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Abstract

The present article provides a synthesis of the conceptual and statistical issues involved in using
multisite randomized trials to learn about and from a distribution of heterogeneous program
impacts across individuals and/or program sites. Learning about such a distribution involves esti-
mating its mean value, detecting and quantifying its variation, and estimating site-specific impacts.
Learning from such a distribution involves studying the factors that predict or explain impact
variation. Part I of the article introduces the concepts and issues involved. Part II focuses on
estimating the mean and variation of impacts of program assignment. Part III extends the discussion
to variation in the impacts of program participation. Part IV considers how to use multisite trials to
study moderators of program impacts (individual-level or site-level factors that influence these
impacts) and mediators of program impacts (individual-level or site-level ‘‘mechanisms’’ that pro-
duce these impacts).
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Using Multisite Randomized Trials to Learn
About and From a Distribution of Program Impacts

To make a valid causal statement about the impacts of a new reading program, drop-out prevention

program or job training initiative, measuring the gains made by program participants is not enough.

Estimating how participants would have fared without the program is also necessary. This requires a

valid comparison group of nonprogram participants who were similar in all predictors of the out-

come (measured or unmeasured) to participants at the outset of the study. The aim is to compare

future outcomes for program participants and comparison group members under the assumption that
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comparison group outcomes reflect what ‘‘would have happened’’ to program participants without

the program.

To create a valid comparison group for testing new medical treatments, scientists embraced the

randomized controlled trial (RCT) soon after World War II. This strategy, which had its origins in

agricultural research during the early 20th century (Fisher, 1925), was to randomly assign persons

to a treatment group or a nontreatment ‘‘control group’’ in order to create two statistically equiv-

alent groups. Mean future control group outcomes then provide unbiased estimates of what mean

future treatment group outcomes would have been without the treatment. Exploiting this singular

strength, government agencies and other funders have recently sponsored many RCTs to evaluate

social and educational programs, policies, and practices (Greenberg & Shroder, 2004; Spybrook,

2013). As a result, we are now learning much about the effectiveness of preschool education, char-

ter schools, remedial math and reading interventions, after-school services, teacher professional

development, career academies, job training programs, social service programs, criminal justice

programs, and more.

Researchers and research funders met in two recent conferences to review the design and analysis

of RCTs for social and educational program evaluation (Learning from Variation in Program Effects

sponsored by the William T. Grant Foundation and the conference that inspired this forum). Parti-

cipants at these conferences noted that past RCTs focused mainly on estimating the average impacts

of new programs. Although an average impact is an essential inferential target of any RCT, partici-

pants reasoned that the average is not sufficient by itself for developing public policy, professional

practice, or program theory when program impacts are heterogeneous. Participants thus agreed that

better understanding of how and why program impacts vary is needed; in other words, we need to

learn more about and from the distribution of program impacts.

Learning About a Distribution of Program Impacts

Learning about a distribution of program impacts involves estimating the mean value of this impact,

quantifying its variation around the mean, assessing the equity of this variation, and studying site-

specific impacts.

Estimating mean impacts. Although it is common practice to estimate mean program impacts, the con-

ceptual and statistical issues involved in doing so for multisite trials with heterogeneous impacts are

more subtle than is typically acknowledged. Specifically, if impacts can vary across individuals and

sites, multiple possible definitions of the overall mean exist. For example, a researcher might want to

know the mean impact for the population of program-eligible persons represented by the study sam-

ple or the researcher might want to know the mean impact for the population of program sites rep-

resented by the sample.

Quantifying impact variation. If persons or sites vary widely in their responses to a program, the overall

average program impact is not useful for policy makers who might contemplate adopting the pro-

gram or for practitioners who want to know how to improve it. Hence, knowing about the extent

to which program impacts vary is essential for informing appropriate use of the RCT results.

Assessing impact equity. In multisite trials, the cross-site correlation between program impacts and

control group mean outcomes can be studied. If sites that serve individuals who would do espe-

cially poorly without the new program produce above-average impacts, this suggests that the pro-

gram will tend to reduce inequality. If program sites that serve individuals who would do

especially well without the program produce above-average impacts, this suggests that the pro-

gram will tend to increase inequality.
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Studying site-specific impacts. We can also use multisite RCTs to produce site-specific estimates of

program impacts. We can thus quantify the effectiveness of the most and least effective sites.

Knowing how effective a program can be is as important as knowing how effective it is on aver-

age, especially if one learns from best practice at effective sites how to improve performance at

ineffective sites.

Learning From a Distribution of Program Impacts

Having learned about a distribution of program impacts, much can be learned from this distribution.

Our point is that impact heterogeneity creates opportunities for testing theories about impact mod-

eration and mediation.

Moderation of impacts. Program impacts vary because some types of persons are more likely than

others to participate, because staff at some sites are more skilled than staff at other sites, or because

existing services from outside of a program are more available and/or effective at some sites than at

others. These factors are potential moderators of program impacts. More specifically, we define

impact moderators as characteristics of clients or sites that (1) cannot be influenced by the program

being tested and (2) facilitate or inhibit a program’s effectiveness.

To explore potential moderators, evaluators often conduct impact analyses for sample subgroups

defined in terms of factors such as gender, ethnicity, social background, and risk of failure. It is less

common to find an evaluation that is founded on an explicit moderation theory about who is likely to

benefit the most or the least from the program being studied and what organizational conditions are

most important for its success. Testing such theories may significantly increase the utility of evalua-

tions for future program design and practice.

Mediation of impacts: mediators (or mechanisms) of program impacts are those aspects of

program implementation, staff practice, and short-term changes in participants’ knowledge,

skills, attitudes, or behavior that are (1) outcomes of random assignment and (2) predictors of

long-term success.

In theory, sites with larger-than-average effects on program mediators will produce greater-

than-average impacts on participant outcomes. Thus, heterogeneity of a program’s effects on its

mediators can explain heterogeneity of impacts on participants’ outcomes. Nonetheless, most pro-

grams are founded on some theory about how program operations influence key mediators and

produce long-term outcomes, but few rigorous evaluations explicitly test these theories, and

impact heterogeneity is largely unexplained.

We allow for the possibility that treatment assignment can moderate the effect of treatment

mediators. For example, assignment to a new job training program might increase participants’ moti-

vation to work, thereby mediating the program’s impact on employment. In addition, program

assignment might change the effect of motivation on employment.

The Importance of Multisite Trials for Studying a Distribution of Program Impacts

We focus here on multisite trials in which sample members are randomly assigned to a program or a

control group within each of a number of sites. Sometimes sites are comparatively few in number,

like the Moving to Opportunity (MTO) experiment conducted in five major U.S. cities (Katz,

Kling, & Liebman, 2000). Other times, RCTs have many sites, like the national Head Start Impact

Study, which was conducted in 350 Head Start centers from across the U.S. (Bloom & Weiland,

2015).

Although the research questions addressed and the statistical methods used depend on the number

of sites and participants per site, all multisite trials represent ‘‘a fleet of randomized experiments.’’

Hence, they are well suited for studying mean program impact and impact heterogeneity.
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Moreover, multisite trials are prevalent, if not ubiquitous. For example, Spybrook (2013) found

that more than two thirds of the 175 RCTs conducted by The Institute of Education Sciences since

1994 are multisite trials.

The Present Article

This article summarizes issues that arise and available options to consider when using multisite

trials to study a distribution of program impacts. We recommend analytic approaches for addres-

sing the issues, and we also identify new methodological frontiers as targets for future research.

We now turn to focus on using multisite trials to study a distribution of impacts of program assign-

ment (impacts of ‘‘intent to treat’’ [ITT]). Then we extend this discussion to impacts of program

participation (complier average causal effects [CACE]). Finally, we consider moderators and

mediators of program effects.

Learning About a Distribution of ITT Impacts

To lay a conceptual and methodological foundation, we begin with an individual-level distribution

of ITT impacts in a single site. We then discuss how to use multisite RCTs to study a distribution of

ITT impacts across multiple sites.

Studying the Distribution of ITT Impacts Across Individuals in a Single-Site RCT

The present discussion adopts the ‘‘potential outcomes’’ framework for causal inference, which is

used widely in applied statistics.1 We set T¼ 1 if a sample member is randomized to a new program

(or treatment) and T ¼ 0 if a sample member is randomized to a control group. Each individual has

two potential outcomes: Y(1) if the participant is assigned to the program and Y(0) if the participant

is assigned to the control group.2 The causal effect of program assignment for an individual is the

difference between his or her two potential outcomes:

B � Y ð1Þ � Y ð0Þ: ð1Þ

It is not possible to calculate an ITT impact for an individual because we can observe only one of

his two potential outcomes. We can observe Y(1) if the participant is assigned to the program group

or Y(0) if the participant is assigned to the control group. Although we cannot estimate person-

specific impacts, we can estimate the average ITT impact for the site population of individuals under

a key assumption that a person’s potential outcomes do not predict treatment group assignment.

