this determines uk,t, k ∈ D. The strategy σ∗t follows up to ε-almost sure equivalence from (3).

Finally, vt follows from (2).

Theorem 1 implies that β and δ can only be identified if further data are available or additional

assumptions are made. In this paper, we explore identification under exclusion restrictions on the

utility functions. Our analysis focuses on the identification of β and δ. Theorem 1 shows that, once

β and δ are identified, unique utility functions can be found that rationalize the choice data.

3.2 Concentrating identification on the discount factors

Because X is finite— say it has J elements— it is convenient to express expectations in matrix

notation. To this end, let vt(σ
∗
t ) be a J × 1 vector that stacks the values of vt(x;σ∗t ), x ∈ X , and

Qk(x) a 1 × J vector that stacks the values of Qk(x
′|x), x′ ∈ X , in corresponding order. Then, (5)

and (7), with the normalization uK,t(x) = 0, give

ln

(
pk,t(x)

pK,t(x)

)
= uk,t(x) + βδ [Qk(x)−QK(x)]vt+1(σ

∗
t+1). (8)

Recall that, given the transition distributions Qk, (8) contains all information in the choice probabil-

ities about the model’s primitives.

We will concentrate the identification analysis on the discount factors by controlling the current

period utility uk,t(x) in the right hand side of (7) with exclusion restrictions and expressing the

continuation value in terms of the discount factors and data only. As Qk(x) and QK(x) are data,

this only requires that we express the perceived long run values vt+1(σ
∗
t+1) in terms of the discount

factors and data. To this end, first substitute (1) and (3) into (2) to get

vt+1(x;σ∗t+1) (9)

= Eεt+1

[
max
k∈D

{
wk,t+1(x;σ∗t+2) + εj,t+1

}
+ δ(1− β)Qσ∗t+1(x,εt+1)(x)vt+2(σ

∗
t+2)

]
.

Next, as we can express the value contrast wk,t+1 − wK,t+1 in terms of data using (5), we substract

wK,t+1(x;σ∗t+2) from the first term in the right hand side of (9) and add it to the second term, which
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gives

vt+1(x;σ∗t+1) (10)

= mt+1(x) + wK,t+1(x;σ∗t+2) + δ(1− β)Eεt+1

[
Qσ∗t+1(x,εt+1)(x)vt+2(σ

∗
t+2)

]
,

where

mt+1(x) = Eεt+1

[
max
k∈D

{
wk,t+1(x;σ∗t+2)− wK,t+1(x;σ∗t+2) + εk,t+1

}]
(11)

is the McFadden surplus (before observing εt+1) for the choice among k ∈ D with utilities wk,t+1(x;σ∗t+2)−
wK,t+1(x;σ∗t+2) + εk,t+1. Under our assumption that εt+1 is extreme value distributed, the right-hand

side of (11) reduces to the right-hand side of (6), so that mt+1(x) = − ln(pK,t+1(x)) is known from

the choice data.7 The term wK,t+1(x;σ∗t+2) can be expressed recursively as

wK,t+1(x;σ∗t+2) = βδQK(x)vt+2(σ
∗
t+2). (12)

Finally, as the expectation over εt+1 in the right hand side of (10) is effectively an expectation over

implied actions σ∗t+1(x, εt+1), it can be expressed in terms of the observed choice probabilities using

(3):

Eεt+1

[
Qσ∗t+1(x,εt+1)(x)vt+2(σ

∗
t+2)

]
=
∑
k∈D

pk,t+1(x)Qk(x)vt+2(σ
∗
t+2). (13)

Substituting (12) and (13) into (10) gives

vt+1(x;σ∗t+1) = mt+1(x) + δ
[
βQK(x) + (1− β)Qt+1(x)

]
vt+2(σ

∗
t+2) (14)

where Qt+1(x) =
∑

k∈D pk,t+1(x)Qk(x) is the expected state transition probability distribution under

strategy σ∗t+1 in state x. This mixture represents an expectation over how the choices of present-biased

future selves control future state transitions, choices which are in conflict with the current self’s long

term preferences.

