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Maximum Likelihood for Generalized Linear 
Models With Nested Random Effects via 

High-Order, Multivariate Laplace 
Approximation 

Stephen W. RAUDENBUSH, Meng-Li YANG, and Matheos YOSEF 

Nested random effects models are often used to represent similar processes occumng 
in each of many clusters. Suppose that, given cluster-specific random effects b, the data 
y are distributed according to f ( y l b ,  0 ) ,  while b follows a density p ( b l 0 ) .  Likelihood 
inference requires maximization of f ( y ( b ,  B)p(blO)db with respect to 8. Evaluation 
of this integral often proves difficult, making likelihood inference difficult to obtain. 
We propose a multivariate Taylor series approximation of the log of the integrand that 
can be made as accurate as desired if the integrand and all its partial derivatives with 
respect to b are continuous in the neighborhood of the posterior mode of blO, y .  We then 
apply a Laplace approximation to the integral and maximize the approximate integrated 
likelihood via Fisher scoring. We develop computational formulas that implement this 
approach for two-level generalized linear models with canonical link and multivariate 
normal random effects. A comparison with approximations based on penalized quasi- 
likelihood, Gauss-Hermite quadrature, and adaptive Gauss-Hexmite quadrature reveals 
that, for the hierarchical logistic regression model under the simulated conditions, the 
sixth-order Laplace approach is remarkably accurate and computationally fast. 

Key Words: Hierarchical models; Mixed models; Numerical integration. 

1. INTRODUCTION 
Nested random effects models are often useful to represent an estimation process that 

is replicated over many clusters. Researchers have used these models, for example, to syn- 
thesize results from experiments replicated in each of many independent studies (Berkey, 
Hoaglin, Mosteller, and Colditz 1995; DerSimonian and Laird 1986; Raudenbush and 
Bryk 1985; Rubin 1981); to combine repeated measures data from each of many subjects 
(Laird and Ware 1982; Strenio, Weisberg, and Bryk 1983); and to compare regression 
coefficients defined on  each of many schools (Aitkin and Longford 1986; deLeeuw and 
Kreft 1986; Goldstein 1986; Raudenbush and Bryk 1986). Many applications and sta- 
tistical issues are reviewed in recent books (Bock 1989; Bryk and Raudenbush 1992; 
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142 S. W. RAUDENBUSH, M.-L. YANG, AND M. YOSEF 

Diggle, Liang, and Zeger 1994; Goldstein 1995; and Longford 1993). 
Following Lindley and Smith's (1972) classic exposition, we view the nested random 

effects model as a special case of a hierarchical model: the data y depend on a parameter 
vector b through f(ylb, B ) ,  while b, in turn, depends on the parameter vector 6' through a 
prior or mixing distribution p(bl6'). ML estimation requires maximization of the integral 

with respect to 6'. In some important cases, the integral (1.1) can be evaluated analytically 
and maximization proceeds by standard methods such as the EM algorithm (Dempster, 
Laird, and Rubin 1977; Dempster, Rubin, and Tsutakawa 198l), Fisher scoring (Goldstein 
1986; Longford 1987), or Newton-Raphson (Lindstrom and Bates 1988). In general, 
however, integration is intractable. The purpose of this article is to propose and illustrate 
a solution to this problem that applies to generalized linear models with nested random 
effects. Our strategy is to approximate the log of the integrand by its fully multivariate 
Taylor expansion of sufficiently high order to ensure accuracy, and then to integrate using 
Laplace's method. We then maximize the (approximate) integrated likelihood using Fisher 
scoring. 

Section 2 reviews past work on maximum likelihood for the generalized linear model 
with nested random effects. Section 3 develops the high-order Laplace approximation, 
and Section 4 derives computational formulas. Section 5 illustrates application in the case 
of a logistic regression with random effects. Section 6 presents simulations that compare 
the approach to alternative approximations based on penalized quasi-likelihood, Gaussian 
quadrature, and adaptive Gaussian quadrature. We conclude by sketching directions for 
future research. 

