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Abstract

We propose a simple and robust two-step estimator for discount factors in a class of

dynamic discrete choice models. The estimator follows from constructive identification

results, including a new identification result for a general, time separable discount func-

tion. The estimator is derived as the solution to well-behaved sample moment conditions

which are linear in the discount factors and are independent of the utility function. The

estimator is therefore easy to implement, computationally light, and in contrast to exist-

ing estimators, robust to biases from finite sample approximations to the unknown utility

function. We apply the estimator to data on mortgage defaults under an identifying as-

sumption of time homogeneity of the utility function. We compare the performance of the

proposed estimator to alternative two-step estimators that jointly estimate the discount

factor and the utility function. The results show that our proposed estimator’s robustness

to finite sample approximation bias and its computational ease do not necessarily come at

a material expense of precision.
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1 Introduction

Optimal stopping problems form a class of dynamic discrete choice (DDC) models with

many applications in marketing. For instance, they are workhorse models in the durable

goods literature. DDC models have theoretically well-defined parameters and allow evalu-

ation of marketing strategies that are not observed in the data. One example is Nair (2007)

which evaluates counterfactual dynamic pricing strategies in the video game market using

an optimal stopping model.

A common criticism of DDC models, e.g., in Heckman and Vytlacil (2007), is that

these models are costly to compute and that the conditions for identification of DDC

models are generally hard to establish and are less economically transparent than in the

program evaluation literature. The criticism reflects a concern about the credibility of the

management relevant inferences that can be drawn from these models.

It is well known that the utility function and the discount factor are not jointly identi-

fied from choice data in the standard DDC model of Rust (1994). Recent papers by Bajari

et al. (2016) and Abbring and Daljord (2017) have however shown that the discount factor

in DDC models is identified under intuitively appealing and transparent economic assump-

tions. The focus on identification of the discount factor in these papers is motivated by

Magnac and Thesmar (2002) which shows that conditional on the discount factor being

known, the utility function is identified up to an arbitrary normalization.

Bajari et al. shows that in a finite horizon optimal stopping model, time homogene-

ity of the per-period utility function point identifies the discount factor. The discount

factor is shown to be a closed form solution to a well-behaved moment condition with a

clear economic interpretation as the current choice response to variation in future values.

Abbring and Daljord shows that the discount factor is point identified for a larger class

of models, including infinite horizon optimal stopping models, under similar identifying

assumptions and interpretations. The results formalize conjectures and common intuition

about assumptions that identify the discount factor in dynamic models used in marketing,

e.g., Yao et al. (2012) and Chung et al. (2013).1

We develop an estimator of the discount factor based on the identification result in

1It is for instance commonly believed that the discount factor is identified in finite horizon models since the

terminal period is an identified, static problem. Bajari et al. formalizes conditions under which this intuition is

correct.
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Bajari et al.. The estimator has many desirable properties. It can be estimated indepen-

dently of the utility function and is therefore fully robust to finite sample approximations

to the utility function. It uses all the information the data carry on the discount factor and

nothing more. It has an intuitive and transparent interpretation: it recovers the discount

factor as the sensitivity of current period choice probabilities to shifts in the continuation

values. It can be implemented as a simple linear regression and it is fast and easy to

compute.

We then show how the estimator applies to infinite horizon optimal stopping problems

as well under Abbring and Daljord’s identification results. We establish a new identification

result for a fully general, time separable discount function, which includes hyperbolic

discounting, for a class of finite horizon optimal stopping problems, and show that our

estimator extends to this case as well.

In our application of the estimator to the mortgage data used in Bajari et al., we

compare the performance of our proposed estimator to alternative two-step estimators

that recover the discount factor jointly with the utility function under the same identifying

assumptions. We find that the discount factor estimate from our proposed estimator is

similar to those from the alternative estimators. The estimate is slightly higher in value

and slightly less precise, but statistically indistinguishable from those produced by joint

estimation. The results show that our proposed estimator’s robustness to finite sample

approximation bias and its computational ease do not necessarily come at a material

expense of precision.

We derive the model and the identifying moment condition in Section 2 and the esti-

mator in Section 3. In Section 4, we compare the proposed estimator to joint estimators

in an application to the mortgage data. In Section 5, we show that our estimator applies

to a class of infinite horizon optimal stopping models, while maintaining the assumption

of standard exponential discounting. We then give our new identification result for a

general, time separable discount function in finite horizon optimal stopping problems and

show that our proposed estimator extends to this case as well.

2 Model

The choice model is a single agent, finite horizon optimal stopping version of Rust (1994).

Time is discrete and indexed by t = 1, . . . , T . The choice set is discrete and indexed by
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a ∈ A = {0, 1, . . . , A}, where a = 0 denotes a terminating action. The panel may or

may not include the final period T . The exogenous states s ∈ S, which are observable

to both the agent and the econometrician, follow a stationary, first-order Markov process

with probability distribution F (st+1|at, st) without absorbing states.

