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1 Introduction

Many important marketing and economic problems, such as purchases and pricing of durable

goods and consumer behavior in credit markets, crucially hinge on agents’ time preferences.

However, it has been shown that in the standard dynamic discrete choice (DDC) models, the

discount factor is not identified jointly with the utility function without further assumptions

(Rust (1994); Magnac and Thesmar (2002)). Magnac and Thesmar further showed that under

certain exclusion restrictions, the discount factor is point identified. These exclusion restrictions

are however hard to interpret.
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Bajari et al. (2016) showed that in a finite horizon optimal stopping model, a class of

DDC models that includes marketing relevant applications such as adoption of durable goods,

the discount factor is point identified under an assumption of stationary utilities, an easily

interpretable assumption that can be economically motivated in many settings. In this note,

we show that the Bajari et al. approach gives identification for a much larger class of problems.

We first reformulate the identification result in Bajari et al. in terms of exclusion restrictions

on time as a state variable. We then extend the identification result to both finite horizon

and infinite horizon optimal stopping models under more general exclusion restrictions, as in

Abbring and Daljord (2018). Finally, we show how a similar approach gives identification of

general discount functions in a finite horizon optimal stopping problem.

For all of the models we consider, the discount functions are shown to be closed form so-

lutions to well-behaved moment conditions that are functions of identified features of the data

distribution. The results directly suggest estimators that are robust to biases from finite sam-

ple approximations to the unknown utility function and can be implemented as simple linear

regressions using pooled choice data.

2 Model

We first develop a single agent, finite horizon, optimal stopping version of Rust (1994) to

reformulate the identification result in Bajari et al., and will later consider an extension of the

results to infinite horizon optimal stopping models. Time is discrete and indexed by t = 1, . . . , T .

The choice set is discrete and indexed by a ∈ A = {0, 1, . . . , A}, where a = 0 denotes a

terminating action. The panel may or may not include the final period T . The exogenous

states s ∈ S, which are observable to both the agent and the econometrician, follow a stationary,

first-order Markov process with probability distribution F (st+1|at, st), without absorbing states.

The states εt = {ε0,t, . . . , εA,t}, which are observed by the agent, but not by the econome-

trician, are drawn independently of s from a stationary and absolutely continuous distribution

G with infinite support. The agent’s per-period utility function is ut(a, s, ε) = ut(a, s) + εa,t.

The per-period utility of the reference choice is assumed state invariant and normalized to
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ut(0, s) = 0 for all s ∈ S and t = 1, . . . , T . The agent’s expectations are assumed to be rational

and coincide with F (st+1|at, st).

The agent’s choices are assumed to maximize the expected, geometrically discounted sum

of lifetime utilities

Es,ε

[
T∑
τ=t

βτ−t(1−max
q<τ

1{aq = 0})(uτ (aτ , sτ ) + εaτ ,τ )|st

]
,

where β is a finite and non-negative discount factor.1 The primitives of the problem are the

utility functions ut, the discount factor β, the state transition process F , and the distribution

of unobservable states G. We assume that εt is i.i.d. EV1 distributed throughout for ease of

exposition and computation.

The choice specific value function gives the expected discounted value of making choice a in

state s in period t:

Vt(a, s) = ut(a, s) + βEs

[
Vt+1(st+1)

∣∣∣∣ at = a, st = s

]
, (1)

where the ex ante value function

Vt(s) = Eε

[
max
a∈A
{Vt(a, s) + εa,t}

]
= ln

(∑
a∈A

exp(Vt(a, s))

)
(2)

gives the expected value of making the optimal choice in state s in period t, prior to learning

the unobserved states εt.
2 The choice probabilities σt(a, s) = Pr[at = a|st = s] can be written

in terms of the choice specific value functions as

σt(a, s) =
exp(Vt(a, s))∑
k∈A exp(Vt(k, s))

. (3)

The choice specific value contrasts can be uniquely recovered from the choice probabilities as

ln

(
σt(a, s)

σt(0, s)

)
= Vt(a, s)− Vt(0, s). (4)

The moment conditions in (4) are the reduced form of the model.3 They map the endogenous

objects, on the right hand side, to known functions of the data, on the left hand side. Using the