Define the J × J matrix of probability mixtures

Qpb
t (β) = βQK + (1− β)Qt, (15)

where Qt stacks Qt(x) and QK stacks QK(x). Then, we can write (14) as a recursive expression for

7More generally, given G, mt+1(x) is a known function of wk,t+1(x;σ∗t+2)− wK,t+1(x;σ∗t+2), k ∈ D, and thus, using (5),
of the choice probabilities (Arcidiacono and Miller, 2011).
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vt+1(σ
∗
t+1) in vector notation:

vt+1(σ
∗
t+1) = mt+1 + δQpb

t+1(β)vt+2(σ
∗
t+2).

Completing the recursion until the end of time T expresses

vt+1(σ
∗
t+1) = mt+1 +

T∑
τ=t+2

δτ−t−1

(
τ−1∏
r=t+1

Qpb
r (β)

)
mτ , (16)

in terms of the discount factors and data only. Substituting (16) into (8) gives

ln

(
pk,t(x)

pK,t(x)

)
=uk,t(x)+ (17)

βδ [Qk(x)−QK(x)]

[
mt+1 +

T∑
τ=t+2

δτ−t−1

(
τ−1∏
r=t+1

Qpb
r (β)

)
mτ

]
.

The log choice probability ratio in the left hand side of (17) measures the observed propensity to choose

k over K in state x. The right hand side of (17) explains this observed propensity by the current

period’s utility difference uk,t(x)− uK,t(x) = uk,t(x) and a difference in continuation values, which is

a polynomial in β and δ with coefficients that are fully determined by the choice and transition data.

We study identification from variation in these continuation values, under exclusion restrictions on

primitive utility that control the effects of variation in the current period’s utility. This formalizes the

common intuition that holding current period utilities constant, current choice responses to variation

in future values are informative about time preferences.

3.3 Exclusion restrictions

Our identification argument holds for exclusion restrictions on utilities between pairs of time periods,

choices, states, or any combinations of the three. To simplify the exposition, we however focus on

exclusion restrictions on utilities between pairs of states. We primarily focus on the case in which

we have two such exclusion restrictions, which is the minimum needed to identify the two unknown

discount factors, β and δ. In applications, intuition for exclusion restrictions would typically deliver a

variable that affects continuation values, but not the current period’s utility. Such a excluded variable

would typically imply more than two exclusion restrictions on states, which would further restrict the

identified set of discount factors.

So, consider two exclusion restrictions, indexed by a and b. Let xa,1, xa,2 ∈ X and xb,1, xb,2 ∈ X

9



be two pairs of states such that xa,1 6= xa,2 and xb,1 6= xb,2. The exclusion restrictions are

uk,t(xa,1) = uk,t(xa,2) and uk,t(xb,1) = uk,t(xb,2) for some k ∈ D/{K} and some t < T − 1. (18)

Difference (17) corresponding to the indices of the exclusion restrictions to get the following bivariate

polynomial system in β and δ

ln

(
pk,t(xa,1)

pK,t(xa,1)

)
− ln

(
pk,t(xa,2)

pK,t(xa,2)

)
=

βδ [Qk(xa,1)−QK(xa,1)−Qk(xa,2) +QK(xa,2)]

[
mt+1 +

T∑
τ=t+2

δτ−t−1
(
Πτ−1
r=t+1Q

pb
r (β)

)
mτ

]
(19)

ln

(
pk,t(xb,1)

pK,t(xb,1)

)
− ln

(
pk,t(xb,2)

pK,t(xb,2)

)
=

βδ [Qk(xb,1)−QK(xb,1)−Qk(xb,2) +QK(xb,2)]

[
mt+1 +

T∑
τ=t+2

δτ−t−1
(
Πτ−1
r=t+1Q

pb
r (β)

)
mτ

]
. (20)

The moment conditions (19) and (20) are bivariate polynomials of order T − t in β and δ, with

coefficients that are determined by known functions of the data. The moment conditions are

independent of u and must hold exactly in the population. The identified set is consequently re-

duced to characterizing the zero set of the these bivariate polynomial equations, independently

of the other moment conditions in (5). Solving systems of bivariate polynomial equations is a

well-understood problem where we can draw on standard results from algebraic geometry.