The states εt = {ε0,t, . . . , εA,t}, which are observed by the agent, but not by the

econometrician, are drawn independently of s from a stationary and absolutely con-

tinuous distribution G with infinite support. The agent’s per-period utility function is

ut(a, s, ε) = ut(a, s) + εa,t. The per-period utility of the reference choice is assumed state

invariant and normalized to ut(0, s) = 0 for all s ∈ S and t = 1, . . . , T . The agent’s

expectations are assumed to be rational and coincide with F (st+1|at, st).

The agent’s choices are assumed to maximize the expected, geometrically discounted

sum of lifetime utilities

E

[
T−t∑
τ=0

βτ max
a∈A

ut+τ (at+τ , st+τ , εa,t+τ )|at, st, εt

]
,

where β is a finite and non-negative discount factor.2 The primitives of the problem

are the utility functions ut, the discount factor β, the state transition process F , and

the distribution of unobservable states G. We assume that εt is i.i.d. EV1 distributed

throughout for ease of exposition and computation.

The choice specific value function gives the expected discounted value of making choice

a in state s in period t:

Vt(a, s) = ut(a, s) + β E

[
Vt+1(st+1)

∣∣∣∣ at = a, st = s

]
, (1)

where the ex ante value function

Vt(s) = E

[
max
a∈A
{Vt(a, s) + εa,t}

]
= ln

(∑
a∈A

exp(Vt(a, s))

)
(2)

gives the expected value of making the optimal choice in state s in period t, prior to

learning the unobserved states εt. The choice probabilities σt(a, s) = Pr[at = a|st = s]

can be written in terms of the choice specific value functions as

σt(a, s) =
exp(Vt(a, s))∑
k∈A exp(Vt(k, s))

. (3)

2The discount factor is not restricted to the unit in finite horizon models for the model to be well-defined.
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The choice specific value contrasts can be uniquely recovered from the choice probabilities

as

ln

(
σt(a, s)

σt(0, s)

)
= Vt(a, s)− Vt(0, s). (4)

The moment conditions in (4) are the reduced form of the model.3 They map the endoge-

nous objects, on the right hand side, to known functions of the data, on the left hand side.

Using the choice specific value function in (1), the reduced form can be written in terms

of the primitives

ln

(
σt(a, s)

σt(0, s)

)
= ut(a, s)− Vt(0, s) + βE

[
Vt+1(st+1)

∣∣∣∣ at = a, st = s

]
. (5)

The normalization ut(0, s) = 0 for the terminating action implies Vt(0, s) = ut(0, s) = 0.

Then using (2) and (3), the moments in (5) are functions of the data and the unknown

primitives u and β

ln

(
σt(a, s)

σt(0, s)

)
= ut(a, s)− βE

[
ln(σt+1(0, st+1))

∣∣∣∣ at = a, st = s

]
. (6)

Magnac and Thesmar shows that even if F , σ, and G are known, the discount factor

is not identified in dynamic discrete choice models without further restrictions on the

primitives. The underidentification can be seen directly from (6): for each finite and non-

negative β and for each period t ∈ 1, . . . , T , we can find a different function ut that satisfies

these moment conditions.

2.1 Identification

Bajari et al. shows that assuming time homogeneity of the utility function point identifies

the discount factor in finite horizon optimal stopping models developed in the previous

section. Time homogeneity means that the utility function is time invariant for some subset

of the state space and choice set. Time homogeneity can be cast as exclusion restrictions

of the form

ut(a, s) = ut′(a, s). (7)

The following theorem, based on Bajari et al., shows that this exclusion restriction point

identifies the discount factor.4

3Hotz and Miller (1993) and Norets and Takahashi (2013) show the value contrasts can be uniquely recovered

from the choice data for any absolutely continuous distribution with infinite support.
4We have adopted the term ’exclusion restriction’ from Magnac and Thesmar for restrictions like (7).
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Theorem 1 Suppose that the exclusion restriction in (7) is satisfied for some pair of

periods t and t′, with t, t′ ∈ 1, . . . , T , and with t 6= t′, for some choice a ∈ A\{0} and some

point s ∈ S. Then β is point identified, subject to a rank condition.

Proof:

Difference (6) between t and t′ to get

β =
ln
(
σt(a,s)
σt(0,s)

)
− ln

(
σt′ (a,s)
σt′ (0,s)

)
E

[
ln(σt′+1(0, st′+1))

∣∣∣∣ at′ = a, st′ = s

]
− E

[
ln(σt+1(0, st+1))

∣∣∣∣ at = a, st = s

]
(8)

which is a linear function of β, the only primitive. The moment therefore has a unique

solution subject to the rank condition

E

[
ln(σt′+1(0, st′+1))

∣∣∣∣ at′ = a, st′ = s

]
6= E

[
ln(σt+1(0, st+1))

∣∣∣∣ at = a, st = s

]
. (9)

Q.E.D.