1The discount factor is not restricted to the unit in finite horizon models for the model to be well-defined.
2We omit the Euler’s constant as it is just a constant and does not affect any of our analysis.
3Hotz and Miller (1993) and Norets and Takahashi (2013) show the value contrasts can be uniquely recovered

from the choice data for any absolutely continuous distribution with infinite support.
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choice specific value function in (1), the reduced form can be written in terms of the primitives

ln

(
σt(a, s)

σt(0, s)

)
= ut(a, s)− Vt(0, s) + βEs

[
Vt+1(st+1)

∣∣∣∣ at = a, st = s

]
. (5)

The normalization ut(0, s) = 0 for the terminating action implies Vt(0, s) = ut(0, s) = 0. Then

using (2) and (3), the moment conditions in (5) become known functions of the data and the

primitives ut and β

ln

(
σt(a, s)

σt(0, s)

)
= ut(a, s)− βEs

[
ln(σt+1(0, st+1))

∣∣∣∣ at = a, st = s

]
. (6)

Magnac and Thesmar shows that even if F , σ, and G are known, the discount factor is not

identified in DDC models without further restrictions on the primitives. The underidentification

can be seen directly from (6): for each finite and non-negative β, and for each period t ∈ 1, . . . , T ,

we can find a different function ut that satisfies these moment conditions.

2.1 Identification under the assumption of stationary utilities

Bajari et al. shows that assuming stationary utilities point identifies the discount factor in the

model developed in the previous section. Stationarity can be cast as exclusion restrictions of

the form

ut(a, s) = ut′(a, s) (7)

for some pair of periods t and t′, some choice a ∈ A\{0} and some subset of the state space S.

The following theorem is based on Bajari et al.4

Theorem 1 Suppose that the exclusion restriction in (7) is satisfied for some pair of periods

t and t′, with t, t′ ∈ 1, . . . , T , and with t 6= t′, some choice a ∈ A\{0} and some point s ∈ S.

Then β is point identified, subject to a rank condition.

Proof:

Difference (6) between t and t′ to get

β =
ln
(
σt(a,s)
σt(0,s)

)
− ln

(
σt′ (a,s)
σt′ (0,s)

)
Es

[
ln(σt′+1(0, st′+1))

∣∣∣∣ at′ = a, st′ = s

]
− Es

[
ln(σt+1(0, st+1))

∣∣∣∣ at = a, st = s

] (8)

4We have adopted the term ‘exclusion restriction’ from Magnac and Thesmar for restrictions like (7).
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which is a linear function of β, the only primitive in the equation. The moment condition

therefore has a unique solution subject to the rank condition

Es

[
ln(σt′+1(0, st′+1))

∣∣∣∣ at′ = a, st′ = s

]
6= Es

[
ln(σt+1(0, st+1))

∣∣∣∣ at = a, st = s

]
. (9)

Q.E.D.

The moment condition in (8) gives the discount factor as a closed form function of choice

probabilities and expectations, which are both identified features of the data distribution, and

holds for an arbitrary utility function that satisfies the exclusion restrictions. The moment con-

dition therefore suggests a simple linear estimator that recovers the discount factor only without

jointly estimating the utility function, and the resulting estimator will be robust to biases from

finite sample approximations to the unknown utility function. The moment condition contains

all the information in the data about the discount factor in the sense that the discount factor is

underidentified from the moment conditions in (6) alone, but identified from (8) independently

of (6).

Since the continuation values in the denominator on the right hand side of (8) are known

mappings from the data distribution, point identification holds even for panels which do not

include the final period, i.e., short panels, as long as the data contain information on at least

three consecutive periods.

The discount factor is the ratio of the difference in log choice probabilities between periods

t and t′ to the difference in continuation values between the same two periods. The stronger

the current period choice response, in the numerator, is to shifts in future rewards, in the

denominator, the more forward looking the agent is revealed to be. If the agent’s choices do

not respond to shifts in the continuation values, we infer that the agent is myopic, i.e., β = 0.

Under the assumption of stationary utilities, the continuation values differ between t and t′,

but the unobservable current period utilities are invariant between the two periods, conditional

on s and a. We can therefore interpret the difference in choice probabilities between t and

t′ as entirely due to the shifts in continuation values, therefore providing information on time

preferences. The rank condition in (9) requires that time non-trivially shift the continuation

values. If not, there is no information about time preferences in the data, and identification is

lost.