It turns out that the common factors of (19) and (20) characterize the exceptions to a re-

sult that (β, δ) is identified from these moment conditions up to a finite set. Write the moment

conditions (19) and (20) as fa(β, δ) = 0 and fb(β, δ) = 0, respectively, with fa and fb (T − t)’th
order polynomials. Then, we say that the polynomials fa and fb have a common factor h if

fa(β, δ) = h(β, δ)ga(β, δ) and fa(β, δ) = h(β, δ)ga(β, δ), with h a polynomial of of order one or

higher and ga and gb polynomials. A simple example of a common factor of (19) and (20) in the

case that their left hand sides are zero (no choice responses) is h(β, δ) = δ. Common factors

may be viewed as a non-linear counterpart to linear dependence in linear systems of equations.

Assumption 1. The moment conditions in (19) and (20) have no common factors.

We first present the formal identification result before we comment on the exceptions.

Theorem 2. Suppose that the exclusion restrictions in (18) hold, that Assumptions 1, and

that (19) and (20) are a system of non-constant multivariate polynomials on the domain of β

and δ. Then the identified set B is discrete with no more than (T − t)2 points.

10



Proof. By Bezout’s Theorem (Bezout (1764)), the system then has no more than (T − t)2 zeros

in the complex plane, which is also an upper bound on the number of zeros on the domain of

β and δ.

Bezout’s theorem generalizes the fundamental theorem of algebra to multivariate polynomials,

see e.g. Cox et al. (2015). Note that Theorem 2 does not guarantee a solution. The zero set

may be empty, in which case the model is rejected.8

Except for certain special cases, such as when one moment condition is a multiple of the

other, we have not found obvious economic interpretations of neither common factors nor the

resultant. The existence of common factors can however easily be verified on a case-by-case

basis by calculating the resultant : the moment conditions have a common factor whenever its

resultant is everywhere zero. The resultant is the determinant of the Sylvester matrix of the

bivariate polynomials. It is in general a polynomial in either β or δ, where any one of the two

parameters can arbitrarily be chosen as a base. The real roots to this univariate polynomial are

also roots to the moment conditions. We give a simple example of a resultant in Section B. If

all β ∈ (0, 1], δ ∈ [0, 1) are roots to the moment conditions, which is equivalent to the resultant

being everywhere zero, then identification is lost. The resultant condition is an analogue to a

rank condition in a linear system of equations.

4 Relation to preference reversals

We showed above that the primitive utility exclusion restriction approach that has been pro-

posed to identify geometric time preferences in dynamic discrete choice models formally extends

to present-biased time preferences. It is yet less obvious how it captures preference reversals,

the defining feature of present-biased time preferences. It is instructive to ask how time prefer-

ences are elicited experimentally. The most common lab approach to measure time preferences

is to use contrasts between observed choices between Sooner-Smaller (SS) and larger-later (LL)

rewards, see e.g. Ericson et al. (2015). A well-known example is Thaler’s apples: while most

people may prefer an apple today to two apples tomorrow, the same people would presumably

prefer two apples one year and one day from now to one apple one year from now. Such choice

contrasts are direct and intuitive measures of preference reversals.

8See Abbring and Daljord (2019b) for a discussion of the empirical content of dynamic discrete choice models under
exclusion restrictions.
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The exclusion restrictions we exploited above however force the current period pay-off in-

variant across either a pair of states or a pair of choices, which by construction precludes the

common lab design. Rather than comparing choice contrasts between different current period

payoffs, such as in Thaler’s apples, the identification relies on the contrasts in choice responses

to variation in how continuation values are distributed across these states or choices. We next

show that the identification of present bias in this design relies on much subtler mechanisms

that, though informative about time preferences, are also likely to be hard to estimate to a

reasonable level of precision.

The mechanism that distinguishes the present bias model from the geometric model is related

to the perceived long term value function in (14), which we repeat here for convenience

vt+1(σ
∗
t+1) = mt+1 +

T∑
τ=t+2

δτ−t−1

(
τ−1∏
r=t+1

Qpb
r (β)

)
mτ , (21)

where from (15)

Qpb
t (β) = βQK + (1− β)Qt, (22)

For time consistent preferences (β = 1), the future choice contrasts are controlled by QK

along the time-consistent optimal policy. For time-inconsistent preferences, the agent adjusts

the perceived long run value function by the correction term (1 − β)Qt, which represents the

weighted deviation from the current selves optimal strategies by future, present biased decision

makers. In other words, this term represents the expected preference reversals of future selves.