2. HIERARCHICAL GENERALIZED LINEAR MODELS WITH 
NORMAL RANDOM EFFECTS 

2.1 THE MODEL 

Consider the vector of responses yj from cluster j ,  j = 1, .  . . , J .  Conditional on 
cluster-specific random effects bj ,  these data are distributed according to f(yjlbj, P) ,  a 
member of the exponential family (see Cox and Hinkley 1974, p. 27) with conditional 
mean E ( y j ) b j , P )  = pj ,  and canonical link function g ( p j )  = vj = XjP  + Zjb j .  The 
random effect bj has a density p ( b j l 9 ) .  We thus have a generalized linear model with 
random effects (McCullagh and Nelder 1989). This is a special case of (1.1) with y = 

(yl,.. . , Y J ) ~ ,  b = ( b l , .  . . , b ~ ) ~ ,  and 6' = (P ,  e). If p ( b 1 9 )  is conjugate to f(ylb,P), 
the integral (1.1) can, in some important cases, be evaluated analytically (Lee and Nelder 
1996). In particular, when both f and p are normal densities and r] is the identity link, 
we have the Lindley-Smith (1972) model. 

However, the utility of the conjugate prior is limited in cases other than the normal. 
For example, the conjugate prior for the binomial likelihood is the beta. The beta will 
be tractable only if the elements of b are independent. Yet many applications require 
flexibility in specifying b, allowing for the possibility that the elements of b covary (Lee 
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MAXIMUM LIKELIHOOD FOR GENERALIZED MODELS 143 

and Nelder 1996). Only the normal and t priors (see Seltzer 1993 and Thum 1997 for 
applications of the t prior) appear practical as parametric representations for multiple 
dependent random effects in hierarchical models. 

2.2 APPROXIMATIONS TO MAXIMUM LIKELIHOOD 
If the random effects are assumed multivariate normal, integral (1.1) will be tractable 

only when the likelihood is also normal and the canonical link is the identity link 77 = p. 
(See Pinheiro and Bates (1995) for a normal case with nonlinear link.) For non-normal 
likelihoods or nonidentity links, much of the research on estimation theory has involved 
strategies for coping with intractable integrals of this type. Three strategies are prominent: 
( 1) quasi-likelihood inference; (2) Gauss-Hermite approximations; and (3) Monte Car10 
integration. 

Stiratelli, Laird, and Ware (1984) estimated the parameters of a logistic regression 
model with nested, normally distributed random effects by approximating the joint pos- 
terior density of b, p, Qly with a multivariate normal density having the same mode and 
curvature at the mode as the true posterior. They posed a uniform prior for 6 = (p, Q), 
in which case the joint posterior of b, p, Q1y is proportional to the integrand of (1.1). 
Wong and Mason (1985) used essentially the same approach. Direct maximization of 
this approximate joint posterior avoids the difficult integration of (1.1). Lee and Nelder 
(1996) referred the integrand of (1.1) as the "h-likelihood" and discussed properties of 
estimates of b, p based on its direct maximization. 

Several authors have extended the approach in different ways. For example, see 
Belin et al. (1993); Breslow and Clayton (1993); Gilks (1987); McGilchst (1994); 
Schall (1991); Wolfinger (1993); Goldstein (1991); Longford (1993). Following Breslow 
and Clayton (1993), we term this approach penalized quasi-likelihood (PQL). However, 
Breslow and Lin (1995) showed that for logistic regression models with nested random 
effects, PQL estimates of the normal covariance matrix and, hence, of p, are biased and 
inconsistent (see also Goldstein and Rasbash 1996; and Rodriguez and Goldman 1995). 
Bias is most serious when the random effects have large variance and the binomial 
denominator is small. 