The moment condition in (8) gives the discount factor as a closed form function of choice

probabilities and expectations, which are both identified features of the data distribution.

As a result, the moment condition in (8) is independent of the utility function. It also

contains all the information in the data about the discount factor, in the sense that the

discount factor is underidentified from the moment conditions in (6) alone, but identified

from (8) independently of (6). This fact motivates a robust estimator for the discount

factor based on the moment condition in (8) only.

Since the continuation values in the denominator on the right hand side of (8) are

known mappings from the data distribution, point identification holds even for panels

which do not include the final period, i.e., short panels, as long as the data distribution

contains information on at least three consecutive periods (i.e., t′ = t+ 1).

The discount factor is the ratio of the difference in log choice probabilities between

periods t and t′, in the numerator, to the difference in continuation values between the

same periods, in the denominator. The stronger the current period choice response (the

numerator) is to shifts in future rewards (the denominator), the more forward looking the

agent is. In the extreme case, if the behaviour of the economic agent does not respond to

shifts in the continuation values, we can infer that the agent is myopic, i.e., β = 0.

We can think of the time periods t and t′ as an ’instrument’ that shifts the continuation

values without shifting the current period utilities by the assumption of time homogeneous
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utilities. The rank condition in (9) requires that time shift the continuation values. If not,

there is no information about time preferences in the model, and identification is lost.

3 Estimator

We develop a simple and robust two-step estimator based on the moment conditions in

(8). In the empirical application in Section 4, we compare our proposed estimator to

alternative two-step estimators that jointly recover the utility function and the discount

factor based on the moment conditions in (6).

Both our robust estimator and the joint estimators require estimating the conditional

choice probabilities σt(a, s) and the continuation values E

[
− ln(σt+1(0, st+1))

∣∣∣∣ at = a, st = s

]
in the first step. In the second step, the first step estimates are plugged into the respective

sample moment conditions to recover the discount factor.

Non-parametric estimation of the conditional choice probabilities has become standard

in the literature and can be implemented in standard statistical software such as R, STATA

or MATLAB, for example, by running a multinomial logit regression using orthogonal

polynomials of the state variables s as basis functions, see e.g., Judd (1998). The same

standard procedures can be used here, but one noteworthy feature is that estimation

needs to account for non-stationarity of the problem due to finite horizon, for example

by estimating conditional choice probabilities separately for each period t or by including

orthogonal polynomials of both t and s in the basis function.

Once we construct the fitted values σ̂t(a, s) for each observation in the sample, we can

recover the continuation values as a function of current states and actions. Typically, the

continuation value is recovered by estimating the state transitions F (st+1|at, st) from the

data and then computing
∫
− ln(σt+1(0, st+1))dF (st+1|at = a, st = s) using the estimated

state transitions and conditional choice probabilities.

Following Bajari et al., we can alternatively recover the continuation values by running

a linear regression of − ln (σ̂t+1(0, st+1)), which we compute for each observation in the

data, on orthogonal polynomials of state variables st, separately for each action a. As

before, the non-stationarity of the problem can be accounted for either by running the

estimation separately for each period t as well as each action a or by including orthogonal

polynomials of both t and st in the basis function. Compared to the conventional approach

which separately estimates the state transitions, the key advantage of this approach is
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computational.

The exact procedures of the first step estimation (for conditional choice probabilities

and continuation values) are not key to our estimator, but for concreteness we briefly

discuss the approaches used in the empirical application of Section 4. In the application, we

estimate conditional choice probabilities using a multinomial logit where the basis function

includes restricted cubic splines for the continuous state variables and time periods t. The

basis function also includes the binary state variables as well as interactions among all the

state variables, both binary and continuous, and t.5

For construction of the continuation values, we regress − ln (σ̂t+1(0, st+1)) on the same

regressors that we use in the estimation of the conditional choice probabilities, namely

restricted cubic splines for continuous state variables and t, binary state variables, and

interactions among them. The fitted values from this regression give us estimates of

the continuation values Ê

[
− ln(σt+1(0, st+1))

∣∣∣∣ at = a, st = s

]
for each observation in the

sample.

For the second step, we need to decide which set of time periods we impose the time

homogeneity assumption on. For identification, it is sufficient that the exclusion restriction

in (7) holds for only one pair of periods t, t′ ∈ 1, . . . , T , one choice a ∈ A\{0}, and some

subset of the state space S. The economics of the problem may however justify that the

exclusion restriction holds more generally. Bajari et al. assumes time homogeneity for all

observed periods, states, and choices, and our empirical application in the next section

will use that same identifying assumption for all three estimators.

