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Abstract

Fang and Wang (2015)’s Proposition 2 claims generic identification of a dynamic
discrete choice model with hyperbolic discounting under exclusion restrictions. We
note that Proposition 2 uses a definition of “generic” that does not preclude that a
generically identified model is nowhere identified. We provide two examples of models
that are generically identified under this definition, but that are, respectively, every-
where and nowhere identified. We then show that its proof is incorrect and incomplete.
We conclude that Proposition 2 has no implications for identification of the dynamic
discrete choice model and suggest alternative approaches to identification.
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1 Introduction

Fang and Wang (2015) studied the identification an infinite-horizon, stationary dynamic
discrete choice model with partially naive hyperbolic time preferences and is frequently cited
in the recent dynamic discrete choice literature (e.g. Yao et al., 2012; Lee, 2013; Ching
et al., 2013; Norets and Tang, 2014; Dubé et al., 2014; Gordon and Sun, 2015; Bajari et al.,
2016; Chan, 2017; Gayle et al., 2018). In its model, the agent chooses an action i from I ≡
{0, 1, . . . , I}, I ∈ N, in each period, after she observes that period’s Markov state (x, ε), where
x takes values in a finite set X and ε = (ε0, ε1, . . . , εI) ∈ RI+1.1 This returns instantaneous
utility u∗i (x, ε) = ui(x) + εi. It also controls the evolution of x: Given choice i in state
(x, ε), it takes the value x′ ∈ X in the next period with probability π(x′|x, i). In contrast,
the components of ε′ are mutually independent with type-1 extreme value distributions,
independently from x′, (x, ε), and choice i. The agent has rational expectations; in particular,
she believes x to evolve according to the controlled Markov transition distribution π. She
discounts future utility with a standard factor δ and present bias factor β, and perceives
future selves to have present bias factor β̃. With a normalization u0(x) = 0 for all x ∈ X ,
the model’s unknown primitives are an IX-vector u with the values of ui(x) for i ∈ I/{0}
and x ∈ X , the discount function parameters (β, β̃, δ), and a matrix Π with the state
transition probabilities π(x′|x, i) for i ∈ I, x ∈ X , and x′ ∈ X . Here, X = |X | is the number
of elements of X .

The econometrician’s data are the state transition probabilities Π and a matrix P̃ that
collects the conditional probabilities Pi(x) that the agents chooses i in state x, i ∈ I and
x ∈ X . Because probabilities sum to one, the (I+1)X+(I+1)X2 choice and transition prob-

abilities in
(
P̃,Π

)
can be represented by a vector that stacks IX+(I+1)X(X−1) of them.

We adopt this representation and take
(
P̃,Π

)
∈ [0, 1]IX+(I+1)X(X−1) ⊂ RIX+(I+1)X(X−1).2

1This paper’s footnotes document various minor errors and inconsistencies in Fang and Wang (2015) that
are not central to our comments, but that we have corrected in the main text to ensure clarity and consistency.
Here, for example, we have included ε0 in ε. Fang and Wang (2015) (p. 568) specified ε = (ε1, . . . , εI) ∈ RI

and only assumed u∗i (x, ε) = ui(x) + εi for i ∈ I/{0}. However, Fang and Wang (2015) subsequently used
u∗0(x, ε) = u0(x)+ε0, with ε0, . . . , εI independent with type-1 extreme value distributions, to get logit choice
probabilities Pi(x).

2Fang and Wang (2015)’s online Appendix C instead specifies

(
P̃,Π

)
∈ ∆(I+1)X ×


X copies︷ ︸︸ ︷

∆X × · · · ×∆X


I+1

⊂ RIX+(I+1)X(X−1),

without defining ∆. We guess that, for J ∈ N, ∆J ≡ {(p1, . . . , pJ) ∈ RJ : p1 ≥ 0, . . . , pJ ≥ 0;
∑J