The sophisticated current self anticipates these preference reversals and make current choices

in part to minimize the incentives of future selves to deviate from her desired, long run choice

path by controlling the state evolution.

The identification of present bias can therefore be said to be identified by the weight the

long run value function assigns to the expected preference reversals. As we demonstrate below,

this is a subtle mechanism. It is less intuitive and transparent than the typical sooner-smaller

larger-later design where preference reversals can typically be seen directly from the choice

probabilities. It may therefore be hard to separate these parameters in finite samples to a

meaningful level of precision.
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5 Identification and inference in a three period model

In this example, we assume binary choice. We set ta,1 = ta,2 = ta and tb,1 = tb,2 = tb and

assume the exclusion restrictions

u1,ta(xa,1) =u1,ta(xa,2) (23)

u1,tb(xb,1) =u1,tb(xb,2) (24)

The two exclusion restrictions lead to the two moment conditions

ln

(
p1,ta(xa,1)

p2,ta(xa,1)

)
− ln

(
p1,ta(xa,2)

p2,ta(xa,2)

)
=

βδ [Q1(xa,1)−QK(xa,1)−Q1(xa,2) +QK(xa,2)]
[
mta+1 + δQpb

t+1vta+2

]
, (25)

ln

(
p1,tb(xb,1)

p2,tb(xb,1)

)
− ln

(
p1,tb(xb,2)

p2,tb(xb,2)

)
=

βδ [Q1(xb,1)−QK(xb,1)−Q1(xb,2) +Qk(xb,2)]
[
mtb+1 + δQpb

tb+1vtb+2

]
. (26)

Period T − 1

We first show that present-biased discount functions can not be identified from only two periods

of observed choices and states. Let ta = tb = T − 1, then define

∆Q1(xa) = [Q1(xa,1)−QK(xa,1)−Q1(xa,2) +QK(xa,2)] ,

and analogously for ∆Q1(xb). Next, define

∆ ln(p1,T−1(xa)) = ln

(
p1,T−1(xa,1)

p2,T−1(xa,1)

)
− ln

(
p1,T−1(xa,2)

p2,T−1(xa,2)

)
.

The moment conditions in (19) can now be written

∆ ln(p1,T−1(xa)) = βδ∆Q1(xa)mT (27)

∆ ln(p1,T−1(xb)) = βδ∆Q1(xb)mT (28)

The two polynomials are clearly linearly dependent. This also an example of a common factor.

Since the parameters β and δ are interchangeable in both moment conditions, they can not be

separately identified with only two periods of data. Their product is however point identified.

13



Period T − 2

With three periods of data, the discount function parameters are formally set identified. Let

ta = tb = T − 2. The moment conditions are

∆ ln(p1,T−2(xa)) = βδ∆Q1(xa)
[
mT−1 + δQpb

T−1mT

]
∆ ln(p1,T−2(xb)) = βδ∆Q1(xb)

[
mT−1 + δQpb

T−1mT

]
Writing out the terms, we get

∆ ln(p1,T−2(xa)) =βδ∆Q1(xa)mT−1 + βδ2∆Q1(xa)QT−1mT+

β2δ2∆Q1(xa)
[
QT−1 −Q2

]
mT (29)

∆ ln(p1,T−2(xb)) =βδ∆Q1(xb)mT−1 + βδ2∆Q1(xb)QT−1mT+

β2δ2∆Q1(xb)
[
QT−1 −Q2

]
mT (30)

We first note that the only term for which β and δ are not interchangeable in period T − 2

is βδ2∆Q1(xa)QT−1mT . The set identification of β and δ therefore relies on a higher order

interaction term. These terms are furthermore likely to be highly correlated in finite samples

which suggests that precise estimation of the two parameters separately may be hard to achieve.

We illustrate this point with a simulation below.