An alternative approach that will produce consistent and asymptotically unbiased 
estimates is to approximate ML estimation by approximating integral (1.1) as closely 
as desired, and then to maximize the approximate integral. Anderson and Aitkin (1 985) 
applied Gauss-Hermite quadrature to evaluate the likelihood and maximized that like- 
lihood in the case of a logistic regression model with one random effect per cluster of 
observations, yj. Hedeker and Gibbons (1994, 1996) applied Gauss-Hermite quadrature 
to evaluate the required integral for ordinal probit and logistic models with multivariate 
normal priors. See also Tsutakawa (1985) for the case of a Poisson-normal mixture. 

Pinheiro and Bates (1995) used adaptive Gauss-Hermite quadrature to approximate 
ML estimation for a nested random effects model with normal data and nonlinear link. 
Using the adaptive approach, the variable of integration (the random effect) is centered 
around its approximate posterior mode rather than around its mean of zero. In principle, 
this approach will produce more accurate results than nonadaptive quadrature, especially 
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144 S. W. RAUDENBUSH, M.-L. YANG, AND M. YOSEF 

when the dispersion of the random effects is large. This approach has been implemented 
in an experimental version of SAS (Wolfinger 1999). Wei and Tanner (1990), Karim 
(199 l), and Chan (1 994) used Monte Carlo integration to evaluate integrals such as (1.1). 
Numerical integration via Gaussian quadrature becomes progressively difficult as the 
number of correlated random effects per cluster increases, while Monte Carlo integration 
is computationally intensive and provides stochastic rather than numerical convergence. 
Stochastic convergence can be difficult to assess. 

An alternative approach to the approximation of integrals such as (1.1) uses Laplace’s 
method. Breslow and Lin (1995) used a fourth-order Laplace approximation to correct 
the bias associated with PQL in the case of nested random effects models with a single 
random effect per cluster. Lin and Breslow (1996) extended this bias-correction strategy 
to the case of multiple independent random effects per cluster. Our aim is to extend this 
logic to higher order approximations and to multiple dependent random effects per cluster. 
Rather than using the method to correct bias, we view the approximated integral as the 
likelihood and maximize it to make inferences about 8 .  The approach has the following 
advantages: (1) integration per cluster is fully multivariate with arbitrary dimension; (2) 
the approximation is accurate to any degree required; (3) convergence is numerical rather 
than stochastic; and (4) computations are remarkably fast. 

3. HIGH-ORDER MULTIVARIATE LAPLACE INTEGRATION 
The approximation of integrals via Laplace’s method has been widely used to find 

posterior distributions (Lindley, 1980; Kass, Tierney, and Kadane 1990) and to approxi- 
mate likelihoods (Solomon and Cox 1992; Liu and Pierce 1993; Breslow and Lin 1995; 
Shun and McCullagh 1995; Lin and Breslow 1996; Shun 1997). In the standard applica- 
tion, the natural log of the integrand is expanded in a second-order Taylor series; higher 
order terms decrease with the sample size, making the approximation accurate in large 
samples. Shun and McCullagh (1995) and Shun (1997) noted, however, that in many 
interesting cases, the dimension of the integral increases as a function of the sample size. 
In these cases, the standard Laplace approximation is not valid because the error of the 
second-order approximation does not diminish with the sample size. They illustrate this 
point in the case of a cross-classified random effects model with a scalar random effect 
for each row and column of a two-dimensional array. In this case, the random effects 
must be integrated out of the joint likelihood of the data and the random effects to obtain 
the marginal likelihood of the data alone. The dimension of the integral has an order of 
the square root of the sample size. 

The nested random effects model of interest in this article is simpler than the crossed 
case in that the required integral is the product of independent integrals, one for each 
cluster. However, we seek an approach that allows the random effects from each cluster 
to be correlated and to have arbirtrary dimension, q. Across all clusters, the integral thus 
has a dimension of Jq, and the ratio of sample size to the overall dimension of the 
integral is thus n/q, where n is the average sample size per cluster. The omitted terms 
in the sixth-order approximation of the likelihood are O(n-’) for fixed q. However, the 
general framework we propose allows addition of yet higher order terms. 
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MAXIMUM LIKELIHOOD FOR GENERALIZED MODELS 145 

We begin with a compact and general representation of Taylor's theorem using the 
matrix notation and algebra of Magnus and Neudecker (1988). 