j=1 pj = 1}
denotes a probability simplex, but then ∆(I+1)X ×

(
∆X × · · · ×∆X

)I+1
lies in a IX + (I + 1)X(X − 1)-

dimensional linear subspace of R(I+1)X+(I+1)X2

rather than in RIX+(I+1)X(X−1). However, all that matters
for the reading of Fang and Wang (2015)’s Proposition 2 and our comments is that Fang and Wang (2015) use
Lebesgue measure on RIX+(I+1)X(X−1) to decide between generic and exceptional sets of data; see Footnote
10.
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The transition probabilities Π directly identify the agent’s (rational) beliefs. The conditional
choice probabilities P̃ are linked to the model’s primitives by the assumption that the agent’s
actions follow a stationary perception-perfection perfect strategy profile of the decision prob-
lem with beliefs Π and some utilities u∗ and discount factors (β∗, β̃∗, δ∗). The extreme-value
assumption ensures that the conditional choice probabilities Pi(x) have the logit form. As in
the special case with geometric discounting (β = β̃ = 1), an application of Hotz and Miller
(1993)’s choice probability inversion gives IX equations that relate the IX + 3 parameters
(u, β, β̃, δ) to the data (P̃,Π), one for each log choice probability contrast lnPi(x)− lnP0(x),
i ∈ I/{0} and x ∈ X .3

For its main identification result (Proposition 2), Fang and Wang (2015) (p. 579) assumed
that the observed state can be partitioned as x = (xr, xe); where xr takes values in Xr, xe
takes values in Xe, X = Xr × Xe, and |Xe| ≥ 2; and that its Assumption 5 holds for all
(xr, xe) ∈ X and (xr, x

′
e) ∈ X .4 The first part5 of its Assumption 5 then requires that

ui(xr, xe) = ui(xr, x
′
e) for all i ∈ I/{0}, xr ∈ Xr, and (xe, x

′
e) ∈ Xe ×Xe, (1)

which are I (|Xe| − 1) |Xr| different and nontrivial exclusion restrictions, one for each i ∈
I/{0}, each xr ∈ Xr, and each of the |Xe| − 1 distinct pairs of subsequent xe and x′e in the
(arbitrarily) ordered set Xe.

6

Taken together, the IX constraints resulting from Hotz and Miller (1993)’s choice prob-
ability inversion and those in (1) implied by the exclusion restrictions form a system of
IX + I (|Xe| − 1) |Xr| nonlinear equations in the IX + 3 parameters (u, β, β̃, δ) and the data
(P̃,Π). Fang and Wang (2015) denoted this system with

G̃
(
u, β, β̃, δ;

(
P̃,Π

))
= 0. (2)

The system of equations (2) contains all the information linking the unknown parameters
(u, β, β̃, δ) to the data (P̃,Π) under the assumed exclusion restrictions in (1). Therefore,

3Fang and Wang (2015) provided the analysis leading to these equations, but not the final equations
themselves.

4Fang and Wang (2015) used the same notation for random variables and their realizations and, in
Assumption 5, incorrectly referred to the state’s values x1 and x2 as “state variables.”

5The second part of Assumption 5 requires that transition probabilities π(·|x, i) for some choice i differ
between the same (xr, xe) and (xr, x

′
e). This condition cannot possibly be necessary for Fang and Wang

(2015)’s Proposition 2 to be true, as it holds generically according to its definition of “generic” (see Section
2).

6Fang and Wang (2015)’s online Appendix C instead states that “the data must also satisfy the additional
I × |Xe| × |Xr| equations requiring that ui(xr, xe) = ui(xr) for each i ∈ I/{0}, each xe ∈ Xe and each
xr ∈ Xr.” Its subsequent analysis fails to appreciate that these I × |Xe| × |Xr| equations come with I × |Xr|
additional parameters ui(xr); i ∈ I/{0}, xr ∈ Xr (it concludes that the exclusion restrictions yield a system
of “I×X+I×|Xe|×|Xr| equations in I×X+3 unknowns (u, β, β̃, δ)”). Clearly, on balance, these I|Xe||Xr|
equations only introduce I|Xe||Xr|−I|Xr| = I (|Xe| − 1) |Xr| additional restrictions, as in our representation.
Of course, these restrictions are simply the equalities in (1) that can be derived by differencing Fang and
Wang (2015)’s equations ui(xr, xe) = ui(xr) and ui(xr, x