5.1 Estimation routine

We estimate β and δ from the sample counterparts to the moment conditions in (19) and (20)

by minimum distance. Holding the choice fixed at some k ∈ D\{K}, a pair of periods t and t′

and a pair of states x1 and x2 give the exclusion restriction ut(x1) = ut′(x2). The corresponding

moment is

ψ(β, δ;x, t) =
pk,t(x1)

pK,t(x1)
− pk,t′(x2)

pK,t′(x2)
−

βδ ([Qk(x1)−QK(x2)]vt+1 − [Qk(x2)−QK(x2)]vt′+1) (31)

14



where vt = mt + δQpb
t vt+1. We denote the vector of moments which has one element for each

exclusion restriction ψ(β, δ; ., .). The minimum distance criterion is

S(β, δ) = ψWψ′

for a weight matrix W . The gradient and the Hessian of the criterion function are given in the

appendix.

5.2 Simulation

We set the number of states J = 6, for T = 3, and draw data for N = 1000000 agents. The

discount parameters are set β = 0.80 and δ = 0.50. The exclusion restrictions u1,1(x1) =

u1,1(x2) = 1.00 are imposed in estimation. The utilities are

u1 =



1.00 −1.00 1.00

1.00 2.00 1.00

1.00 2.00 4.00

1.00 −1.00 4.00

4.00 2.00 1.00

1.00 5.00 3.00


and the transitions are drawn randomly from the true transitions

Q1 =



0.19 0.22 0.06 0.28 0.06 0.19

0.11 0.32 0.07 0.11 0.14 0.25

0.28 0.11 0.17 0.28 0.06 0.11

0.21 0.14 0.24 0.24 0.07 0.10

0.03 0.24 0.24 0.24 0.22 0.03

0.10 0.14 0.10 0.19 0.05 0.43



Q2 =



0.25 0.19 0.12 0.12 0.12 0.19

0.08 0.08 0.31 0.15 0.23 0.15

0.27 0.07 0.27 0.07 0.20 0.13

0.23 0.23 0.31 0.08 0.08 0.08

0.19 0.25 0.12 0.06 0.25 0.12

0.19 0.12 0.19 0.19 0.25 0.06
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We first confirm that β and δ are identified. We use the true choice probabilities and true

transition distributions to recover β and δ up to numerical precision at β̂ = 0.80 and δ̂ = 0.50.

Figure 1 plots the criterion for β and δ, holding δ and β, respectively, at their true values,

using the true choice data. The plot shows no clear basin around the minimum, but instead

a banana shaped trough. The trough points to issues of inference in finite samples. A similar

observation was made in Laibson et al. (2007) for a lifecycle consumption model with βδ pref-

erences and continuous choices, see its Figure 1.

Figure 1: Heat map of the criterion function for the hyperbolic model using true choice data (no sampling variation).

We next use choice data with sampling variation. In Figure 2, we plot β and δ estimates

from 100 data sets drawn from the same DGP. The estimates are seen to lie along a hyperbole

16



that is implied by the product of their true values β = 0.80∗0.50
δ

, similar to the trough in the heat

map in Figure 1. The scatterplot shows that though the parameters are imprecisely estimated

separately (the swarm of points stretch along the hyperbole), the products of the parameters

are relatively more precisely recovered (the variation around the hyperbole). This points to

a practical difficulty in recovering hyperbolic discount function parameters precisely in obser-

vational data using our exclusion restrictions. Finally, we estimate an exponential discount

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Joint distribution of  and  estimates from simulation. Black converged, red did not.

Figure 2: Estimates of β and δ from data with sampling variation.

function using data generated by a DGP with β = 0.80 and δ = 0.50. We expect the estimate

of δ to be close to 0.80 × 0.50 and precisely estimated. The estimate is 0.40. The criterion is

given in Figure 3.
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Figure 3: Plot of the criterion function for the geometric model using choice data with sampling variation.
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A Gradient and Hessian of the criterion function

For each exclusion restriction in (31), the corresponding moment ψ has derivatives

∂ψ(β, δ;x, t)

∂β
= −δ

(
[Qk(x1)−QK(x1)]

[
vt+1(β, δ) + β

∂vt+1(β, δ)

∂β

]
− (32)

[Qk(x2)−QK(x2)]

[
vt′+1(β, δ) + β

∂vt′+1(β, δ)

∂β

])
∂ψ(β, δ;x, t)

∂δ
= −β

(
[Qk(x1)−QK(x1)]