5



2.2 General exclusion restrictions with identifying power

There is nothing special about stationary utilities as an exclusion restriction. We next show

that exclusion restrictions on states other than those involving time have identifying power as

well.

Suppose that for some t there exist either a pair of choices a1 ∈ A\{0} and a2 ∈ A, or a pair

of states s1, s2 ∈ S, where either a1 6= a2, or s1 6= s2, or both, such that the following exclusion

restriction holds.

ut(a1, s1) = ut(a2, s2) (10)

In words, the exclusion restriction states that we can find a pair of states or a pair of choices,

or both, for which the current period utility is invariant but the continuation values vary. It

is easy to see that we can then express the discount factor as a closed form function of choice

probabilities and expectations similar to (8), by taking appropriate differencing to eliminate

current period utility. Therefore, the discount factor is point identified under the exclusion

restrictions (10), subject to a rank condition similar to the one in (9).

Abbring and Daljord shows that this identification strategy reflects common intuition re-

ported in the literature. One example is Lee (2013) which studies demand for video game

consoles in an infinite horizon optimal stopping model where it is assumed that the expected

quality and availability of future game releases shift the continuation values of owning a console,

but not its current period utility. The assumption leads Lee to interpret current period demand

responses to variation in the expected quality and availability of future releases as informative

about time preferences.

As another example, in a study of household adoption of solar panel technology, De Groote

and Verboven (2019) uses variation in subsidy programs that shifts future energy cost streams,

but not the upfront installation cost, for identification of a discount factor. In its study, s1 and

s2 may represent two different subsidy programs, for equal prices of installation, while a1 = a2

is choosing installation in the current period.

The exclusion restrictions in (10) are sufficient to point identify the discount factor, i.e.,
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stationary utilities are not required (see Abbring and Daljord). Allowing for exclusion restric-

tions on state variables other than time broadens the scope for identification to infinite horizon

problems as well, where the assumption of stationary utilities does not have identifying power.

Abbring and Daljord shows that for infinite horizon problems where V (0, s), the choice specific

value of the reference choice, is a constant, the discount factor is point identified under the ex-

clusion restrictions (10). These problems include some optimal stopping problems and renewal

problems like in Rust (1987). For an infinite horizon optimal stopping problem, the moment

condition corresponding to (8) is

β =
ln
(
σ(a1,s1)
σ(0,s1)

)
− ln

(
σ(a2,s2)
σ(0,s2)

)
Es

[
ln(σ(0, s′))

∣∣∣∣ a = a2, s = s2

]
− Es

[
ln(σ(0, s′))

∣∣∣∣ a = a1, s = s1

] . (11)

Again, the moment condition in (11) directly suggests a simple linear estimator for the discount

factor that is robust to biases from finite sample approximations to the unknown utility function.

Both optimal stopping problems and renewal problems are examples of models with the fi-

nite dependence property of Arcidiacono and Miller (2011). A model satisfies single action

one-period finite dependence if

F (st+1|st, a1)F (st+2|st+1, a2) = F (st+1|st, a2)F (st+2|st+1, a2) (12)

holds for two choices a1 and a2, with a1 6= a2, in the choice set. Single action one period finite

dependence implies that in expectation, the choice sequence of a1 and a2 leads to the same states

as the choice sequence of a2 and a2, if both sequences start in the same states. Models with

finite dependence simplify estimation and are often used in applications, see Arcidiacono and

Miller (2018) and Kalouptsidi et al. (2018) for examples and references. Finite dependence is

also useful for identification. Theorem 2 in Abbring and Daljord shows that both finite horizon

and infinite horizon models with single action one-period finite dependence are point identified

under exclusion restrictions similar to (10).
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2.3 General discount functions

In this extension, we consider identification of general discount functions in a finite horizon

optimal stopping model under the assumption of stationary utilities, where the time preferences

are expressed as multiplicative weights for the additively separable utilities in the future periods.

Time preferences are time-consistent if the choice between any two streams of utility does

not change when the streams are forwarded by an equal period of time. The exponential

discount function is the only time-consistent one, but is frequently rejected in experiments

(Frederick et al. (2002)). The study of time-inconsistent preferences in the economics literature

goes back to Strotz (1955) and Phelps and Pollak (1968). As is common in the literature on

time-inconsistent preferences, we adopt the convention of considering the agent as a collection of

selves, one in every period, whose preferences may be in conflict. O’Donoghue and Rabin (1999)

distinguished between ‘sophisticated’ agents, who are fully aware of the time inconsistency of

their preferences, versus those who are ‘näıve,’ as well as partial näıveté, an entire range in

between.