′
e) = ui(xr).
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Fang and Wang (2015) studied their model’s identification by analyzing whether (2) uniquely
determines (u, β, β̃, δ) for given data. It claimed the following result:7

Proposition 2. Consider the space of data sets that can be generated by the
assumed data generating process for some primitives (u∗, β∗, β̃∗, δ∗). Suppose
that there exist state variables that satisfy Assumption 5. Then, all the model
parameters are generically identified if I (|Xe| − 1) |Xr| ≥ 4.

Fang and Wang (2015) does not formally define “generic identification,” but paraphrases
Proposition 2 as giving identification “for almost all data sets generated by the assumed
hyperbolic discounting model” (p. 579). Fang and Wang (2015)’s proof of Proposition 2, in
its online Appendix C, further defines “almost all” and therewith “generic.”

The proof of Proposition 2 applies the transversality theorem to Fang and Wang (2015)’s
model to demonstrate that there are generically no parameters that are consistent with any
given data. Next, it notes that since the model generated the data by assumption, there
must exist some parameters consistent with the data. It concludes that these parameters
are therefore generically the only parameters that are consistent with such data.

Section 2 uncovers Fang and Wang (2015)’s definition of “generic” from this proof. Then,
it demonstrates that Proposition 2 is void: The model may be generically identified, in the
sense of Fang and Wang (2015), independently of whether any data sets that can be generated
by the model correspond to a unique parameter vector. It then shows that the proof is
incorrect. Finally, it notes that the proof is incomplete, as it fails to verify the rank condition
for the transversality theorem that it invokes. It is shown that independently of whether this
rank condition holds, the proof has no implications for the model’s identification. Section
3 concludes with a brief discussion of alternative approaches to identification in dynamic
discrete choice models.

2 A void generic identification result

The proof of Proposition 2 in Fang and Wang (2015)’s online Appendix C first presents the
following transversality theorem (Mas-Colell, 1985, Proposition 8.3.1):8

Theorem 1. Let F : A × B → Rm, A ⊂ Rn, B ⊂ Rs be Cr with r > max{n − m, 0}.
Suppose that 0 is a regular value of F ; that is, F (a, b) = 0 implies rank ∂F (a, b) = m. Then,
except for a set of b ∈ B of Lebesgue measure zero, Fb : A→ Rm has 0 as a regular value.

7We quote Fang and Wang (2015)’s Proposition 2 verbatim, except that we have replaced its condition
I|Xe||Xr| ≥ 4 with the stronger condition I (|Xe| − 1) |Xr| ≥ 4. Proposition 2’s proof in Fang and Wang
(2015)’s online Appendix C relies on the fact that “I × X + I × |Xe| × |Xr| ... is larger than the number
of unknowns I × X + 3 under our identifying assumption that I × |Xe| × |Xr| ≥ 4.” However, as we have
explained in Footnote 6, the number of equations equals IX + I (|Xe| − 1) |Xr|, not IX + I|Xe||Xr|, so that
I (|Xe| − 1) |Xr| ≥ 4 is required to ensure that there are more equations than unknowns. Note that this
correction neither changes the substance of Fang and Wang (2015)’s proof, which simply relies on having
more equations than unknowns, nor that of our comment.

8To avoid confusion with Fang and Wang (2015)’s use of x for states, we slightly deviate from Mas-Colell
(1985)’s and Fang and Wang (2015)’s notation and use a instead of x and A instead of N here.

4



Here, ∂F is the Jacobian of F with respect to (a, b); Fb is such that Fb(a) = F (a, b) for all
a, b; and ∂Fb is the Jacobian with respect to a only.