Our proposed estimator relies on differencing the moment conditions in (6) between

two periods t and t′ to obtain (8). There are many possible ways to do the differencing

under the assumption of time homogeneity for all observed t. In the empirical application,

we use first differencing, i.e., we set t′ = t+ 1 in (8).6

We construct our proposed estimator and joint estimators as the sample equivalents to

the population moment conditions in (8) and (6), respectively, by plugging in the first step

estimates of the conditional choice probabilities and the continuation values. The second

5STATA code with detailed comments is provided as an online appendix.
6Different pairs t and t′ generally contain different and unique information about time preferences.
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step of our robust estimator is hence

ln

(
σ̂t(a, s)

σ̂t(0, s)

)
− ln

(
σ̂t+1(a, s)

σ̂t+1(0, s)

)
= (10)

β

(
Ê

[
ln(σt+2(0, st+2))

∣∣∣∣ at+1 = a, st+1 = s

]
− Ê

[
ln(σt+1(0, st+1))

∣∣∣∣ at = a, st = s

])
which can be seen a system of equations, where we have one equation for each non-

terminating action, each equation contains one regressor and no constant, and cross-

equation restriction of common β is imposed. The discount factor can therefore be es-

timated using seemingly unrelated regressions, which will improve efficiency by assigning

a greater weight to equations with lower variance and accounting for cross-equation cor-

relation in residuals.

For the second step of the joint estimators, we must choose a utility specification.

Since the discount factor is point identified jointly with a non-parametric utility function

under our identifying assumptions, we can think of the chosen utility specification as a

sieve estimator of the unknown utility function, see e.g., Chen (2007). A sieve estimator

estimates the infinite dimensional unknown utility function by fitting a lower-dimensional

approximation, a sieve, where the dimensionality of the sieve space increases with the

sample size. We use linear sieves, which are linear spans of finitely many known basis

functions. For instance, we can interpret a linear utility specification as a first-order linear

sieve to the unknown utility function.

The difference between the true utility function and the utility specification can be

interpreted as finite sample approximation bias. In contrast, the difference is misspeci-

fication bias under identification by functional form.7 Unlike misspecification bias, the

approximation bias vanishes asymptotically as the dimensionality of the sieve increases

with the sample size.

For the joint estimators, the sample analogs of (6) are

ln

(
σ̂t(a, s)

σ̂t(0, s)

)
= g(s, γa)− βÊ

[
ln(σt+1(0, st+1))

∣∣∣∣ at = a, st = s

]
,

where γa is a vector of action-specific parameters to be estimated, and g(s, γa) is a linear

sieve that approximates the unknown utility function u(a, s).

We estimate two versions of the joint estimators which differ in the dimensionality of

the sieve. One is a first order approximation, i.e., g(s, γa) = sγa and the other is a higher

7The discount factor is typically identified by functional form under a linear utility assumption, see e.g., Rust

(1987).
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order approximation which uses restricted cubic splines of the state variables as in the first

step procedure. To impose time homogeneity, we exclude t from the states s in g(s, γa)

and restrict γa to be time invariant. Both estimators are linear in the parameters γa and

β, and they can be estimated using seeming unrelated regressions with one equation for

each non-terminating action.

None of the three estimators is semi-parametrically efficient. The two joint estimators

differ in the dimensionality of the approximation to the utility function and hence how they

trade off bias to variance. The first order approximation has higher bias but lower variance

compared to the specification with a higher order approximation. The key difference

between the robust estimator and the joint estimators is that u is removed via differencing

under the proposed estimator. As a result, while approximation bias from the utility

function will in general affect the discount factor estimate under the joint estimators, our

proposed estimator is robust to these biases. On the flip side, our proposed estimator will

suffer from an efficiency loss compared to the joint estimators if the utility specification

imposed under the joint estimators is correct.

For all three estimators, we use bootstraps for inference. We re-estimate both the first

step and the second step in each bootstrap iteration to account for sampling variation in

both the first step and second step estimates. In Section 2.1, we noted a similarity of our

proposed estimator to an instrumental variable estimator. If there is little variation in the

population continuation values over time, so that the denominator in (8) is close to zero, the

estimator becomes disproportionately sensitive to small changes from sampling variation in

the continuation value differences. If so, the estimator may not be asymptotically normal.

This case is similar to the problem of weak instruments: if time only weakly shifts the

continuation values, holding current utility constant, then the estimates become numeri-

cally unstable, standard inference is invalid, and hence we cannot bootstrap the standard

errors. In separate work, we show that the continuation value differences need to have

sufficiently high density at values away from zero for the estimator to be asymptotically

normal. In the next section, we verify the existence of sufficient variation in the continu-

ation values in the data before proceeding with inference.
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4 Empirical application

We use the subprime mortgage data in Bajari et al.. We give only a brief description

of the data here, see Bajari et al. for a more extensive description. The data are from

CoreLogic and cover mortgage loans that are securitized in the private-label market. The

data report loan terms and borrower characteristics for each loan, such as the type of the

mortgage (fixed rate, adjustable rate, etc.), the loan amount, the location of the property,

the mortgage interest rate and the purchase price of the property.