In the analysis, we focus on the case of sophisticated agents who are fully aware of the

time inconsistency of their preferences. We do so not because we believe näıveté is irrelevant

in practice, but because identifying the degree of näıveté would require additional information

that is unavailable in most datasets. For example, identifying the degree of sophistication may

require observing whether individuals make appropriate use of self-commitment devices that

constrain their future ability to take suboptimal actions, which only sophisticated agents would

do. Assuming sophisticated agents enables two-step estimation, by ensuring that the observed

choices of future selves are consistent with the current self’s expectation about future selves’

actions. The results in this extension crucially rely on the assumption of sophisticated agents.

For an empirical model of partial näıveté, see Fang and Wang (2015).

Consider a general discount function β : {1, . . . , T} 7→ [0, 1] with normalization β(0) =

1. Under standard exponential discounting, we get β(t) = βt. In the DDC problem with a

terminating action (a = 0), the lifetime utility to the self in period t can be expressed as

Ut(at, . . . , aT , st, . . . , sT ) =
T∑
τ=t

β(τ − t)(1−max
q<τ

1{aq = 0})(uτ (aτ , sτ ) + εaτ ,τ ).
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If dt(s, ε) is the decision function of the self in period t when the state variable is equal to s, we

can express the choice specific value function for choice a to the self in period t as

Vt(a, s) = ut(a, s) + Es,ε

[ T∑
τ=t+1

β(τ − t)
∏
q<τ

1{dq(sq, εq) 6= 0}(
uτ (dτ (sτ , ετ ), sτ ) + εdτ (sτ ,ετ ),τ

) ∣∣∣∣ at = a, st = s

]
.

Taking into account the recursive optimization by the economic agent and the fact that the

decision in the last period is static and the decision in the period before the last is equivalent

to that in case of standard exponential discounting, we can express the choice specific value of

the self in period T − 2 as follows

VT−2(a, s) = uT−2(a, s)+β(1)Es

[
VT−1(sT−1) | aT−2 = a, sT−2 = s

]
+
(
β(2)− β(1)2

)
Es

[
VT (sT ) | aT−2 = a, sT−2 = s

]
. (13)

Note that we have written the choice specific value function of the self in period T − 2 in terms

of the ex ante value functions VT−1(s) of the self in period T − 1 and VT (s) of the period T self.

The expectations on the right hand side of (13) are formed by the self in period T−2, as it is the

current self’s expectations about future selves’ behavior that influence the current self’s actions.

Under the assumption of sophisticated agents, the current self’s expectations about future selves’

behavior become consistent with the actual behavior of future selves, which allows us to write

the expectations on the right hand side in terms of known mappings from the observed choices

of the future selves, e.g., E

[
VT−1(sT−1) | aT−2 = a, sT−2 = s

]
= E

[
− ln(σT−1(0, sT−1)) | aT−2 =

a, sT−2 = s

]
.

This representation generalizes to any 1 ≤ t ≤ T . We introduce a recursive sequence of

coefficients δ(t) such that δ(1) = β(1) and δ(t) = β(t)−
t−1∑
r=1

β(r)δ(t− r). We note that there is

a one-to-one correspondence between the discount function β(·) and the sequence δ(·).

We write the generalized Bellman equation for the finite horizon problem with a general

discount function as

Vt(a, s) = ut(a, s) +
T−t∑
τ=1

δ(τ)Es

[
Vt+τ (st+τ )

∣∣∣∣ at = a, st = s

]
. (14)
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The choice specific value function for the self in period t is seen to depend on the ex ante value

functions of all future selves.

The specification in (14) nests commonly used discount functions. Under exponential dis-

counting, β(t) = βt, we get δ(1) = β and δ(r) ≡ 0 for all r > 1, and the generalized Bellman

equation reduces to the conventional Bellman equation for all t ∈ 1, . . . T .

For the case of hyperbolic discounting, let β denote the standard discount factor which

captures long-run, time-consistent discounting, and let α denote the present bias factor, which

captures short-term discounting, such that β(t) = αβt−1. Then, we have δ(t) = α(β − α)t−1.

When α is smaller than β, the agent exhibits present bias, i.e., is more impatient in the short

run than in the long run.