Injnite multivariate Taylor series. Let h(b), a scalar function of a 
vector b, and all its partial derivatives be continuous in a neighborhood N of 6. Then for 
b in N, 

Definition 1. 

1 
2 h(6) = h(6) + h(')(6)(b - 6) + - (b  - 6)Th(2)(6)(b - 6) 

1 
3! 

+- [ (6  - 6)T @ ( b  - a).] / ~ ( ~ ) ( 6 ) ( b  - 6) 

+ . . . + - @ ( b  - 6)T h(K)(6)(b - 6) + . . . 
K! ["' 1 

1 W 1 k-1 
= h(6) + h(')(6)(b - 6) + c [ @ ( b  - 6)T h(k)(6)(b - 6), (3.1) 

k=2  

where 

k 
and @ u = u @ u @ . . . @ u, there being k u's in the Kronecker product. For example, 

@ u = u @ u @ u .  
3 

Next, we apply Laplace's method to integrate exp{h(b)}: 

Theorem 1. Suppose h(b) has a maximum at b = 6. Then, for  b E Rq, 

exp(h(b))db = ( 2 ~ ) ~ / ~ 1 V 1 ' / ~  exp [h(6)] 
I R .  

Here E( . )  is an expectation operator, taken over a multivariate normal distribution 

Proof: Because 6 maximizes h(b), h(')(b)(b - 6) disappears. We then view this 
with mean vector 0, and covariance matrix V = [--h(')(6)]-'. 

integrand as the product of the constant exp h(6), the normal kernel 

exp { - i ( b  - 6)*V-'(b - 6) , 1 
and the exponential of the sum of the remaining terms in the series. The integral thus 
has the form of an expectation taken over a multivariate normal density N ( 0 ,  V). This 

The next problem is to evaluate the expectation in Equation (3.2); that is, Eexp(R), 

where R = CkZ3Tk ,  with T k  = E[ 123 (b  - 6)T]h(k)(6)(b - 6). Setting exp(R) = 
1 + R + R2/2 + .  . . + Rk/k!  + . . ., we need to evaluate E(R) ,  E(R2) . . .. In evaluating 
E(R)  and E(R2),  we find the following theorem useful. 

completes the proof. 0 

k-1 W 
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146 S. W. RAUDENBUSH, M.-L. YANG, AND M. YOSEF 

Theorem 2. 

E[Tk] = 0 for odd k , k  > 2; 

for even k ,  k > 2. (3.3) 

E[TkZI = 0 for odd ( k  + 1) ,k  and 1 > 2; 

foreven ( k + l ) , k ,  and 1 > 2. (3.4) 

This theorem is proved in the Appendix. 

4. COMPUTATIONAL FORMULAS FOR TWO-LEVEL MODELS 
The response vector y j  is composed of items yi j  for observation i in cluster j, i = 

1 , .  . . , nj. Similarly, E ( y i j J b j )  = pij  with link function g ( p i j )  = r ] i j  = Xz 'p  + Z;bj,  
where X i j  and Zij are known vectors of explanatory variables, ,B is a p x 1 vector of fixed 
effects, bj  is a q x 1 vector of random effects distributed as N(0 ,  D ) ,  and D = D(Q)  is 
a function of q(q + 1)/2 unique covariance parameters in 9. 