Random assignment enables us to meet this assumption, so that, in an RCT, we can readily estimate

a population average causal effect of program assignment or ITT (bITT):

bITT � E½Y ð1Þ � Y ð0Þ� ¼ E½Y ð1Þ� � E½Y ð0Þ�; ð2Þ

where E denotes an ‘‘expectation’’ or population average. In other words, bITT equals the difference

between the average outcome if the entire population were assigned to the program (E[Y(1)]) and the

average outcome if the entire population were assigned to the control group (E[Y(0)]). We can use

data from persons assigned to the treatment group (T ¼ 1) to estimate how the entire population

would fare, on average, if it were assigned to the program, that is, E[Y(1), because, in an RCT, per-

sons assigned to the treatment group are statistically representative of the entire population of inter-

est. Similarly, the RCT enables us to use the data from persons assigned to the control group (T¼ 0)

to estimate how the entire population would fare, on average, if assigned to the control condition. To

do so we require that assigning the entire population to one of the two groups would not change the

potential outcomes of individuals.3
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Although we can estimate a population average impact from an RCT under mild assumptions,

we cannot readily estimate the variance of ITT effects across individuals. To see this, note that,

based on Equation 1:

Y ð1Þ ¼ Y ð0Þ þ B: ð3Þ

Hence, the variance of Y(1) is:

Var½Y ð1Þ� ¼ Var½Y ð0Þ� þ Var½B� þ 2 � Cov½Y ð0Þ;B�; ð4Þ

which implies that:

Var½Y ð1Þ� � Var½Y ð0Þ�¼ Var½B� þ 2 � Cov½Y ð0Þ;B�; ð5Þ

where Cov[Y(0), B] is the individual-level covariance between control group outcomes and program

impacts. Although we can estimate the two variances Var[Y(1)] and Var[Y(0)] from sample data, we

cannot estimate Cov[Y(0), B] or Var(B) because we cannot observe both potential outcomes for

individuals.

Further investigation (Bloom, Raudenbush, Weiss, & Porter, 2014; Bryk & Raudenbush, 1988)

reveals that:

� If a program group and a control group have different individual-level outcome variances, we

can conclude that ITT impacts vary across individuals.4

� If a program group and a control group do not have different individual-level outcome var-

iances, we cannot conclude that ITT impacts do not vary across individuals.5

� If the program group variance is smaller than the control group variance, we can conclude that

the program produces larger-than-average ITT impacts for persons who would fare worse

than average without the program (i.e., program effects are compensatory).6

� If the program group variance is larger than the control group variance, however, we cannot

conclude that the program produces larger-than-average impacts for persons who would fare

better than average without the program.7

In summary, a single-site RCT provides full information about mean impact of program assign-

ment at a single site and limited information about heterogeneity of this impact across individuals

at that site.

Studying a Distribution of ITT Impacts Across Sites in a Multisite RCT

We now consider multisite analyses of the distribution of program impacts. We are interested in the

mean of this distribution, the cross-site variation around the mean, and the cross-site correlation

between program impacts and control group mean outcomes. In addition, we want to estimate

site-specific impacts.

Consider first the case of a population mean ITT impact. Estimating mean impact is simple—if

we assume impacts to be constant across sites. However, given the heterogeneity of organizational

conditions and populations served across sites in many RCTs, the assumption of a constant impact

seems implausible. In this case, defining and estimating a mean program impact can be tricky.

Defining a population mean impact. When program impacts vary across persons and/or sites, different

ways to define a population mean impact exist. On one hand, we might want to generalize findings to

a population of sites (e.g., we might want to know the mean of the mean Head Start impacts for all

Head Start centers in the United States). Or, we might want to generalize findings to a population of

persons (e.g., the mean Head Start impact for the national population of program-eligible children).
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Statisticians often define a parameter of interest as a ‘‘target of inference’’ or ‘‘estimand.’’ Ide-

ally, researchers should be explicit about their estimands before designing a study. For example, sup-

pose that prior to designing a study, we have information about the number of sites (J* in our

population of interest), and we also have information about the number of eligible persons (Nj in

each site) j, there being
PJ�
j¼1

Nj persons in the entire population. Each person i in each site j possesses

a potential outcome Yijð1Þ if assigned to the program and a potential outcome Yijð0Þ if assigned to the

control group. The ITT impact (Bij) for each person i in site j is thus:

Bij ¼ Yijð1Þ � Yijð0Þ: ð6Þ

The subpopulation mean ITT impact (Bj) for persons in site j is:

Bj ¼
XNj

i¼1

Bij=Nj: ð7Þ

If we wish to generalize to a population of sites, we define our estimand as the simple mean of the

site mean impacts (bsites), that is:

bsites ¼
XJ�
j¼1

Bj=J�: ð8Þ

If we wish to generalize to a population of persons, we define our estimand as the following

person-weighted mean of the site mean program impacts (bpersons):

bpersons ¼

XJ�
j¼1

XNj

i¼1

Bij

XJ�
j¼1

Nj

¼

XJ�
j¼1

NjBj

XJ�
j¼1

Nj

: ð9Þ

If site-specific impacts are homogeneous, the site-average mean impact in Equation 8 will

equal the person-average mean impact in Equation 9. Similarly, if all the sites have the same pop-

ulation size and the same fraction of persons assigned to treatment, the two estimates will also be

equal. Otherwise, the estimands may differ from each other. For example, if programs in sites with

large client populations are more effective than programs in sites with small client populations, the

two population mean impacts will differ.

Designing a multisite trial. The choice of an estimand can influence the optimal design of a study. To

see how, assume for simplicity that the cost of sampling children within sites and collecting data on

program members and control group members is constant and that the individual outcome variance

in the treatment and control groups is the same.

If the estimand of interest is bsites, it is optimal first to (1) draw a simple random sample of sites

from the population of sites, (2) draw a simple random sample of n persons from each site, and (3)

assign persons from each site with equal probability to the program group or control group. These

conditions produce a perfectly balanced design with n=2 persons from each experimental group per

site. However, if the estimand of interest is bpersons, a good option is to draw a simple random sample

of sites from the population of sites and set each site’s sample size proportional to its number of

program-eligible persons.8
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Unfortunately, evaluators can rarely implement a probability sample of sites or persons and usu-

ally must select a sample of convenience. However, they can conceive of their study sites as repre-

senting a larger population of similar sites that might use the program, and they typically want their

findings to apply to persons who might benefit if the program is found to be effective. Even in this

setting, one must take care when choosing an estimand. For example, if one wanted to generalize

findings to a population of sites bsites should be used. If instead, one wanted to generalize findings

to a population of persons bpersons should be used.9

Estimating a mean ITT impact. Having carefully defined an estimand of interest and designed a study

accordingly, we determine how to estimate the desired mean impact. In so doing, we must confront

the fact that site sample size (nj), and the fraction of sample members randomized to the treatment

ð �TjÞ will typically vary across sites. The fraction assigned to treatment is known as a ‘‘propensity

score’’ (Rosenbaum & Rubin, 1983). In a multisite trial, propensity scores can vary across sites

by design or, more often, because of unobserved site differences. For example, in a lottery-based

study of charter schools, a highly popular charter school might have many applicants per available

seat. For this school, the propensity score—that is, the chance of winning its lottery—is low. A less

popular charter school might have fewer applicants per seat and thus have a higher propensity score.

If these propensity scores are correlated with charter school impacts—which seems possible—one

must take special care to account for the correlation.

To see how these challenges play out in practice, we need additional notation. Paralleling our

discussion of potential outcomes for an individual, we define U1j as the average outcome that

would occur if the entire population of eligible persons in site j were assigned to the new program,

and we define U0j as the average outcome that would occur if the entire population at site j were

assigned to the program’s control group. The average impact of the new program at site j is thus

Bj ¼ U1j � U0j. If persons are randomly assigned to the program, we can estimate U1j for site j

without bias from the sample mean outcome (call it �Y 1j) for its program group. Similarly, we can

estimate U0j for site j from the sample mean outcome (call it �Y 0j) for its control group. The result-

ing estimate of the average program impact for site j is a simple difference of means

B̂j ¼ �Y 1j � �Y 0j, and its sampling variance (call it Vj) depends on the site’s sample size and propen-

sity score. These simple facts enable us to evaluate the bias associated with common estimators of

alternative estimands.

To keep this discussion simple, we confine our attention to the case where the unweighted ‘‘mean

of site means’’ defined by bsites in Equation 8 is our estimand of interest. However, the logic of our

inquiry would remain the same if we had focused on the estimand bpersons in Equation 9.

The ‘‘site fixed-effects’’ estimator. Perhaps the most common analytic strategy for estimating an average

ITT effect for a multisite trial is the site fixed effects estimator. This estimator is obtained from the

following regression model, where Yij is the outcome, Tij is treatment assignment, aj is a site fixed

effect, and eij is a random error with zero mean, and, for simplicity, a constant variance (s2):10

Yij ¼ bTij þ aj þ eij: ð10Þ

The resulting estimator is (Raudenbush, 2014) equivalent to the following weighted average of

site-specific impact estimates B̂j ¼ �Y 1j � �Y 0j:

b̂FE ¼
XJ

j¼1

wjB̂j

�XJ

j¼1

wj; ð11Þ

where wj ¼ nj
�T jð1� �T jÞ. Here nj is the sample size for site j and �Tj is the propensity score (the pro-

portion of sample members assigned to the program) for site j. Interestingly, the weight wj for site j is
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proportional to the reciprocal of the sampling variance of the site-specific impact estimates B̂j.
11

This estimator is optimal (it is unbiased and has minimum variance) when mean program impacts

do not vary across sites.