To prove Proposition 2, it applies this transversality theorem to the system of equations
(2), with the following mapping of notation:9

Transversality Theorem Fang and Wang (2015)

F (a, b) ∈ Rm G̃
(
u, β, β̃, δ;

(
P̃,Π

))
∈ RIX+I(|Xe|−1)|Xr|

m Number of equations in G̃: IX + I (|Xe| − 1) |Xr|
a ∈ A ⊂ Rn Unknown parameters

(
u, β, β̃, δ

)
∈ RIX × (0, 1]3 ⊂ RIX+3

n Number of unknown parameters: IX + 3
b ∈ B ⊂ Rs Vector of probabilities in [0, 1]IX+(I+1)X(X−1) ⊂ RIX+(I+1)X(X−1)

that represents the data
(
P̃,Π

)
s IX + (I + 1)X(X − 1)

a 7→ Fb(a)
(
u, β, β̃, δ

)
7→ G̃

(
u, β, β̃, δ;

(
P̃,Π

))
That is, Fang and Wang (2015) studied the generic identification of the vector a ∈ A ⊂ Rn

of unknown parameters
(
u, β, β̃, δ

)
from the choice and transition probabilities b ∈ B ⊂ Rs

by applying the transversality theorem to the system F (a, b) = 0 of m smooth equality
constraints. This implicitly defines “for almost all data sets generated by the assumed
hyperbolic discounting model” (and therewith “generically” in Proposition 2) to mean for
all data b ∈ B in the model’s range (the set of b ∈ B such that F (a, b) = 0 has at least one
solution a ∈ A) outside a set of Lebesgue measure zero in Rs.10

A key problem with Fang and Wang (2015)’s Proposition 2 is that its proof, given that
the assumed rank condition holds (we return to this at the end of this section), establishes
that the model’s range has Lebesgue measure zero in Rs. Because the transversality theorem,
as applied in Fang and Wang (2015)’s proof, only has implications for data outside a set of
Lebesgue measure zero, it has no consequences for identification from data in the model’s
range.

To be precise, suppose that the rank condition for the transversality theorem holds:
rank ∂F (a, b) = m if F (a, b) = 0. Then, the transversality theorem implies that, for all b ∈ B
outside a set of Lebesgue measure zero in Rs, rank ∂Fb(a) = m if F (a, b) = 0. Moreover,
because a ∈ Rn, rank ∂Fb(a) ≤ n < m. Taken together, this implies that F (a, b) = 0 has no
solutions a ∈ A, except for b ∈ B in a set of Lebesgue measure zero in Rs.

9This mapping corrects two minor problems with Fang and Wang (2015)’s mapping at the top of page 3
of its online Appendix. See Footnotes 2 and 6.

10Recall from Footnote 2 that it is not completely clear how Fang and Wang (2015) represent the choice and
transition probability data, but that it is clear that they think of the data as living in Rs = RIX+(I+1)X(X−1).
The exact way the data are represented in Rs is irrelevant, because Lebesgue measure is invariant under
affine transformations with determinant 1 or −1. In particular, Fang and Wang (2015)’s representation and
ours both assign zero measure to the same sets of choice and transition probabilities.
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Consequently, given that the rank condition holds, Proposition 2 is void. It claims that
F (a, b) = 0 has a unique solution a ∈ A for all b ∈ B in the model’s range, but since the
model’s range has zero measure, it is excepted from the claim. Proposition 2 therefore makes
no claim about the number of solutions in the range of the model. We note that Proposition
2 is not false. Formally, Proposition 2 is vacuously true, because it is a statement about a
property of the elements of an empty set.11

Moreover, its proof cannot easily be adapted to establish a more substantive identification
result, for some or all data in the model’s range, because its application of the transversality
theorem has no implications for the number of parameters a ∈ A that solves F (a, b) = 0 for
data b ∈ B in the model’s zero measure range.