Suppose now that f (y j  I bj , ,f3) belongs to the exponential family and that r]ij  is the 
canonical link (McCullagh and Nelder 1989). Then we have the conditional likelihood 

with 

i= I 

where a,  6, and y are arbitrary functions of their arguments. 

yj a n d b j , j = 1 , 2 ,  . . . ,  J :  
To get the marginal likelihood, we wish to integrate out bj from the joint density of 

To apply Laplace's method, we regard l j  - i b T D - ' b j  as h ( b )  in Theorem 1 for 
b = ( b l ,  . . . , b J ) T ,  and, given a maximizer 6(pl D )  of h ( b ) ,  find derivatives up to the 
sixth order: 

1. h . (g . )  3 3  = i;. - ;6TD-'&, where ij is Zj evaluated at &. 
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MAXIMUM LIKELIHOOD FOR GENERALIZED MODELS 147 

Here y; = W,:’ (yj - p i )  + i i j ,  the linearized dependent variable (McCullagh and 
Nelder 1989); Wj is diag[Gij], with Gij = dj.lij/dqij, the derivative of pij with 
respect to qij, evaluated at 6ij. 

3. h(.”(&) 3 = l:’) - D-’, with 1:’) = -ZTWjZj/c~(4j) ,  the second derivative of 
l j  evaluated at &. 

( k  - 1)th derivative of pij with respect to qij, evaluated at &. In the case of binary 
yij with logit link, wij = pij (1 - pi j )  and the second to the fifth derivatives are 

4. For k 2 3, hj (k) ( b j )  - = l jk) = - cyLl mij (k)  (8 Z:)/a(&), where f?$) is the 

( 4 4  
&j;) = .7i-jij(1 - 2pij) &j;) = Gij(1 - 6Gij), 

= &. (3) . (1 - 12Gij) &!P) = fi(“‘(1 - - 12&!3)2. 
2, 23 23 22 

In the case of count data (yij E {0,1, .  . .}) drawn from a conditional Poisson distribution 
with log link, w,j = mi;) = pij for all k .  When yij is conditionally gamma distributed 
with reciprocal link, wij = p:i, mi;) = ( k  - l)!pfi. In the normal case, wij = 1 
and m!;) = 0 for k > 2. The constants a(4),  as is well known, are unity for the 
binomial and Poisson, var(yijIbj) = u2 for the normal, and - l / v  for the gamma, where 
Var(yijIbj) = pz./v. All derivatives of l j  are evaluated at 6j. To avoid cumbersome 
notation, however, we henceforth drop the “N” except for the l j ’ s  and &j  itself. 

23 

Applying Laplace’s method to Equation (4. l),  we have 

x S e x p  { -; ( b j  - g j )  

k-1 
where the correction term R, = cE3 Tk,, with Tk,  = b[ 63 (b,  - 6,)“]h~”]6,)(b, - 

6,). Note that Ibl”(6,) vanishes from Equation (4.2) because we choose 6, to be the 
maximizer of h3(b3); that is, 6, = ~ i ; ( l )  = (ZTW,Z, + D-~)-~z,Tw,(~J - x,P). we 
obtain 6, through iteratively solving this equation and substituting the new 6, into yJ 
and W,. 

As mentioned earlier, exp( R, ) = 1 + R, + (1 /2)R: +. . .. In the following illustrative 
examples and data simulations we use the approximation with E exp(R,) M 1 fE(T4,)f 
E(T6,) +( 1/2)E(T:,) and find it highly accurate, although the method allows us to go as 
far as we wish. We also note that Lindley (1980) has approximated posterior derivatives 
up to the sixth order, using the same terms as here, and that Liu and Pierce (1993) had 
approximations up to the fourth order for univariate integrals. The full expansion of the 
correction term involves T4, T6, T:/2, Tg, T3T5/2, T,2/2,. . .. The magnitude of the higher 
order terms diminishes for two main reasons. First, in the binomial and Poisson cases, the 
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148 S. W. RAUDENBUSH, M.-L. YANG, AND M. YOSEF 

factorial denominator rapidly increases. Second, the terms diminish as a function of the 
cluster size, n. Terms T4 and T:/2 are O(n-’) while TbrT3T5/2, T:/2 are all O(TL-~ )  
and TS is O(n-’). Higher order terms are O(nP3)  or smaller and have very large factorial 
denominators. The implication is that, for many applications, adding T4 without adding 
T:/2 would do little to improve the approximation. For some applications, it may be 
useful to add T ~ T S / ~ ~  T,2/2, though in our experience with the logistic case and cluster 
sizes of interest, these terms have been negligible. Using the sixth-order approximation 
and applying Equations (3.1) and (3.2), we approximate (4.1), up to a constant, as 