When site impacts vary, things change. Now b̂FE can be a biased estimate of bsites if ‘‘true’’

site-specific impacts Bj are correlated with site weights wj (see Raudenbush, 2014). This implies that

if the sample size nj or the propensity score �T j is statistically associated with Bj, we risk bias.

A simple average. Naturally, one may think that we can greatly simplify the preceding problem using a

straightforward average of site-specific impact estimates. For this case, in which we are generalizing

to a population of sites, consider the simple unweighted average estimator:

b̂unweighted ¼
XJ

j¼1

B̂j=J : ð12Þ

This simple average is unbiased when we want to count all sites equally. However, it becomes impre-

cise when we give sites with very small samples equal importance to sites with very large samples.

A fixed-intercept random-coefficient estimator. Selecting between a site fixed effects estimator ðb̂FEÞ
and a simple unweighted site average estimator ðb̂unweightedÞ creates a forced choice that many ana-

lysts find objectionable. Does a flexible alternative that is on a continuum between these two

extremes and is sensible across a range of cross-site variation in impacts and sample sizes exist? The

answer is a qualified ‘‘yes.’’

Consider a hierarchical linear model (HLM; Dempster, Rubin, & Tsutakawa, 1981; Lindley &

Smith, 1972; Raudenbush & Bryk, 2002), which specifies site impacts that vary randomly around

a population grand mean (b) with a variance t2 and removes cross-site differences in mean untreated

(control group) outcomes by including a series of site-specific intercepts or fixed effects (aj) as in

Equation 10.12 If t2 were known for the population of sites of interest and Vj were known for each

site, we would have an estimator with site weights equal to the reciprocal of the total variance t2 þ
Vj of their site impact estimate.1 This estimator has the same form as the fixed-effects estimator but

with site-specific weights:

wj ¼ ðt2 þ VjÞ�1 ¼ t2 þ s2

nj
�T jð1� �T jÞ

� ��1

: ð13Þ

When site-specific impacts are homogeneous (t2 ¼ 0), these weights are the same as those for

the site fixed-effects estimator
�

wj ¼ nj
�Tjð1� �T jÞ

�
in Equation 11, which is optimal for homo-

geneous impacts and heterogeneous site sample sizes. If site impacts are highly heterogeneous

(relative to their sampling variances), wj ≈1, corresponding to the unweighted average estimator

in Equation 12, which is optimal in this case. Thus, incorporating the ‘‘heterogeneity parameter’’ t2

into our weights creates a continuum of estimators that lie between the two preceding extremes (the

site fixed-effects estimator of Equation 11 and the unweighted average of Equation 12).

Recall our answer to the question about a solution to the preceding dilemma was a ‘‘qualified’’

yes, as an important qualification exists. The previous paragraph’s reasoning was based on the

assumption that t2 for the population of sites and Vj for each site are known. The unknown part

of Vj is the within-site variance s2, which can be estimated with considerable precision based on

pooled data for even a moderately large RCT. However, precise estimation of t2 depends on the

number of sites in the RCT. If t2 is estimated imprecisely, we will not likely land on the optimal

place on the continuum between the fixed-effects estimator and the unweighted estimator. However,

we will not land outside this continuum and estimator. Equation 13 can be computed using now-

standard software for HLMs.
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The Cross-Site Variance of ITT Impacts and the Cross-Site Covariance or Correlation
Between ITT Impacts and Control Group Mean Outcomes
Defining a cross-site ITT impact variance. We’ve made the argument that, for multisite trials, the cross-

site variance (or standard deviation) of mean program impacts as well as the cross-site mean should

be estimated. But how should we do this?

First, we need to be careful in defining our estimand. An intuitively appealing definition of this

cross-site variance is the mean squared discrepancy between site-specific impacts Bj and the

unweighted cross-site mean impact b. This variance may be written as:

t2
sites ¼

XJ�
j¼1

ðBj � bsitesÞ2=J : ð14Þ

However, we may also be interested in a person-weighted average like:

t2
persons ¼

XJ�
j¼1

Nj

�
Bj � bpersons

�2�XJ�
j¼1

Nj: ð15Þ

It may seem counterintuitive to define a variance as a person-weighted average. However, Equa-

tion 15 can be useful in characterizing the extent to which site differences explain person-specific

variation in response to an intervention.

Estimating a cross-site ITT impact variance. Few studies have attempted to estimate a cross-site variance

of ITT impacts, and we have not found literature providing guidance for doing so. Clearly, the opti-

mal method depends on the estimand of interest and the study design. However, a broad class of

weighted estimators (t2
w) will have the following form:

t̂2
w ¼

XJ

j¼1

wj

��
B̂j � b̂

�2

� V̂ j

��XJ

j¼1

wj; ð16Þ

where wj is a weight for each site’s contribution to the variance estimate. The idea here is

that ðB̂j � b̂Þ2 ¼ ½ðB̂j � BjÞ þ ðBj � b̂Þ�2 which gives us, for each site, an unbiased estimate of

the estimator’s sampling variance Vj ¼ VarðB̂j � BjÞ plus the true cross-site impact variance

t2 ¼ VarðBj � bÞ. Thus, we subtract the estimated sampling variance V̂ j from ðB̂j � b̂Þ2 to obtain

an estimate of t2 for each site. We compute a weighted average of these site-specific estimates

using a weight wj. If this result is negative, we set the value t̂2
w equal to zero.

Suppose we have a convenience sample, but regard our sites as representing an interesting if

undefined universe of similar sites and our estimand is t̂2
w. Then, we’d be inclined to set wj ¼ 1

for Equation 16.13

This estimate will be ‘‘consistent,’’ that is, it will converge to the correct value as the number of

sites in the sample becomes ever larger. However, it might be very imprecise, particularly if small

sites produce outlying estimates ðB̂j � b̂Þ2 � V̂ j because these outliers are given weights that are

equal to the weights for far more precise estimates from much larger sites.

An alternative to the preceding simple average estimator is an HLM analysis based on maximum

likelihood. Such an approach uses iteratively reestimated least squares to obtain, at iteration m þ 1:

t̂2ðmþ1Þ ¼
XJ

j¼1

w
ðmÞ
j

��
B̂j � BðmÞ

�2

� V̂
ðmÞ
j

��XJ

j¼1

w
ðmÞ
j ; ð17Þ

where w
ðmÞ
j ¼ ðt2ðmÞ þ V

ðmÞ
j Þ

�2
. Here, the weight is inversely proportional to the reciprocal of the

square of the error variance of the site-specific estimate B̂j. This iterative estimator is optimal when
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we assume no correlation between weight and site-specific impact estimates because it appropriately

weights down outliers from small sample sites. However, if the true cross-site impact variance is

large relative to site-specific estimation error, the HLM estimator will tend to converge to the

unweighted estimator. Although Equation (17) can be estimated using now-standard packages for

HLM, we need to learn more about the bias–precision trade-off that can arise in practice from this

approach.14

Estimating a cross-site covariance or correlation between ITT impacts and control group mean outcomes.
What is the cross-site covariance or correlation between program impacts and control group mean

outcomes? This question is rarely addressed empirically, but the answer could be potentially infor-

mative. If the cross-site correlation between program impacts and control group mean outcomes is

positive (i.e., sites with higher-than-average program impacts tend to have higher-than-average con-

trol group mean outcomes), this suggests that the program being tested will increase cross-site out-

come inequality. However, if this correlation is negative, the program will tend to reduce cross-site

outcome inequality. The influence of this correlation on the overall distribution of outcomes across

all population members can be estimated without imposing strong theory or assumptions. Yet con-

ventional methods do not provide a consistent estimate of this correlation.

Again, selecting an estimand is important. To estimate the covariance, suppose that we knew the

true mean impact (bsites) for our population of sites and each site-specific impact Bj. Suppose we also

knew the true mean untreated counterfactual outcome (m0) for the population of sites and for each

site U0j. Then, for each site, we could compute the product ðBj � bsitesÞðU0j � m0Þ, which we could

then average across sites. In practice, we might substitute corresponding sample estimates to com-

pute ðB̂j � b̂ÞðÛ 0j � m̂0Þ and then subtract the sampling covariance ðĈjÞ to obtain a weighted aver-

age:

t̂B0 ¼
XJ

j¼1

wj

��
B̂j � b̂

��
Û0j � m̂0

�
� Ĉj

��XJ

j¼1

wj ð18Þ

where tB0 is the cross-site covariance between mean program impacts and mean counterfactual

untreated outcomes.15 Again our choices depend upon our estimand of interest. For example, we

could set wj ¼ 1 or wj ¼ nj or we could use maximum likelihood estimation of an HLM (although

the latter is more complicated and beyond the scope of this discussion). More needs to be learned

about how these methods work in practice.

Studying site-specific ITT impacts. If we could observe the impact Bj for each site, we could display the

cross-site impact distribution and determine, for example, the 10th, 25th, 75th, or 90th percentile

values of this distribution. The problem is that we cannot observe the true values of Bj. To address

this problem, we might use our estimate B̂j. Unfortunately, doing so can grossly exaggerate the

cross-site impact variation. This issue arises because the cross-site distribution of conventional ordi-

nary least square impact estimates B̂j reflects two sources of variation: (1) cross-site variation in true

impacts (t2) and (2) cross-site variation in impact estimation error (Vj). This problem can also cause

us to exaggerate how effective or ineffective the program is at its most and least effective sites.