We illustrate these two points with two simple examples. We first note that Fang and
Wang (2015)’s proof does not use the particular structure of the dynamic discrete choice
model, but applies to any model that can be represented by a system of equations with
more equations than unknowns under the regularity conditions stated above. Our examples
therefore use highly stylized, linear models that allow easy and direct verification of the rank
condition and the conclusions of the transversality theorem. Like Fang and Wang (2015)’s
model under the conditions of Proposition 2, both examples have models with more equations
than unknowns (m > n). Their ranges have Lebesgue measure zero in Rs, so that generic
identification vacuously holds. However, in the first example, a is uniquely determined from
F (a, b) = 0 for b ∈ B in the model’s range; in the second example, it is not.

Example 1 (Everywhere point identified). Suppose that the data are b = (b1, b2) ∈
B = R2, the parameter is a ∈ A = R, and the model is F : R× R2 → R2, with

0 = F (a; b) =

[
b1 − a
b2 − a

]
, ∂F (a; b) =

[
−1 1 0
−1 0 1

]
, and ∂Fb(a) =

[
−1
−1

]
.

Note that n = 1, s = 2, and m = 2. In this example, rank ∂F (a, b) = 2 always. The
transversality theorem gives that Fb(a) = 0 implies rank ∂Fb(a) = 2 for almost all b ∈ R2.
Now, rank ∂Fb(a) ≤ n = 1, so Fb(a) 6= 0 for almost all b ∈ R2. The model is linear, so
we can do without the transversality theorem and directly observe that the model can only
generate data b such that b1 = b2, which is nongeneric in B = R2. Data b ∈ B that can be
generated by this model uniquely determine a. In this example, the transversality theorem
tells us that there are zero (not one) parameters that rationalize the data, for almost all
data in R2, and that data that are in the model’s range, excepted from the transversality
theorem, always identify the unknown parameter.

Example 2 (Nowhere point identified). Now suppose we have data b = (b1, b2, b3) ∈
B = R3, a pair of parameters a = (a1, a2) ∈ A = R2 , and a model is F : R2 × R3 → R3,
with

0 = F (a; b) =

 b1 − (a1 + a2)
b2 − (a1 + a2)
b3 − (a1 + a2)

 ,
11It is vacuously true since any statement about a property of elements of an empty set is formally true.
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∂F (a; b) =

 −1 −1 1 0 0
−1 −1 0 1 0
−1 −1 0 0 1

 , and ∂Fb(a) =

 −1 −1
−1 −1
−1 −1

 .
Note that n = 2, s = 3, and m = 3. In this example, rank ∂F (a, b) = 3 always. The
transversality theorem gives that Fb(a) = 0 implies that rank ∂Fb(a) = 3 for almost all
b ∈ R3. Since rank ∂Fb(a) ≤ n = 2, Fb(a) 6= 0 for almost all b. This again makes sense: The
model, which requires F (a, b) = 0, can only generate data b such that b1 = b2 = b3, which is
nongeneric in R3. Data from the range of the model only identify a1 + a2 and never a1 and
a2 separately. So, this is another example where transversality tells us there are zero (not
one) parameters that match the data for almost all data. However, unlike in the previous
example, data in the model’s range never identify the parameters.

Together, these examples show that the transversality theorem, as applied in Fang and
Wang (2015)’s proof, has no implications for identification. Given that the rank condition for
its application of the transversality condition holds, Fang and Wang (2015)’s proof is correct
up to its last half sentence. The first half of the proof’s last sentence correctly concludes
that, for all data b ∈ B outside a set of Lebesgue measure zero, there exist no parameters
a ∈ A that solve F (a, b) = 0. However, the last half sentence qualifies this conclusion with
“except the true primitives (u∗, β∗, β̃∗, δ∗)... that generated the data.” This qualification
does not follow from the preceding mathematical arguments. In particular, we have shown
that Fang and Wang (2015)’s application of the transversality theorem implies that zero, not
one, parameters solve the model for all data outside a set of measure zero. The transversality
theorem has no implications for the number of parameters that solve the model for data in
an exceptional set, which includes the model’s range. So, this last half sentence of Fang and
Wang (2015)’s proof is incorrect.