We can express the generalized Bellman equation in (14) as

ln

(
σt(a, s)

σt(0, s)

)
= ut(a, s)−

T−t∑
τ=1

δ(τ)Es

[
lnσt+τ (0, st+τ )

∣∣∣∣ at = a, st = s

]
,

for all states s and periods t. Taking the difference between periods t and t′ under the assumption

of stationary utilities ut(a, s) = ut′(a, s) for some a ∈ A\{0} and s ∈ S, we can write

ln

(
σt(a, s)

σt(0, s)

)
− ln

(
σt′(a, s)

σt′(0, s)

)
= (15)

T−t′∑
τ=1

δ(τ)Es

[
lnσt′+τ (0, st′+τ )

∣∣∣∣ at′ = a, st′ = s

]
−

T−t∑
τ=1

δ(τ)Es

[
lnσt+τ (0, st+τ )

∣∣∣∣ at = a, st = s

]
.

This expression allows us to formulate the following theorem.

Theorem 2 Suppose that the data are generated by sophisticated agents who are aware of their

time inconsistency while making their discrete choice. Also suppose that ut(a, s) = ut′(a, s) for

some pair of periods t and t′ (t 6= t′), some a ∈ A\{0} and all s ∈ S, and that data are observed

for all periods min(t, t′), ..., T . Then the general discount function β(·) is identified on the subset

of its support 1, . . . , T −min(t, t′) subject to the following rank condition: all leading principal

minors of matrix M with entries Mrp = Cov(Zr, Zp) are non-zero, where

Zr = Es

[
lnσt′+r(0, st′+r)

∣∣∣∣ at′ = a, st′ = s

]
− Es

[
lnσt+r(0, st+r)

∣∣∣∣ at = a, st = s

]
for r = 1, 2, ..., T −max(t, t′) and

Zr = (−1)1{t<t
′}Es

[
lnσmin(t,t′)+r(0, smin(t,t′)+r)

∣∣∣∣ amin(t,t′) = a, smin(t,t′) = s

]
10



for T −max(t, t′) < r ≤ T −min(t, t′).

Proof:

Let ~δ = (δ(1), . . . , δ(T −min(t, t′)))′,

Y = ln

(
σt(a, s)

σt(0, s)

)
− ln

(
σt′(a, s)

σt′(0, s)

)
and

~Z = (Z1, . . . , ZT−min(t,t′))
′.

Then the generalized Bellman equation can be written in the vector form as

Y = ~Z ′~δ.

This means that

Y − E[Y ] = (~Z − E[~Z])′~δ.

As a result

~δ = M−1E[(~Z − E[~Z])(Y − E[Y ])].

By assumption, M is invertible, and therefore ~δ is well-defined. The discounting schedule can

be found by setting β(1) = δ(1) and iterating to get

β(t) = δ(t) +
t−1∑
r=1

β(r)δ(t− r).

Q.E.D.

Note that if both t and t′ are greater than 1, the discount function is only identified on

the subset of support, and not in its entirety. The general discount function can be estimated

by regressing the difference in the ratio of the choice probabilities between two periods on the

expected differences in all future choice probabilities for the reference choice, similar to the

previous cases. Intuitively, the general discount function is recovered as the sensitivity of the

current period choices to variation in rewards one period later, two periods later, etc., and the

rank condition ensures that the variations in future rewards are not perfectly collinear with each

other. From the moment condition in (15), we can recover the weights on future values that

rationalize the current period choices. The recovered weights can be subjected to hypothesis
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tests, e.g., whether the data are consistent with exponential or hyperbolic discounting. As

in previous cases, the estimator recovers the discount function independently of the utility

function, and therefore is robust to biases from finite sample approximations to the unknown

utility function.

3 Summary

This note provides two extensions of the identification results in Bajari et al. First, we show

that similar identification results hold under a broader set of exclusion restrictions. These

general exclusion restrictions do not require stationary utilities, and therefore extend to infi-

nite horizon optimal stopping models as well. Second, we show that identification of general

discount functions is possible in a finite horizon optimal stopping problem under the assump-

tion of sophisticated agents. Under both extensions, the identification proof directly suggests

estimators of the discount factor (or discount function) that are robust to biases from finite sam-

ple approximations to the unknown utility function and can be implemented as simple linear

regressions.
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