Furthermore, the problem can cause us to misrepresent the rank order of impacts for different sites

because sites with the smallest samples will have the largest sampling error and thus tend to have the

most extreme positive and negative impact estimates.

Perhaps the most popular way to address this problem is to compute, for each site, an ‘‘empirical

Bayes,’’ estimate ðB�j Þ of the form:

B�j ¼ ljB̂j þ ð1� ljÞb̂: ð19Þ
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This estimate is a weighted average of the site-specific impact estimate B̂j and the overall mean

impact estimate b̂. The weight accorded to the site-specific estimate is its reliability (lj):

lj ¼
t2

t2 þ Vj

: ð20Þ

Sites with large samples will tend to produce B̂j values with a small sampling variance Vj and,

thus, have high reliability. For those sites, B̂j will have a large weight and b̂ will have a small weight.

For small sample sites with a large Vj and thus low reliabilities, the estimate of the true site impact

will ‘‘shrink’’ toward the grand mean b̂. We have considerable reason to believe that such empirical

Bayes ‘‘shrinkage estimators’’ are the best possible predictors of true impacts under cross-validation

(see Morris, 1983, for a review). The quantities Vj and t2 must be estimated.

Site-specific empirical Bayes estimators B�j are, in a sense, optimal for each site, given a reason-

ably large number of sites and sample members per site.16 However, Louis (1984) noted that a his-

togram of empirical Bayes estimators will understate the variability of true impacts Bj. For this

purpose, we recommend using ‘‘constrained’’ empirical Bayes estimators (Bloom et al., 2014).

Finally, shrinkage toward the overall mean is problematic when specific groups of sites vary

markedly in their program effectiveness. In these cases, it might be more appropriate to shrink

site-specific impact estimates toward a predicted value based on a theory of which kinds of sites

have the largest effects (see Raudenbush & Bryk, 2002, Chapters 3 and 5). We consider such pre-

dictors (site-level moderators) in the next section.

Learning About the Distribution of Impacts of Program Participation

We have discussed the impact of random assignment of individuals to a program, known as an ITT

effect. If everyone participates as assigned, whether as program or control members, we have an

ideal situation called ‘‘perfect compliance’’ with random assignment. Unfortunately, perfect compli-

ance rarely occurs. Instead, partial compliance results from two forms of behavior. First, some indi-

viduals assigned to a program will fail to participate. For example, in the MTO experiment (Kling,

Liebman, & Katz, 2007), families living in public housing were randomly assigned to receive a vou-

cher to pay rent in a low-poverty neighborhood. However, only 47% of the families assigned to

receive the voucher actually used it. Second, individuals assigned to a control group can end up

in the program being tested. For example, in lottery-based studies of charter schools, winners of the

charter school lottery are invited to attend it and lottery losers are not. However, lottery losers may

end up attending another charter school or even attend the charter school whose lottery they lost.

In studies where some persons assigned to the new program do not participate but no controls

participate, the ITT impacts can be policy relevant. In these studies, the ITT effect represents the

impact of a program on the persons for whom it was intended—that is, those who were assigned

to it. However, in studies where some controls access the program, the ITT impact is of questionable

relevance. In all cases of noncompliance, knowing the impact of actually participating in a program

is important. For this purpose, a problem of selection bias arises, even in an RCT. This is because

study participants shape the decision about whether to comply with random assignment. To cope

with selection bias when estimating the impact of program participation, methodologists have

widely adopted the method of instrumental variables (IVs) (Angrist, Imbens, & Rubin, 1996; Heck-

man & Vytlacil, 1998). For this approach, random assignment is conceived as an IV, which induces a

subset of sample members to participate, and we can estimate the average impact of participation on

those so induced (‘‘compliers’’) under comparatively weak assumptions.

We first examine how the IV method works for a single site with homogeneous impacts. We then

illustrate how the analysis becomes more complex—and more interesting—with program impacts
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that vary across participants.17 Finally, we consider how to use a multisite trial to estimate the cross-

site mean and variance (or standard deviation) of the impacts of program participation.

The IV Method for a Single-Site Trial With Homogeneous Impacts

To understand the conventional IV method, consider the simple causal model in Figure 1. It begins

with randomization of sample members to a program (T ¼ 1) or control group (T ¼ 0). This influ-

ences program participation, defined as M ¼ 1 for participation and M ¼ 0 for nonparticipation.18

The impact of random assignment on program participation is denoted as g, which is the difference

between the probability of participating in the program if assigned to it and the probability of parti-

cipating in the program if assigned to the control group. The impact of participating in the program

on the outcome is denoted as d.

Note that Figure 1 has no arrow between T and Y and thereby excludes a direct causal relationship

between T and Y. This ‘‘exclusion restriction’’ is a key IV assumption and implies that the impact of

program assignment on the outcome is produced entirely through the effect of program assignment

on participation. In the language of path analysis, participation M ‘‘fully mediates’’ the ITT effect of

T on Y, which we call b. This implies that the ITT effect is produced solely by the ‘‘indirect’’ effect

of T on Y which operates through M, or:

b ¼ gd ð21Þ

The beauty of Equation 21 (when it holds for a situation) is that we can estimate d without using

M to predict Y. This eliminates potential selection bias noted earlier that occurs when trying to model

Y as a function of M.

Instead, IV uses a two-stage approach. We estimate g (the impact of T on M) and b (the impact of

T on Y) without bias because T is randomly assigned. We then divide our estimate of b by our esti-

mate of g to obtain an approximately unbiased or, consistent estimate of d:

Impact of program participation ¼ d ¼ b
g
¼ ITT effect of T on Y

ITT effect of T on M
; g > 0: ð22Þ

Another key assumption of Equation 22 is that assignment to the program increases the probabil-

ity of participation, that is, g > 0. This is easily checked, and it would be rare to find an experiment

where this condition does not hold.

The IV Method for a Single-Site Trial With Heterogeneous Impacts

If we think that persons respond heterogeneously to a given program, constructing a person-specific

path model of its impacts makes sense, as in Figure 2 (Raudenbush, Reardon, & Nomi, 2012). Here,

G is the unique effect of assignment T on individual participation M. G is ‘‘compliance’’ with treat-

ment assignment. The population-average compliance is EðGÞ ¼ g. Similarly, D is the person-

specific causal effect of M on Y and with a population mean EðDÞ ¼ d. The ‘‘total effect’’ of T

on Y for an individual is the product of the two causal effects G and D in the path from T to Y. The

population mean effect of T on Y is:

EðBÞ ¼ b ¼ EðGDÞ ¼ EðGÞEðDÞ þ CovðG;DÞ

¼ gdþ CovðG;DÞ; ð23Þ

as described by Raudenbush, Reardon, and Nomi (2012), based on Angrist, Imbens, and Rubin

(1996).

As Equation 23 shows, the average effect of ITT (b) depends on the product gd of the two average

causal effects and on the covariance across individuals CovðG;DÞ. This covariance is positive when
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persons who comply with their assignment benefit more than others from participation. The covar-

iance is negative if persons who comply with their assignment benefit less on average than others

from participation.

How can we then estimate the average impact of program participation d when the treatment

effect is heterogeneous? We might assume as an approximation that CovðG;DÞ ¼ 0. Then, Equa-

tion 23 is equivalent to the conventional IV model in Equation 22, and we can identify the aver-

age treatment effect of M on Y as d ¼ b/g, g > 0. However, sometimes the ‘‘no compliance-effect

covariance’’ assumption may be implausible. For example, individuals may have knowledge

about how much they will benefit from program participation, and this expectation may influ-

ence their willingness to participate (Roy, 1951). In other cases, highly disadvantaged persons

who might benefit greatly from an intervention may be less able than others to comply with

treatment assignment.

Rather than assuming no covariance between G and D, Angrist et al. (1996) developed an alter-

native approach when T and M are binary variables. They reasoned that four kinds of people exist:

compliers, never takers, always takers, and defiers. Compliers are persons who would participate

Figure 2. Single-site heterogeneous impacts: Person-specific causal model.

Figure 1. Single-site homogeneous impacts.
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(M ¼ 1) if offered a new program (T ¼ 1) and not participate (M ¼ 0) if assigned to a control group

(T ¼ 0). For compliers, the impact on M of being assigned to the program is G ¼ 1� 0 ¼ 1. Never

takers are persons who would never participate in the program, regardless of their treatment assign-

ment. That means M ¼ 0, regardless of treatment assignment, so that their impact on M of treatment

assignment is G ¼ 0� 0 ¼ 0. Always takers are persons who would always take up the program,

regardless of their treatment assignment, so M ¼ 1 either way, and for an always taker,

G ¼ 1� 1 ¼ 0. Defiers are persons who would refuse to take up M if assigned to the program

(so M ¼ 0 if T ¼ 1) but who would participate if not assigned (so M ¼ 1 if T ¼ 0). Thus, for defiers,

G ¼ �1. In many situations, defiers are an implausible group and assuming that there are no defiers

is often described as a monotonicity assumption. This means that assignment to the program cannot

reduce the inclination of persons to participate in the program. Therefore, G � 0 (Angrist et al.,

1996). Under this assumption:

EðBÞ ¼ b ¼ EðDGjG ¼ 1ÞPrðG ¼ 1Þ
¼ EðDjG ¼ 1ÞPrðG ¼ 1Þ
¼ dCACEg: ð24Þ

Here dCACE is the causal effect of program participation for persons with G ¼ 1 (i.e., compliers),

hence the label CACE. One problem for the interpretation of this effect is that it depends on who

complies with treatment assignment, which in turn, depends on how effective a program is at indu-

cing participation.