There are three possible actions in each period for the borrower: default, prepay, or

make the regular monthly payment only. The data track each loan over the course of its

life, and stop tracking a loan if either the borrower defaults on the loan or the borrower

makes a full prepayment. If the bank takes possession of the property or the loan has

been delinquent for more than 90 days, the loan is considered to be in default. If the loan

balance is observed going to zero before maturity, the loan is considered to be prepaid.

If the borrower makes the regular monthly payment only, the loan survives into the next

period and the data continue to track the loan.

The data cover loans originated between January 2000 and September 2007 and track

each loan’s status until March 2013 on a monthly basis. Due to the relatively short span

of the sample compared with the mortgage term, we do not have data on the behaviour

of borrowers whose mortgages are close to maturity, i.e., we have a short panel.

The data are selected on the same criteria as in Bajari et al., focusing on 30-year fixed-

rate mortgages with non-missing information on borrower income in 20 major Metropolitan

Statistical Areas, and the selected sample includes about 11,500 borrowers. The state

variables that are used for estimation are listed in Table 1. The summary statistics for

the estimation sample are given in Table 2.

It is in general hard to make meaningful statements about which moment conditions

identify individual parameters in non-linear models where all parameters are simultane-

ously determined in all equations. However, for our robust estimator, the discount factor is

determined by moment conditions that must hold independently of the other parameters,

which here represent the utility function. As a result, we can meaningfully point to the

variation in the data that identifies the discount factor.

In particular, the discount factor is identified by variation in the continuation values

between periods, which is the independent variable on the right hand side of (10), and
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Table 1: State variables

Low Doc = 1 if the loan was done with no or low documentation

on wealth and income, = 0 otherwise.

Multiple Liens = 1 if the borrower has other, junior mortgages, = 0 otherwise.

FICO FICO score at loan origination, a credit score by Fair Isaac & Co.

Scores range between 300 and 850, higher for higher credit quality.

Payment Monthly payment due.

Prepayment Penalty = 1 if the loan has prepayment penalty, = 0 otherwise.

Income Borrower’s monthly income, imputed from front-end debt-to-income

ratio and monthly payment due.

Contractual Interest Rate Interest rate specified by the mortgage.

MSA Metropolitan Statistical Area of the loan property.

Housing Value Current housing value, imputed by adjusting appraised property

value at loan origination by a zip-code level home price

index from CoreLogic.

Net Equity Current housing value minus Outstanding loan balance.

Market Rate Current market interest rate available to the borrower

for refinancing.

Unemployment Rate Monthly unemployment rate at the county level.

Table 2: Summary statistics

Time-invariant Variables No. of Loans Mean Standard Deviation

Low Doc 11,685 0.396 0.489

Multiple Liens 11,685 0.140 0.347

FICO 11,685 672.40 744.87

Income ($) 11,685 6238.9 6560.9

Contractual Interest Rate 11,685 7.670 1.724

Time-varying Variables No. of Loan-Month Pairs Mean Standard Deviation

Payment ($) 478,950 1209.6 900.93

Prepayment Penalty 478,950 0.406 0.491

Housing Value ($1000) 478,950 283.28 263.35

Net Equity ($1000) 478,950 108.14 165.15

Market Rate 478,950 6.812 2.076

Unemployment Rate 478,950 6.470 2.561
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which matches with common intuition that time preferences reflect how an agent’s current

choices respond to changes in expected future values. The differences in continuation

values between two adjacent months are plotted against loan age in Figure 1, conditional

on state variables and action and where the periodization is in months. Each dot represents

an observation in the sample. The graph shows that the differenced continuation values

have sufficiently high positive density at values away from zero, mitigating concerns over

insufficient variation in the continuation values.

Figure 1: Identifying variation

The identifying assumption of time homogeneity of the per period utilities is substantive

and allows us to interpret changes in the distribution of the default choice over time,

holding states fixed, as informative about time preferences. In other words, once we control

for state variables such as remaining loan amount, current home value, interest rates, etc.,

the observed difference in default behaviour over time will be entirely attributed to the

fact that the loan gets closer to the maturity (the terminal period).

While preferences are commonly assumed time invariant in finite horizon models, e.g,.