Finally, Fang and Wang (2015)’s proof is also incomplete, because it fails to verify the
key rank condition for its application of the transversality theorem: rank ∂F (a, b) = m if
F (a, b) = 0. Instead, Fang and Wang (2015) noted that “this can be verified in the same
way that we verify [a similar condition in the proof of Proposition 1],” but did not verify
the latter condition either (p.578). The incompleteness of the proof is however immaterial
for the conclusion that can be drawn from the proof. If the rank condition holds, we know
that the model’s range has Lebesgue measure zero and is excepted from the transversality
theorem. If the rank condition is violated, the transversality theorem does not apply. Either
way, the proof has no implications for identification.

3 Discussion

The source of the problems with Fang and Wang (2015)’s Proposition 2 is its focus on
identification that is generic in the data space, rather than the parameter space. This
is nonstandard and complicates the analysis in two ways. First, the specification of an
appropriate measure directly on the data requires knowledge of the model’s empirical content,
i.e. the range of data that can be generated by varying the model parameters on their domain.
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Our discussion of Proposition 2 highlights the problems of ignoring the model’s empirical
content.

Second, it is unclear how the concept of generic identification in the data space corre-
sponds to the concept of generic identification in the parameter space. The two concepts
are generally not interchangeable, as the following stylized example illustrates. Consider
a model that maps a parameter θ ∈ R to a choice probability p = p(θ) ∈ [0, 1]. Define
”for almost all” θ (or p) to mean for all θ (or p) outside a set of Lebesgue measure 0. If
p(θ) = 1/(1 + exp(θ)), then θ is identified for almost all p and almost all θ. If instead p(θ)
equals 0 if θ ≤ 0, θ if θ ∈ (0, 1), and 1 if θ ≥ 1, then θ is identified for almost all p, but is
not identified for almost all θ.

One could possibly derive an identification result for the case with more equations than
free parameters that is generic in the parameter space instead, following e.g. Sargan (1983),
McManus (1992), and Ekeland et al. (2004). One would also have to choose between a
measure-theoretic definition of “genericity”, like Fang and Wang (2015)’s, and a topological
one. McManus (1992) and Ekeland et al. (2004) provide discussion. Generic identification,
however, is a weak concept of identification, and particularly so if the exceptional set cannot
be characterized. The very small subsets where identification fails may happen to contain
economically important models. One example is Ekeland et al. (2004) which shows that the
generic identification of the hedonic model does not cover the linear-quadratic special case
that is at the center of most applied work.

Abbring and Daljord (2019) offers an alternative approach that dispenses with the con-
cept of generic identification. It instead exploits the specific structure of the dynamic discrete
choice model to analyze identification of a special case of Fang and Wang (2015)’s model,
with exponential discounting (β = β̃ = 1). It shows that each exclusion restriction in (1)
for some xr ∈ Xr and distinct xe ∈ Xe and x′e ∈ Xe gives a single moment condition that
relates the discount factor δ to the choice and transition probabilities.12 These moment
conditions contain all the information in the data about δ, and therewith u.13 The analy-
sis shows that each single exclusion restriction in general gives set identification, where the
identified set is finite. For important special cases, such as models with one-period finite
dependence (e.g. Rust, 1987; De Groote and Verboven, 2019), the exclusion restriction gives
point identification. Abbring et al. (2019) showed that it is similarly possible to concentrate
the identification analysis of a model with sophisticated present biased preferences (β̃ = 1)
on a small number of moment conditions derived directly from equally many exclusion re-
strictions. However, this approach does not extend to Fang and Wang (2015)’s partially
naive case. The identification of partially naive time preferences seems to require an analysis
of the full system of equations and remains an open question.

12The exclusion restrictions in (1) are special cases of the ones considered in Abbring and Daljord (2019).
13Abbring and Daljord (2019)’s Section 4 noted that a version of Magnac and Thesmar (2002)’s Proposition

2 holds: There exist unique (up to a standard utility normalization) values of the primitives (notably, u)
that rationalize the data for any given discount factor β ∈ [0, 1). The joint identification of a non-parametric
utility function and the discount factor is therefore reduced to the conditions on β derived from the exclusion
restriction.
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