In sum, if the gain from program participation varies across participants (as in Figure 2), the pop-

ulation mean effect of program assignment (b) is no longer the simple product gd, unless we invoke

the assumption of no covariance between compliance and impacts. However, for a binary mediator,

we can invoke the assumption of monotonicity (which is weaker).

Using Multisite Trials to Learn About Variation in CACE

Our aim now is to characterize the cross-site distribution of CACE effects. For this purpose, Rauden-

bush et al. (2012) introduce statistical methods for estimating the mean and the variance of CACEs

across sites. We emphasize the important role in this process played by whether we focus on site-

level or person-level estimands, as was the case for ITT impacts.

Defining and Estimating a Population Average CACE. Suppose we want to generalize to a population of

sites and regard each site as equally representative of that population. We want to estimate the

unweighted true average CACE (dsites), where:

dsites ¼
XJ

j¼1

dj=J : ð25Þ

Here dj is the CACE for site j and dsites is the population average CACE. To estimate dj, an intui-

tive approach is to first estimate each site-specific CACE as d̂j ¼ b̂j=ĝj and average these estimates

across sites. Unfortunately, we find that this often does not work because a very low estimated com-

pliance rate for even a single site (which is especially likely for small sites) can produce a value of d̂j

that is so large that it dominates the results for all other sites.19

As an alternative, we might begin with our unbiased estimate of the unweighted average ITT as:

b̂ ¼
XJ

j¼1

B̂j=J : ð26Þ
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Can we then divide this quantity by the estimated average compliance ĝ to obtain an aver-

age CACE? According to Raudenbush et al. (2012), in order to do so we must assume as an

approximation, zero covariance between site mean compliance rates and site mean CACE

impacts because:

Eðb̂Þ ¼ b ¼ E
XJ

j¼1

gjdj

J

0
@

1
A

¼ gsitesdsites þ CovðgjdjÞ:
ð27Þ

Suppose instead that we want to generalize to a population of persons so the CACE of interest

weights each site’s estimate by its population size (Equation 9), and we regard each person in our

study as equally representative of that population, so that each site’s sample size nj is proportional

to its population size Nj. In this case, our estimand (dpersons) is:

dpersons ¼

XJ�
j¼1

Njgjdj

XJ�
j¼1

Njgj

0
BBBBB@

1
CCCCCA
: ð28Þ

Note there are Njgj compliers in site j and
PJ�
j¼1

Njgj compliers overall. So, each site’s contribution

to the overall CACE is weighted by the number of compliers in that site. If nj is proportional to the

site-specific population size Nj, we can substitute nj for Nj in Equation 28.

We can therefore define the person-level population CACE as dpersons ¼ bpersons=gperson without

the assumption of no cross-site covariance between compliance and impact. To see this, note that our

estimate of the overall ITT effect b has an expected value of b ¼ dg:

Eðb̂Þ ¼ lim
J�!1

XJ�
j¼1

njBj

XJ�
j¼1

nj

0
BBBBB@

1
CCCCCA
¼

XJ�
j¼1

njgjdj

XJ�
j¼1

nj

0
BBBBB@

1
CCCCCA
¼

XJ�
j¼1

njgjdj

XJ�
j¼1

njgj

0
BBBBB@

1
CCCCCA
¼

XJ�
j¼1

njgj

XJ�
j¼1

nj

0
BBBBB@

1
CCCCCA
¼ dpersonsgpersons:

ð29Þ

Studying a distribution of CACEs across sites. Raudenbush et al. (2012) describe several methods for esti-

mating cross-site variance of CACEs, which are beyond the scope of this article. However, the key

principles follow from the logic of the previous paragraphs: How we define our estimands is critical

to shaping our approach for estimating a distribution of CACEs. Developing accessible methods for

doing so is a focus of current methodological research.

Learning from a Distribution Of Program Impacts

We have discussed ways to study a cross-site distribution of program impacts. The idea now is to

propose and test theories about when and why a program works, that is, to learn from a cross-site

distribution of program effects in order to deepen our understanding of causal forces at work and

how to manipulate them to improve program design and practice.
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Moderation

Which types of persons benefit most from a program, and in what kinds of sites does the program

work best? These important questions are about moderation of program impacts. We want to know

whether a program works better for some types of persons than for others in order to target it effi-

ciently or in order to investigate why the program does not work for certain types of persons. We

would like to know which program sites are most effective, possibly to spur further investigation

of practice in those sites or to frame general questions about why the program works when it does.

Questions about person-level and site-level moderators are almost always interdependent. Sites

vary in the organizational conditions and practices that may be key to program success and in the

composition of their client populations. Hence, claims about best practice at the site level might

be misguided because especially effective sites might overrepresent persons who are most likely

to benefit from the program being evaluated. As noted earlier, we define moderators of a program’s

impacts to be any characteristics of its clients or sites that influence the program’s effectiveness but

cannot be influenced by the program.

Person-level moderators. Evaluators commonly ask whether a program works better for boys than for

girls, or for youth from high- versus low-income families, or for high- versus low-achieving stu-

dents, or for persons of varying ethnicities. Such questions are often addressed through exploratory

analyses conducted after average program impacts have been estimated. While such auxiliary anal-

yses can enhance understanding, problems with this ad hoc, post hoc approach exist.

First, some subgroup findings may have limited relevance for policy or practice. For example,

knowing that boys or ethnic minorities benefit most from a program might motivate further inquiry

into why the program works for some clients but not for others—and this is a good thing. However,

this knowledge does not necessarily imply that the program should make special effort to target par-

ticular subgroups.

Second, a search for subgroup impact variation can be stymied by the sheer number of subgroups

to be examined. For example, the potentially large number of statistical tests of subgroup impact

differences increases the likelihood of capitalizing on sample-specific differences that arise by

chance and are therefore not replicable. Moreover, many subgroups are confounded with each other

(i.e., they overlap). For example, ethnic minorities disproportionately comprise low-income persons,

and boys have higher risk than girls for certain behavioral problems. Making theoretical sense of a

large number of findings for such overlapping subgroups can be quite difficult.

Thus, we face a multiplicity of possible subgroups. No purely methodological fix to this problem

exists, as the number of possible person-level moderators is too large to be sorted out by statistical

hypothesis testing. What is needed is theory about who stands to benefit and why. Consider a pro-

gram for increasing high school graduation rates. By construction, this program cannot appreciably

increase graduation rates for students who would likely graduate without the program. At the oppo-

site extreme, students with skills or prior grades that are so low that the program’s resources are

insufficient to appreciably improve their graduation prospects will tend not to benefit from the pro-

gram. We have plenty of theory and evidence about which kids are most likely to drop out of school

(Rumberger, 1995), so one can envision developing a theoretically informed model that predicts this

probability in the absence of treatment. The evaluator might then stratify his or her sample based on

this predicted probability or ‘‘prognostic score.’’

Stratifying on a prognostic score has several advantages. First, the prognostic score summarizes

the predictive information in many different baseline characteristics, thereby greatly reducing the

number of subgroup tests. Second, if program impacts depend strongly on a prognostic score, we

confront interesting questions for policy and practice. One might envision, for example, targeting

resources to persons with the greatest probability of benefiting. Third, stratifying on a prognostic
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score might provide a more realistic assessment of the impact of the program than that provided by

an estimate of its overall average effect. For example, a school drop-out prevention program can

reduce dropouts only for students who are at some risk of dropping out. Suppose that at-risk students

comprise 50% of one’s sample. In that case, the average program effect on dropping out would be no

more than half the size of the effect of the program on persons who could benefit from it.

We can augment a prognostic score analysis in ways that further understanding of impact varia-

tion. For example, with treatment group data, we could estimate a model that predicts post-program

outcomes using individual baseline characteristics suggested by prior theory. Given randomization,

the coefficients of this model for the treatment group should apply equally well to the control group,

had they been assigned to the program. Thus, we can apply estimates of those coefficients to the

baseline characteristics of control group members to predict how they might fare with access to the

program. We could then use the same logic to obtain a prognostic score for how each program group

member might fare without access to the program. In this way, we can estimate a pair of prognostic

scores for each sample member and stratify them based on their pair of prognostic scores. By exam-

ining how program impacts vary across these strata within sites, we can efficiently summarize evi-

dence about person-level moderators.20

Site-level moderators. Knowledge about site-level moderators is potentially of great importance for

developing program theory, policy, and practice. We need to understand what organizational con-

ditions are necessary if a new program will succeed. These conditions might include the availability

of resources like staff skills and knowledge, the prevailing organizational climate in sites, or local

ecological conditions such as neighborhood safety and unemployment rates.