Dubé et al. (2014), we may be open to the idea that utilities evolve in ways that are

predictable to the agent. For instance, in a study of the career decisions of young men,

Keane and Wolpin (1997) allows the utilities to deterministically and predictably shift

between early and later adolescence. Within the early and the later phases, time homo-

geneity is however implicitly imposed. The discount factor is therefore identified from

variation within each phase of adolescence, but not between phases. If we abandon the
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Table 3: Estimation results

Proposed Estimator Joint Estimator 1 Joint Estimator 2

0.982 (0.017) 0.974 (0.011) 0.972 (0.012)

time homogeneity assumption altogether, other restrictions on the utility function must be

imposed to ensure identification. We give examples on alternative identification strategies

in Section 5.

The time homogeneity assumption comes in addition to the maintained assumptions of

the model, such as rational expectations and the i.i.d. EV1 distribution of the unobservable

states. While we recognize that these are also strong and substantive assumptions, they

are standard. It is beyond the scope of this paper to weaken the maintained assumptions

further, but see e.g., Aguirregabiria and Magesan (2016) for identification of non-rational

beliefs and Buchholz et al. (2016) for identification of the distribution of the unobservable

states.

The estimates are reported in Table 3. Joint Estimator 1 uses a first order approxima-

tion for the utility, i.e., assumes a linear utility function. Joint Estimator 2 uses restricted

cubic splines of the state variables for the specification of the utility function. Since our

focus is on the discount factor, we only report the discount factor estimates although the

two joint estimators produce the estimates of the utility function as well.8 Standard errors

are reported inside the parentheses and are based on 500 bootstraps.

The discount factor estimates are very similar for the three estimators. We cannot

reject a null hypothesis that the estimates are equal by conventional significance levels.9

The precision of the estimates is also similar under the three approaches. As expected, the

standard errors are greatest under the proposed estimator and smallest under the joint

estimator with a first order approximation for the utility function, but the difference is

only slight. Between the two joint estimators, the fact that the standard error is greater

when the utility function is more flexibly specified is not surprising as it has fewer degrees

8Under the proposed estimator, the utility function can be also recovered by plugging the estimated discount

factor in the moment conditions in (6).
9The monthly interest rate implied by the estimated discount factor is 1.8%-2.8%, much higher than the

monthly interest rates of the mortgages observed in the data. This suggests that the usual approach of fixing the

discount factor at a level implied by the market interest rate and estimating the remaining structural parameters

could lead to biased estimates in the considered application.
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of freedom.

The fact that the estimates and standard errors are very similar under the two joint es-

timators suggests that linear utility is a good approximation in this application. In settings

where a linear utility assumption is a poor approximation to the unknown utility function,

the first order joint estimator would expectedly differ materially from both the higher

order joint estimator and the robust estimator. In settings where the utility function is

highly non-linear and cannot be accurately approximated by the restricted cubic splines of

the state variables, we would also expect the higher order joint estimator and the proposed

estimator to give materially different estimates, with only the latter being bias-free. The

fact that the proposed estimator produces only slightly greater standard error compared

to the joint estimators, while being agnostic about the form of the utility function, shows

that its robustness does not necessarily come at a material loss of efficiency.

In summary, we find that the proposed estimator gives a sensible estimate to a rea-

sonable level of precision. Given the conceptual simplicity of the proposed estimator, its

computational feasibility and its robustness, we believe the proposed estimator can be

useful for many empirical researchers interested in robust estimation of time preferences.

5 Extensions

5.1 Infinite horizon optimal stopping models

Our robust estimator applies to infinite horizon optimal stopping problems as well, but

the time homogeneity assumption does not have identifying power in infinite horizon,

stationary DDC models. Abbring and Daljord shows that the discount factor is point

identified if we can find a pair of states, or a pair of choices, for which the current period

utility is invariant, but the continuation values differ.

This identification strategy reflects common intuition reported in the literature. In a

study of housing, Bayer et al. (2016) argues that only current amenities, such as neigh-

bourhood crime rates, affect the current period utility of housing, but lagged amenities

are predictive of future amenities and can therefore shift continuation values without af-

fecting current period utility, conditional on current amenities. If so, the responses of

current period choice to lagged amenities can be informative about time preferences. In

a study of demand of video game consoles, Lee (2013) assumes that the expected quality
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and availability of future game releases shift the continuation values of owning a console,

but not its current period utility. The assumption leads Lee to interpret current period

demand responses to variation in the expected quality and availability of future releases

as informative about time preferences.

This intuition can be formalized as exclusion restrictions on the current period utility.