[
vt+1(β, δ) + δ

∂vt+1(β, δ)

∂δ

]
− (33)

[Qk(x2)−QK(x2)]

[
vt′+1(β, δ) + δ

∂vt′+1(β, δ)

∂δ

])

The derivatives vt(β, δ) = mt + δQpb
t (β)vt+1(β, δ) are calculated recursively

∂vt(β, δ)

∂β
= δ

(
Qpb
t (β)

∂vt+1(β, δ)

∂β
+ δ[QK −Qt]vt+1(β, δ)

)
(34)

∂vt(β, δ)

∂δ
= Qpb

t (β)

[
vt+1(β, δ) + δ

∂vt+1(β, δ)

∂δ

]
(35)

with terminal conditions ∂vT

∂β
= ∂vT

∂δ
= 0. The gradient of the criterion

S = ψWψ′ (36)

is then

g(θ) = 2
∂ψ

∂θ
Wψ′, (37)

where θ = [β, δ].
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The second derivatives of a given moment are

∂2ψ(β, δ;x, t)

∂β∂δ
= −1

δ

∂ψ

∂β
−δ [Qk(x1)−QK(x1)]

[
∂vt+1

∂δ
+ β

∂2vt+1

∂δ∂β

]
−

[Qk(x2)−QK(x2)]

[
∂vt′+1

∂δ
+ β

∂2vt′+1

∂δ∂β

]
(38)

∂2ψ(β, δ;x, t)

∂β2
= −δ

(
[Qk(x1)−QK(x1)]

[
2
∂vt+1

∂β
+ β

∂2vt+1

∂β2

]
−

[Qk(x2)−QK(x2)]

[
2
∂vt′+1

∂β
+ β

∂2vt′+1

∂β2

])
(39)

∂2ψ(β, δ;x, t)

∂δ2
= −β

(
[Qk(x1)−QK(x1)]

[
2
∂vt+1

∂δ
+ δ

∂2vt+1

∂δ2

]
−

[Qk(x2)−QK(x2)]

[
2
∂vt′+1

∂δ
+ δ

∂2vt′+1

∂δ2

])
(40)

The second derivatives of the value functions are calculated recursively

∂vt
∂δ∂β

=
∂Qpb

t

∂β

[
vt+1 + δ

∂vt+1

∂β

]
+Qpb

t

[
∂vt+1

∂β
+ δ

∂vt+1

∂δ∂β

]
(41)

∂vt
∂β2

= δ

[
∂Qpb

t

∂β

[
∂vt+1

∂β
+ δvt+1

]
+Qpb

t

∂vt+1

∂β2

]
(42)

∂2vt
∂δ2

= Qpb
t

[
2
∂vt+1

∂δ
+ δ

∂vt+1

∂δ2

]
(43)

where we note that
∂Qpb

t

∂β
= QK −Qt. The Hessian is

H(θ) = 2

(
∂2ψ

∂θ2
W [I2 ⊗ψ′] +

∂ψ

∂θ
W

∂ψ′

∂θ

)
. (44)

B Simple example of the resultant

We give a highly stylized example of how to construct the resultant. Suppose the moment

conditions are the following second-degree polynomials in β and δ.

fa(β, δ) = β2 − δ2, (45)

fb(β, δ) = β2 − δ.
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We decide to use β as base and express it in terms of δ as a free variable. The Sylvester matrix

has dimensions (deg(fa) + deg(fb)) × (deg(fa) + deg(fb)) with the first row representing the

coefficients on fa, holding δ as a free variable. The second row shifts the first row one column

to the right. The third row represents the coefficients on fb for free δ, and the fourth row sends

the third row one column to the right.

Res(fa(β, δ), fb(β, δ))β =


1 0 −δ2 0

0 1 0 −δ2

1 0 −δ 0

0 1 0 −δ

 (46)

The determinant is

det (Res(fa(β, δ), fb(β, δ))β) = δ2(δ − 1)2.

It is immediately clear that the resultant is not everywhere zero, so we have no common factors.

The roots of the determinant of the resultant are also the roots of the moment conditions. In

this case, we find that δ = 0 and δ = 1 are both roots to the moment conditions. It follows

from (45) that (1, 1) and (0, 0) are the two roots of the moment conditions.
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