Hence, just as we might wish to estimate program impacts for subgroups of persons, we might

want to estimate program impacts for subgroups of sites. Once again, problems arise from the fact

that many ways to define subgroups exist, and thus, there are many moderators to consider. Now the

problem of ‘‘many moderators’’ is even more acute because there will always be far fewer sites per

site-level subgroup than there are persons per person-level subgroup. Hence there is, much less pre-

cision for estimating impact differences across site-level subgroups than for estimating impact dif-

ferences across person-level subgroups.21 Consequently, the need for a priori theory to reduce the

number of site-level moderators is even stronger than it is for person-level moderators.

Double stratification. As noted earlier, a major problem arises when studying moderators of pro-

gram impacts; that is, site-level and person-level moderators are often mutually confounding. For

example, sites with favorable organizational conditions might serve comparatively advantaged

clients. Thus, what appears to be the influence of a site-level moderator on program impacts

might actually be the influence of a person-level moderator or vice versa. One way to address

this problem is ‘‘double stratification.’’ For example, individual prognostic scores could be used

to stratify sample members into two person-level subgroups—those at high risk of a negative out-

come versus all others. In addition, program sites could be categorized according to a site-level

moderator or set of moderators, (e.g., sites with high unemployment rates vs. all others and/or

sites with high resource levels vs. all others). One could then split each site’s sample into four

groups: a high-risk treatment group and a high-risk control group plus a low-risk treatment group

and a low-risk control group. In this case, some sites may have empty cells. For example, some

sites might have no ‘‘low-risk’’ treatment group members or no low-risk control group members

or both. However, for all sites that have high- and low-risk treatment and control group members,

we can compare program impacts on high- and low-risk students controlling for a site-level mod-

erator or set of moderators. Likewise, we can compare program impacts across values of site-

level moderators controlling for participant risk.

Raudenbush and Bloom 491



Mediation

Why does a new program work—or not? Innovative programs are based on theories about how

program operations generate short-term changes that produce long-term benefits. Such short-

term changes are called mediators. We define mediators of program impacts to be those aspects

of program implementation, staff practice, and short-term changes in participants’ knowledge,

skills, attitudes, or behavior that are outcomes of random assignment and predictors of long-

term success. Mediators include shifts in organizational processes such as improved instruction

or increased staff collaboration. These are often regarded as the mechanisms through which pro-

grams produce long-term benefits.

Methodological challenges. Analysis of mediational processes is popular in social science and program

evaluation. However, drawing valid causal inferences about mediation is very challenging (for a

detailed discussion of these challenges and alternative approaches to them, see the Keele article

in this volume). For example, consider a study in which teachers are assigned at random to a pro-

fessional development program with the aim of increasing instructional quality, which in turn is

expected to improve student outcomes. Suppose that the program is successful in boosting student

achievement. To what extent are the program-induced gains in student achievement explained—or

‘‘mediated’’—by program-induced improvement in instruction? This mediational analysis would

assess the impact of the program on instructional quality. If teachers are assigned at random to the

program or a control group, the difference between mean instructional quality for the treatment and

control groups is an unbiased estimate of the causal effect of the program on instructional quality.

Next, one seeks to assess the impact of instructional quality on student achievement. Establishing

this causal link is especially challenging because teachers are not assigned at random to instructional

quality. For example, teachers’ pretreatment characteristics (experience, prior education, commit-

ment, etc.) frequently predict their instructional quality. Such confounding can produce bias when

studying the impact of instructional quality on youth outcomes.

A second problem arises when the impact of a mediator on the outcome has a different effect

for treatment group members than for control group members. If this is the case, membership in

the treatment group or control group moderates the causal effect of the mediator on the outcome.

Conventional methods of path analysis thus do not work well (Holland, 1988; Pearl, 2001;

Robins & Greenland, 1992). Presenters at the two national conferences referenced in the intro-

duction of this article described three evolving statistical strategies for coping with these meth-

odological challenges.

Multisite multimediator IV analysis. At the two conferences, Sean Reardon presented an approach that

exploits site-to-site variation in the impact of a program on mediators. The rationale for this

approach is intuitive. If M is a mediator and Y is an outcome of interest, we expect to see a large

impact of a program on Y in sites where the program strongly affects M. If we fail to see such effects,

we have evidence against the mediation theory. If we see effects, we have evidence of possible med-

iation. This idea extends nicely to the case of two mediators, call them M1 and M2. Suppose we see

large effects of random assignment to the program on Y in sites where large effects of random assign-

ment to the program on M1 exist but not in sites where large effects of random assignment to the

program on M2 exist. Then, we would infer that M1 is a more important mediator than is M2. This

intuition is the basis for Bloom, Hill, and Riccio’s (2003) study of mediators in a series of large-scale

multisite welfare-to-work experiments and Kling, Liebman, and Katz (2007) applied this approach

to their study of MTO.

Reardon and Raudenbush (2013) derived the assumptions that must be met in order to infer that a

specified mediator has a causal effect on a specified outcome. These assumptions are closely related
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to the assumptions we described earlier when the aim was to identify the impact of participating in a

new program (CACE). Indeed, program participation can be regarded as a mediator of the effect of

program assignment, as described in Figure 2. The multisite, multimediator model extends this basic

idea to the case of two or more mediators, as shown in Figure 3. Now, our IV T induces a shift in two

mediators, M1 and M2 and each of these, by hypothesis, influences the outcome Y. Readers familiar

with IV methods will immediately raise a question. We now have one instrument and two causal

variables, meaning that we will end up with one equation and two unknowns. How can this possibly

work? Here the beauty of the multisite design comes into play. We can regard the treatment assign-

ment indicator in each site as a separate IV. Thus, if there are J sites with a treatment group and

control group for each site, we have J instruments, enabling us to identify the impact of our two

or more mediators on the outcome under several important assumptions.

We can clearly recognize these assumptions, when we represent Figure 3 as a regression model.

Let’s call Bj the ITT effect in site j. Suppose that this effect works entirely through two mediators,

M1 and M2. The impact of T on M1 in site j is g1j and the impact of T on M2 in site j is g2j. In terms of

path analysis as shown in Figure 3, Bj is the total effect of T on Y in site j, and it works strictly

through indirect effects on the two mediators. Hence, we can express the path model as

Bj ¼ d1jg1j þ d2jg2j

¼ d1g1j þ d2g2j þ ej:
ð30Þ

Here d1 is the overall average impact of M1 on Y controlling for M2, d2 is the overall average

impact of M2 on Y controlling for M1. Equation 30 is a simple regression model where the outcome

Bj is the ITT effect on Y, and the predictors are g1j (the ITT effect on M1) and g2j (the ITT effect on

M2).22 The logic of this setup is that we can estimate Bj (the dependent variable in the regression

model) as well as g1j and g2j (the two independent variables in the regression model) without bias

based simply on the random assignment of participants to T. However, this gift comes at the price

of several assumptions:

Assumption 1: We are assuming that T has no direct effect on Y (the exclusion restriction). This

means that no unobserved mediators exist and is why there is no intercept in Equation 30. Note

the absence of an intercept implies that when the impact of treatment effect on each mediator is

Figure 3. Multiple site, two mediators: Person-specific causal model.
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zero (that is g1j¼ g2j¼ 0), the predicted value of Bj will be zero. This prediction would be false in

the presence of unobserved mediators.

Assumption 2: To regard Equation 30 as a regression model with identifiable parameters, no bias

can be associated with the error term, ej ¼ ðd1j � d1Þg1j þ ðd2j � d2Þg2j. We must assume that the

site-average impact of T on each mediator is not related to the site-average impact of either med-

iator on the outcome. Specifically, this means we are assuming that g1j is unrelated to d1j and to

d2j and that g2j is unrelated to d1j and to d2j.

Assumption 3: A nonzero impact of T on each mediator must exist in one or more sites.

Assumption 4: The impact of T on at least one of the two mediators must vary from site to site,

and the impact of T on M1 must not be too highly correlated with the impact of T on M2.

Assumption 5: The mediators must operate ‘‘in parallel,’’ meaning that one mediator is not a

cause of the other. If this assumption fails, we need a sequence of regression equations to repre-

sent a sequential rather than parallel mediation process, and the assumptions become stronger.

We can readily check Assumptions 3 and 4 against observed data, so they do not pose a strong

challenge. Assumption 5 is based on program theory. The other assumptions, however, cannot be

checked against the data.

Reardon, Unlu, Zhu, and Bloom (2014) discuss conditions under which failures of these assump-

tions are most likely to cause bias for analyses of a single mediator. They also provide a bias cor-

rection that is applicable when Assumption 2 fails and the goal is to estimate a single mediator effect.

We anticipate that future work will extend these innovations to the case of multiple mediators. This

is important because Assumption 2 is potentially a strong assumption.

We conclude that the multisite, multimediator IV method opens up interesting new ways to

exploit cross-site heterogeneity in order to study the impact of program mediators on participants’

outcomes. However, this new and evolving method merits study to learn more about how failure of

its assumptions influences its results.