Following Shun and McCullagh (1995) and Shun (1997), an alternative approximation 
to (4.4) is 

j=1 

X exp { E(T4j) + E(T6j) -I- 

In the following illustrative analyses and in the simulations, approximations (4.4) and 
(4.5) led to essentially identical results. Taking the log of (4.4) and applying algebraic 
simplifications (see Yang 1998), the log marginal likelihood becomes 

J 

j = 1  

J J 

log(L)= + x l o g A j ,  (4.6) 

where 

with 7-l = -h(.2)(6j) = ZFWjZj+D-’, Bij = ZzV,Zij, and kj = c7 mij (3) Z,j . B . .  a 3 .  
3 

We use approximate Fisher scoring (Green 1984) to maximize (4.6), yielding highly 
accurate approximation to the ML estimates for p and Q, the vector of the distinct 
elements in 1). Approximate Fisher scoring (Green 1984) requires only first derivatives, 
enabling us to avoid the complex second derivatives. Fisher scoring iteratively solves 
for f3 = (p ,Q)  by using the equation Pew - Bold = ~~=l(SjS~)-lSj, where the 
Sj  = (S&, S$j)T is the score vector of the j th cluster, Sp and SQ being the derivatives 
of the log-marginal likelihood (4.6) with respect to ,B and Q, respectively. 

In getting these derivatives, however, we need to take into consideration that hj ( 6 j )  

is evaluated at 6 = 6(pl 9) = V,ZTWj(yj* - Xjp). We solve this interdependence with 
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MAXIMUM LIKELIHOOD FOR GENERALIZED MODELS 149 

implicit differentiation of 6, with respect to p and Q, respectively: 

After repeated use of matrix algebra in Magnus and Neudecker (1988) we have the 
score vectors (Yang 1998) 

and 

nj 

SQj = -ETvec[Dp1(Dj 1 - D)D-l]  - 5 mij (3)  BijETvec[Qij] 
i 

2 

5. ILLUSTRATIVE EXAMPLE 

How close are the estimates produced by sixth order Laplace approximation 
("Laplace6") to the desired ML estimates? One way to answer this question is to com- 
pare results from Laplace6 with those based on Gauss-Hermite quadrature (Hedeker and 
Gibbons 1994) using a large number of quadrature points. As the number of quadrature 
points increases, the Gauss-Hermite approximation to the integral becomes increasingly 
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150 S. W. RAUDENBUSH, M.-L. YANG, AND M. YOSEF 

Table 1. Descriptive Statistics of Thailand Data 

Variable name N mean sd rnin rnax 

Repetition 7877 
SES 7877 
Sex 7877 
Dialect 7877 
Breakfast 7877 
Pre-primary 7877 
MeanSES 376 
Enrollment 376 
Meantxt 376 

.14 .35 

.OO .69 
5 1  50 
.47 50 
.84 .37 
50 50 
.oo .45 
.01 .86 
.OO 1.84 

.oo ( = no) 

.OO ( = female) 
.OO ( = no) 
.oo ( = no) 
.oo ( = no) 
-.93 
-1.77 
-5.91 

-1.76 
1.00 ( = yes) 

3.48 
1.00 ( = male) 
1.00 ( = yes) 
1 .OO ( = yes) 
1.00 ( = yes) 

2.01 
2.60 
2.63 

accurate. We therefore compared Laplace6 to the Gauss-Hermite approach using from 
10 to 40 quadrature points (“Gauss-10,”. . . , “Gauss-40”) using software developed by 
Hedeker and Gibbons (1994) that maximizes the resulting likelihood using a Fisher scor- 
ing algorithm. We chose the binomial-normal case for the comparison because this is the 
case for which simpler approximations have proven most problematic (Rodriguez and 
Goldman 1995; Breslow and Lin 1995). Both Laplace6 and the Gauss approaches are 
compared to penalized quasi-likelihood (“PQL”) as described by Breslow and Clayton 
(1993) and implemented in the software developed by Bryk, Raudenbush, and Congdon 
(1 996). 