If there exists either a pair of choices a1 ∈ A\{0} and a2 ∈ A, or a pair of states s1, s2 ∈ S,

where either a1 6= a2, or s1 6= s2, or both, such that the exclusion restriction

u(a1, s1) = u(a2, s2) (11)

holds, then Theorem 1 in Abbring and Daljord shows that the discount factor is in general

set identified, subject to a rank condition similar to the one in (9). Example 1 in Abbring

and Daljord shows that for problems where V (0, s), the choice specific value of the reference

choice, is a constant, the discount factor is point identified. These problems include

optimal stopping problems with a terminating action, like in Bajari et al., and regenerative

optimal stopping problems like in Rust (1987). For these problems, the identifying moment

condition corresponding to (8) is

β =
ln
(
σ(a1,s1)
σ(0,s1)

)
− ln

(
σ(a2,s2)
σ(0,s2)

)
E

[
ln(σ(0, s′))

∣∣∣∣ a = a2, s = s2

]
− E

[
ln(σ(0, s′))

∣∣∣∣ a = a1, s = s1

] . (12)

Adapting our proposed estimator to the moment condition in (12) is immediate. By ex-

tension, the joint estimators also apply to infinite horizon optimal stopping problems given

the exclusion restriction in (11). Finally, the exclusion restrictions in (11) are sufficient to

point identify the discount factor in finite horizon models (i.e., time homogeneity is not

additionally required), see Abbring and Daljord. Adapting the finite horizon estimator to

the exclusion restriction in (11) is again immediate.

5.2 General discount functions

While we developed our estimator for the case of standard exponential discounting, we

next show that it extends to more general time preferences in a finite horizon optimal

stopping model. As long as the time preferences are expressed as multiplicative weights

for the utility in the future periods and the economic agent solves the dynamic program in

each period by optimizing the flow of weighted future utilities, our approach can be used

to estimate general discount function.
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As is common in the literature on time-inconsistent preferences, we adopt the conven-

tion of considering the agent as a collection of selves, one in every period, whose preferences

may be in conflict. The literature on time inconsistent preferences has distinguished be-

tween “sophisticated” agents, who are self-aware about the time inconsistency of their

preferences, versus those who are “näıve,” as well as an entire range in between, e.g., Mal-

mendier and DellaVigna (2006). For our arguments, we focus on the case of sophisticated

agents who are fully aware of the time inconsistency of their preferences.

We do so not because we believe näıveté is irrelevant in practice, but because iden-

tifying the degree of näıveté would require additional information that is unavailable in

most datasets. For example, identifying the degree of sophistication may require observ-

ing whether individuals make appropriate use of self-commitment devices that constrain

their future ability to take suboptimal actions, which only sophisticated agents would do.

Assuming sophisticated agents enables two-step estimation, by ensuring that the observed

choices of future selves are consistent with the current self’s expectation about future

selves’ actions.

Consider a general discount function β : {1, . . . , T} 7→ [0, 1] with normalization β(0) =

1. Under standard exponential discounting, we get β(t) = βt. In the dynamic discrete

choice problem with a terminating action (a = 0), the lifetime utility to the self in period

t can be expressed as

Ut(at, . . . , aT , st, . . . , sT ) =
T∑
r=t

β(r − t)(1−max
q<r

1{aq = 0})(ur(ar, sr) + εar).

If dt(s, ε) is the decision function of the self in period t when the state variable is equal to

s, we can express the choice specific value function for choice a to the self in period t as

Vt(a, s) = ut(a, s) + E

[ T∑
r=t+1

β(r − t)
∏
q<r

1{dq(sq, εq) 6= 0}(
ur(dr(sr, εr), sr) + εdr(sr,εr)

) ∣∣∣∣ at = a, st = s

]
.

Taking into account the recursive optimization by the economic agent and the fact that

the decision in the last period is static and the decision in the period before the last is

equivalent to that in case of standard exponential discounting, we can express the choice
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specific value of the self in period T − 2 as follows

VT−2(a, s) = uT−2(a, s)+β(1)E

[
VT−1(sT−1) | aT−2 = a, sT−2 = s

]
+
(
β(2)− β(1)2

)
E

[
VT (sT ) | aT−2 = a, sT−2 = s

]
. (13)

Note that we have written the choice specific value function of the self in period T − 2

in terms of the ex ante value functions VT−1(s) of the self in period T − 1 and VT (s) of

the period T self. The expectations on the right hand side of (13) are formed by the

self in period T -2, as it is the current self’s expectations about future selves’ behaviour

that influence current self’s actions. Under the assumption of sophisticated agents, the

current self’s expectations about future selves’ behaviour become consistent with the ac-

tual behaviour of future selves, allowing us to write the expectations on the right hand

side in terms of known mappings from the observed choices of the future selves, e.g.,

E

[
VT−1(sT−1) | aT−2 = a, sT−2 = s

]
= E

[
− ln(σT−1(0, sT−1)) | aT−2 = a, sT−2 = s

]
.

This representation generalizes to any 1 ≤ t ≤ T . We introduce a recursive sequence

of coefficients δ(t) such that δ(1) = β(1) and δ(t) = β(t)−
t−1∑
r=1

β(r)δ(t− r). We note that

there is a one-to-one correspondence between the discount function β(·) and the sequence

δ(·).