Other strategies for mediation analysis in multisite trials. Finding flexible new strategies for mediation

analysis is currently a topic of great interest in social science and public health (see recent books

by Hong, 2015 and VanderWeele, 2015). Presenters at the aforementioned conferences reviewed

two of the most potentially useful approaches: principal stratification and sequential randomization.

A key feature of these approaches is that they do not require the exclusion restriction we relied on

when describing the multisite, multimediator IV approach. A key limitation for our current discus-

sion is that the application of these approaches to multisite trials is not yet well developed but is a

topic of currently intense methodological research. Given the multisite theme of this article, we

describe these approaches very briefly.

Principal stratification. One goal of principal stratification applied to the analysis of mediation is to

estimate program impacts on persons whose mediator values are not affected by program assign-

ment. These are ‘‘direct effects’’ of the program because they operate independently of the mediator

or mediators of interest. The existence of a program impact on an outcome for persons who do not

experience a program impact on a hypothesized mediator refutes the claim that the program’s impact

is generated entirely through that mediator. The idea is to stratify one’s sample based on ‘‘potential

mediator values’’ and to compare estimated program impacts for selected strata. Frangakis and

Rubin (2002) label these strata as ‘‘principal strata.’’ Two sample members belong to the same prin-

cipal stratum if their pair of potential values for a given mediator is the same. In other words, they

belong to the same principal stratum if the value of their mediator under assignment to a program is

the same and if the value of their mediator under assignment to control status is the same.
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The problem of course is that we cannot observe the two potential mediator values for any sample

member, so the principal stratum membership is unknown. However, as presented by Lindsay Page

in this volume, it is possible in some important cases to use baseline and follow-up data for sample

members to estimate a model that predicts their two potential mediator values and thereby predicts

their principal stratum membership.

Sequential randomization. An innovative strategy for mediation analysis, described by Guanglei

Hong at the William T. Grant Foundation conference, conceives of the mediation process as a

sequence of randomized experiments (Pearl, 2001; Robins & Greenland, 1992). Consider how this

works in the case of a single binary mediator, where M ¼ 1 if the mediator value is favorable and M

¼ 0 if it is not favorable. The first experiment is directly observable: We assign participants at ran-

dom to a new program (T¼ 1) or to its control group (T¼ 0). The second experiment is hypothetical:

Program group members are assigned at random to the favorable value of the mediator with some

probability. Control group members are also randomly assigned to the favorable mediator value but

with a different probability. If we knew these two probabilities, we could make the needed causal

inferences (Imai, Keele, & Yamamoto, 2010). The empirical challenge is to estimate these probabil-

ities, which may depend on baseline characteristics of sample members and the study setting.

Let’s call the mediator value to which a program group member is assigned M(1) and the mediator

value to which a control group member is assigned M(0). In principal stratification, these two potential

mediator values are treated as fixed characteristics of each sample member that depend on his back-

ground and the study setting. For analyses based on sequential randomization, the values of M(1) and

M(0) are treated as stochastic. The probability that M¼ 1 depends on a participant’s past and whether

he or she is randomly assigned to the program group or control group. Under sequential randomization,

an effective program is seen as increasing the chance of receiving a favorable mediator value.

Recall that principal stratification groups sample members in terms of their predicted pair of

potential mediator values, M(1) and M(0), based on their background characteristics and future out-

comes. In contrast, under the assumption of sequential randomization, we seek to group sample

members based on their pair of probabilities of experiencing a favorable mediator value under

assignment to the program group and under assignment to the control group. This approach enables

the analyst to estimate (a) the indirect effect, which is the causal effect on the outcome of changing

the mediator value without changing program assignment and (b) the direct effect, which is the cau-

sal effect of changing program assignment without changing the mediator value. The relative mag-

nitudes of these two component effects indicate the degree to which the program effect was

transmitted by the hypothesized mediator.

Perhaps the key challenge is that, while participants are randomly assigned to the treatment T, they

are not randomly assigned to the mediator M. However, if a rich set of pretreatment characteristics

(call them X) are measured, we may be willing to assume that, within a stratum of persons with similar

values of X, assignment of the mediator is effectively ‘‘as if’’ random. This means that, within such

strata, there are program participants whose mediator values vary by chance and control participants

whose mediator values vary by chance. Methodologists have devised a number of clever strategies for

estimating direct and indirect effects in this context (see Hong, 2015; VanderWeele, 2015).

One difficulty with this approach is stratifying sample members on a potentially long list of base-

line characteristics (X). To deal with this issue, one can use a propensity score (Rosenbaum & Rubin,

1983) because stratifying sample members on a propensity score can balance stratum members on

all variables used to predict the propensity score, at least in large samples.

Comparing alternative approaches to mediational analysis. The preceding approaches for studying med-

iation of program impacts—multisite IVs, principal stratification, and the approximation of sequential

randomization—have different strengths and limitations. The first approach directly exploits multisite
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RCTs to create a series of valid instruments and does not rely on pretreatment covariates to produced

unbiased (or consistent) estimates. However, this approach requires all relevant mediators be observed

and accounted for and is potentially subject to ‘‘omitted mediator bias.’’ Moreover, one must assume

that site-specific impacts of the treatment on the mediator are not associated with site-specific impacts

of the mediators on the outcome. In contrast, the approximation of sequential randomization does not

assume that all mediators are measured and modeled. Rather, like standard path analysis, this approach

decomposes the effect of treatment assignment into indirect effects that work through specified med-

iators and a direct effect that works through additional mediators that are unobserved. In doing so, the

approach relaxes parametric assumptions that are commonly used for path analysis. However, like path

analysis, sequential randomization requires a rich set of pretreatment covariates to support the assump-

tion that, conditional on these covariates, mediator values in the treatment group and in the control

group are effectively assigned randomly but with different probabilities. The principal stratification

approach does not require measuring and modeling all pretreatment confounders (as does sequential

randomization) or the exclusion restriction (as does IVs). Instead, it requires covariates and follow-up

outcomes that adequately predict the potential values of sample members’ mediators. In addition, prin-

cipal stratification is more useful for identifying a direct effect of program assignment and thereby fal-

sifying a mediation theory than it is for estimating the parameters of a mediational process.

None of these approaches is perfect for all mediational analyses, and all mediational analyses

(short of randomizing specified mediator values to treatment and control group members) require

strong assumptions in order to estimate mediator effects. However, the assumptions required by

these new strategies are less stringent than those required by conventional path analysis. Further-

more, despite the substantial difficulties of mediational analysis, we believe that it is essential for

building a science of program design and development. However, selecting a method of mediational

analysis for multisite trials is craft knowledge that is not yet fully understood or widely available.

Final Remarks

The presence of variation in program impacts upends conventional ways of analyzing and interpreting data

from program evaluations, especially in multisite trials, which are very common in program evaluation.

Among other things, impact variation makes it possible to define and estimate different types of average

impacts. For example, we can define an average impact for a population of sites or an average impact for a

population of persons, and with heterogeneity of program impacts, these parameters can differ.

However, any average becomes less informative as impact variation increases. Understanding

this variation thus becomes more important, and new questions arise such as (a) By how much

do impacts vary across individuals, subgroups of individuals and program sites? (b) What is the

cross-site correlation between program impacts and control group mean outcomes? (c) What are the

maximum and minimum site-specific program impacts? Searching for answers to these questions is

learning about a distribution of program effects.

The existence of a distribution of program impacts also provides opportunities for testing theories

about for whom, under what conditions, and why programs work. Toward this end, we can pose the-

ories to guide future data collection for explaining impact variation within and across program sites.

Theory building is learning from a distribution of program effects.

Statistical methods for discovering and explaining impact variation are developing rapidly, and

we have provided a broad overview of new approaches. However, a great deal remains to be done,

and we anticipate many new methodological breakthroughs during the next decade.
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Notes

1. Versions of this framework have been attributed to Neyman (1923/1990), Roy (1951), Heckman (1979),

Rubin (1974, 1978), and Holland (1986).

2. Specifying one and only one potential outcome for each person under each treatment assignment assumes

that potential outcomes cannot be influenced by the treatment assignment of others or by the mechanism by

which the treatment is assigned. This is known in the literature as the Stable Unit Treatment Value Assump-

tion or SUTVA (Rubin, 1986).

3. This requirement is a consequence of SUTVA (note 4). It implies that a person’s potential outcomes do not

depend on the treatment assignment of other persons. Hong and Raudenbush (2006) provide a strategy for

relaxing this assumption when interactions in social settings make the assumption implausible.

4. Equation 5 implies that the only way for a program group outcome variance to differ from its control group

outcome variance is for program impacts to vary across individuals.

5. The expression VarðBÞ þ 2Cov½Y ð0Þ; B� can be near zero even if the individual-level impact variance,

Var(B), is positive and persons who would fare less well than average without the program benefit by more

than average from it (i.e., when Cov½Y ð0Þ; B� is negative).

6. Equation 5 implies that the program group outcome variance can be less than the control group outcome

variance only if Cov½Y ð0Þ; B� is negative.

7. If program effects vary, the program group outcome variance can exceed the control group outcome var-

iance even if Cov½Y ð0Þ; B� is zero.

8. Many other design options are possible. For example, one might over-sample certain sites (perhaps those

with small but scientifically important or policy-relevant subpopulations). Or one might over-sample par-

ticular subpopulations within sites. Yet one can still use bpersons or bsites as an estimand of interest.

9. For this purpose, one might use the site sample size (nj) to approximate the relative site population size (Nj).

10. Recall from our discussion of impact variation within sites that the program group outcome variance can

differ from that for the control group. We ignore this complication here in order to focus on key issues.

11. The sampling variance is Vi ¼ VarðB̂j � BjÞ ¼ s2=½nj
�Tjð1� �TjÞ�.

12. Perhaps the simplest way to do this is to specify the mixed model Yij ¼ aj þ ðbþ bjÞTij þ eij, where aj is

the fixed site effect, bþ bj is the random coefficient for the treatment indicator Tij, and eij is a within-site

random error. Some software packages allow specification of ‘‘site’’ as a fixed effect, while in others, it will

be essential to represent the J site fixed effects with J � 1 dummy variables and an intercept (or with J

dummy variables and no intercept).

13. In contrast, suppose that we regard the persons in our convenience sample as representing a universe of

similar persons who might experience the new program and we want to generalize to that universe of

persons. Then, we might set wj ¼ nj.

14. Equation 17 will be very closely approximated by estimating the model described in Note 15 using

restricted maximum likelihood.

15. The estimated sampling covariance between the program impact and the control group mean in site j is

ĈB0 ¼ CôvðB̂j; Û 0jÞ ¼ Côvð �Y 1j � �Y 0j; �Y 0jÞ � ŝ2=½njð1� �TjÞ�. This is obtained from the regression

Yij ¼ U0j þ BjTij þ eij using ordinary least squares, where ŝ2 ¼
PJ
j¼1

Pnj

i¼1

ðYij � Û 0j � B̂jTijÞ2=ðN � JÞ

and N ¼
PJ
j¼1

nj.
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16. As the number of sites increases without bound, the estimator B�j will produce, on average, the minimum

mean squared error of estimation of the true impact Bj.

17. For a more detailed discussion, see Raudenbush et al. (2012).

18. We use M to represent program participation because it mediates the impact of program assignment.

19. The problem here is that we are trying to divide by a value that is approaching zero.

20. When estimating a predictive model based on data for one of two groups and using it to predict out-

comes for both groups, we must take care to avoid the problem of ‘‘overfitting’’ the model to the group

for which it was estimated. See Abadie, Chingos, and West (2014) for a discussion of this problem and

ways to avoid it.

21. This assumes that we are using a site-level random coefficients model to estimate and test impact differ-

ences across site-level strata.

22. Raudenbush et al. (2012) show how to identify the model (Equation 30) using two-stage least squares

within the framework of a hierarchical linear model so we do not provide details here.

References

Abadie, A., Chingos, M., & West, M. (2014). Endogenous stratification. Retrieved from http://www.hks.har-

vard.edu/fs/aabadie/stratification.pdf

Angrist, J. D., Imbens, G., & Rubin, D. B. (1996). Identification of causal effects using instrumental variables.

Journal of the American Statistical Association, 91, 444–455.

Bloom, H. S., Hill, C. J., & Riccio, J. A. (2003). Linking program implementation and effectiveness: Lessons

from a pooled sample of welfare-to-work experiments. Journal of Policy Analysis and Management, 22,

551–575.

Bloom, H. S., Raudenbush, S. W., Weiss, M., & Porter, K. (2014). Using multi-site evaluations to study varia-

tion in effects of program assignment. New York, NY: MDRC.

Bloom, H. S., & Weiland, C. (2015, March) Quantifying variation in Head Start effects on young children’s

cognitive and socio-emotional skills using data from the National Head Start Impact Study. New York,

NY: MDRC.

Bryk, A. S., & Raudenbush, S. W. (1988). Heterogeneity of variance in experimental studies: A challenge to

conventional interpretations. Psychological Bulletin, 104, 396–404.

Dempster, A. P., Rubin, D. B., & Tsutakawa, R. K. (1981). Estimation in covariance components models. Jour-

nal of the American Statistical Association, 76, 341–353.

Fisher, R. A. (1925). Statistical methods for research workers. Edinburgh, Scotland: Oliver and Boyd.

Frangakis, C. E., & Rubin, D. B. (2002). Principal stratification in causal inference. Biometrics, 58, 21–29.

Greenberg, D. H., & Shroder, M. (2004). The digest of social experiments. Washington, DC: The Urban

Institute.

Hong, G., & Raudenbush, S. W. (2006). Evaluating kindergarten retention policy. Journal of the American Sta-

tistical Association, 101, 901–910.

Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica: Journal of the Econometric

Society, 47, 153–161.

Heckman, J. J., & Vytlacil, E. (1998). Instrumental variables methods for the correlated random coefficient

model: Estimating the average rate of return to schooling when the return is correlated with schooling. Jour-

nal of Human Resources, 33, 974–987.

Holland, P. W. (1986). Statistics and causal inference. Journal of the American Statistical Association, 81,

945–960.

Holland, P. W. (1988). Causal inference, path analysis, and recursive structural equations models. Sociological

Methodology, 18, 449–484.

Hong, G. (2015). Causal inference in a social world: Moderation, mediation, and spillover. Sussex, England:

John Wiley.

498 American Journal of Evaluation 36(4)

http://www.hks.harvard.edu/fs/aabadie/stratification.pdf
http://www.hks.harvard.edu/fs/aabadie/stratification.pdf


Imai, K., Keele, L., & Yamamoto, T. (2010). Identification, inference and sensitivity analysis for causal media-

tion effects. Statistical Science, 25, 51–71.

Katz, L. F., Kling, J. R., & Liebman, J. B. (2000). Moving to opportunity in Boston: Early results of

a randomized mobility experiment (No. w7973). Cambridge, MA: National Bureau of Economic Research.

Kling, J. R., Liebman, J. B., & Katz, L. F. (2007). Experimental analysis of neighborhood effects. Econome-

trica, 75, 83–119.

Lindley, D. V., & Smith, A. F. (1972). Bayes estimates for the linear model. Journal of the Royal Statistical

Society. Series B (Methodological), 34, 1–41.

Louis, T. A. (1984). Estimating a population of parameter values using Bayes and empirical Bayes methods.

Journal of the American Statistical Association, 79, 393–398.

Morris, C.N. (1983)Parametric empirical Bayes inference: Theory and applications. Journal of the American

Statistical Association, 78, 47–65.

Neyman, J. S. (1990). On the applicability of probability theory to agricultural experiments: Essay on princi-

ples, Section 9. In D. M. Dabrowska & T. P. Speed (Eds. & Trans.), Statistical Science (Vol. 5, pp.

465–480). (Original work published 1923)

Pearl, J. (2001, August). Direct and indirect effects. In J. Breese & D. Koller (Eds.), Proceedings of the seven-

teenth conference on uncertainty in artificial intelligence (pp. 411–420). San Francisco, CA: Morgan Kauf-

mann Publishers Inc.

Raudenbush, S. W. (2014). Random coefficient models for multi-site randomized trials with inverse probability

of treatment weighting. Chicago, IL: Department of Sociology, University of Chicago.

Raudenbush, S. W., & Bryk, A. (2002). Hierarchical linear models: Data analysis and applications (2nd ed.).

Thousand Oaks, CA: Sage.

Raudenbush, S. W., Reardon, S., & Nomi, T. (2012). Statistical analysis for multi-site trials using instrumental

variables. Journal of Research and Educational Effectiveness, 5, 303–332.

Reardon, S. F., & Raudenbush, S. W. (2013). Under what assumptions do multi-site instrumental identify aver-

age causal effects? Sociological Methods and Research, 42, 143–163.

Reardon, S. F., Unlu, F., Zhu, P., & Bloom, H. S. (2014). Bias and bias correction in multisite instrumental

variables analysis of heterogeneous mediator effects. Journal of Educational and Behavioral Statistics,

39, 53–86. doi:1076998613512525

Robins, J. M., & Greenland, S. (1992). Identifiability and exchangeability for direct and indirect effects.

Epidemiology, 3, 143–155.

Roy, A. D. (1951). Some thoughts on the distribution of earnings. Oxford Economic Papers, 3, 135–146.

Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for

causal effects. Biometrika, 70, 41–55.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal

of Eeducational Psychology, 66, 688.

Rubin, D. B. (1978). Bayesian inference for causal effects: The role of randomization. The Annals of Statistics,

7, 34–58.

Rubin, D. B. (1986). Comment: Which ifs have causal answers. Journal of the American Statistical Association,

81, 961–962.

Rumberger, R. W. (1995). Dropping out of middle school: A multilevel analysis of students and schools. Amer-

ican Educational Research Journal, 32, 583–625.

Spybrook, J. (2013). Detecting intervention effects across context: An examination of the precision of cluster

randomized trials. The Journal of Experimental Education, 82, 334–357. doi:10.1080/00220973.2013.

813364

VanderWeele, T. J. (2015). Explanation in causal inference: Methods for mediation and interaction. Oxford,

England: Oxford University Press.

Weiss, M. J., Bloom, H. S., & Brock, T. (2014). A conceptual framework for studying sources of variation in

program effects. Journal of Policy Analysis and Management, 33, 778–808

Raudenbush and Bloom 499



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 175
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