We write the generalized Bellman equation for the finite horizon problem with a general

discount function as

Vt(a, s) = ut(a, s) +
T−t∑
r=1

δ(r)E

[
Vt+r(st+r)

∣∣∣∣ at = a, st = s

]
. (14)

The choice specific value function for the self in period t is seen to depend on the ex ante

value functions of all future selves.

Under exponential discounting, β(t) = βt, we get δ(r) ≡ 0 for all r > 1, and now

the generalized Bellman equation reduces to the conventional Bellman equation for all

t ∈ 1, . . . T .

For the case of hyperbolic discounting, let β denote the standard discount factor,

which captures long-run, time-consistent discounting, and α denote the present bias factor,

which captures short-term discounting, such that β(t) = αβt−1. Then, we have δ(t) =

α(β − α)t−1. When α is smaller than β, the agent exhibits present bias, i.e., is more

impatient in the short run than in the long run.
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We can express the generalized Bellman equation in (14) as

ln

(
σt(a, s)

σt(0, s)

)
= ut(a, s)−

T−t∑
r=1

δ(r)E

[
lnσt+r(0, st+r)

∣∣∣∣ at = a, st = s

]
,

for all states s and periods t. Taking the difference between periods t and t′ under the

time homogeneity assumption ut(a, s) = ut′(a, s), for some a ∈ A\{0} and s ∈ S, we can

write

ln

(
σt(a, s)

σt(0, s)

)
− ln

(
σt′(a, s)

σt′(0, s)

)
= (15)

T−t′∑
r=1

δ(r)E

[
lnσt′+r(0, st′+r)

∣∣∣∣ at′ = a, st′ = s

]
−
T−t∑
r=1

δ(r)E

[
lnσt+r(0, st+r)

∣∣∣∣ at = a, st = s

]
.

This expression allows us to formulate the following theorem.

Theorem 2 Suppose that the data is generated by sophisticated agents who are aware of

their time inconsistency while making their discrete choice and that the following rank

condition is satisfied: there exist periods t and t′ such that the principal minors of matrix

M with entries Mrp = Cov(Zr, Zp) has full rank, where

Zr = E

[
lnσt′+r(0, st′+r)

∣∣∣∣ at′ = a, st′ = s

]
− E

[
lnσt+r(0, st+r)

∣∣∣∣ at = a, st = s

]
for r = 1, 2, ..., T −max(t, t′) and

Zr = E

[
lnσmin(t,t′)+r(0, smin(t,t′)+r)

∣∣∣∣ amin(t,t′) = a, smin(t,t′) = s

]
for T −max(t, t′) < r ≤ T −min(t, t′). Also suppose that choice probabilities are observed

for all periods min(t, t′), ..., T (i.e., the dataset is a long balanced panel). Then the general

discount function β(·) is identified on the subset of its support 1, . . . , T −min(t, t′).

Proof:

Let ~δ = (δ(1), . . . , δ(T −min(t, t′))),

Y = ln

(
σt(a, s)

σt(0, s)

)
− ln

(
σt′(a, s)

σt′(0, s)

)
and

~Z = (Z1, . . . , ZT−min(t,t′)).
′

Then the generalized Bellman equation can be written in the vector form as

Y = ~Z ′~δ
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This means that

Y − E[Y ] = (~Z − E[~Z])′~δ.

As a result

~δ = M−1E[(~Z − E[~Z])(Y − E[Y ])].

By assumption of the theorem M−1 exists and, thus, solution ~δ is well-defined. Then we

can find the discounting schedule by setting β(1) = δ(1) and then iterating to get

β(t) = δ(t) +
t−1∑
r=1

β(r)δ(t− r).

Q.E.D.

Note that if both t and t′ are greater than 1, the discount function is only identified

on the subset of support, and not in its entirety. The general discount function can

be estimated by regressing the difference between the ratio of the probabilities on the

expected differences of future choice probabilities for the reference choice, similar to the

previous examples. Intuitively, the general discount function is recovered by checking

how sensitive the current period choices are to variation in rewards one period later, two

periods later, etc. By using the moment condition in (15), we can recover how quickly

the weights on future values decline in explaining the current period choices and perform

various hypothesis testing on time preferences, e.g., test whether the data are consistent

with hyperbolic discounting.

6 Summary

We developed a simple two-step estimator for the discount factors in optimal stopping

models. The proposed estimator builds on a transparent and intuitively appealing identi-

fication argument, is easy to compute, and is robust to approximation bias for the utility

function. In an application to mortgage default data, the estimator delivers estimates of

reasonable values and precision compared to alternative estimators. The estimator ex-

tends to infinite horizon problems as well as finite horizon problems with non-standard

preferences.
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