For the purpose of this comparison we selected a large dataset characterized by a 
large between-cluster variance, a binomial denominator of 1 .O, and somewhat asymmetric 
probabilities (i.e., probabilities of success concentrated away from SO). This is the case 
for which PQL can be expected to perform rather poorly and which poses the greatest 
challenge for the other methods. 

The data are from a national survey of primary education in Thailand in 1988 (see 
Raudenbush and Bhumirat 1992 for details), and include 7,877 sixth grade students 
clustered within a nationally representative sample of 376 primary schools. Our interest 
focuses on grade repetition, which occurs when a student makes unsatisfactory academic 
progress and is required to repeat a given grade. Specifically, yij, the repetition outcome 
of student i in school j, takes on a value of unity if a student repeats a grade during 
the primary years and zero if not. Of special interest are whether the instructional re- 
sources available to a school, as indicated by the availability of textbooks (“textbooks”), 
are associated with a reduced risk of repetition in that school, and whether a child’s 
preprimary school experience (“pre-primary”) reduces the risk of repetition. However, 
we also wish to control for important covariates. Two of these vary at the school level: 
school size (“enrollment”), and the socioeconomic level of students attending the school 
(“meanSES”). Child-level covariates include sex (“sex”), socioeconomic status (“SES”), 
child dialect (“dialect”), and an indicator of nutritional status (“breakfast”). The scale of 
these covariates and descriptive statistics are provided in Table 1. We found evidence of 
significant variation across clusters in the intercept with no evidence of variation across 
clusters in regression coefficients. We therefore estimated the model 
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Table 2. Estimates Based on Thailand Dataa 

151 

Po0 

Po1 

Po2 

003 

Pl 0 

P20 

P30 

p40 

050  

POL 
- - 1.9757 

(. 1 356) 

,0059 
(.0411) 

-.1999 
(.1173) 

-.6717 
(.2638) 

-.4132 
(.0943) 

-.3716 
(.0917) 

,5486 
(.0725) 

,2444 
(.1280) 

(. 1 01 9) 
-.3663 

Dnn 1.0757 

Gauss-I0 

-2.1661 
(. 1339) 

,0338 
(.0433) 

- ,2030 
(.1410) 

- ,8709 
(.3246) 

-.4587 
(.0966) 

-.3874 
(.0939) 

,5763 
(.0704) 

,2679 
(.1227) 

-.3776 
(.1021) 

1.454 

Gauss-20 

(. 1338) 

,0036 
(.0436) 

-2.1632 

-.2007 
(. 1 41 0) 

-.7649 
(.3249) 

- ,4450 
(.0983) 

-.3862 
(.0947) 

,5760 
(.0699) 

,2784 
(. 1258) 

-.3818 
(.1021) 

1.389 

Gauss-30 

(. 1340) 

,0065 
(.0439) 

-2.1608 

-.1996 
(. 1420) 

-.7759 
(.3256) 

- ,4474 
(.0980) 

-.3860 
(.0946) 

,5761 
(.0698) 

,2771 
(.1261) 

-.3809 
(. 1 023) 

1.394 

Gauss-40 

(.1340) 

,0064 

-2.1614 

(.0438) 

- ,2002 
(. 1 41 9) 

-.7744 
(.3255) 

-.4471 
(.0981) 

-.3861 
(.0946) 

,5761 
(.0698) 

,2773 
(.1261) 

-.3812 
(. 1022) 

1.394 

Laplace6 

-2.1554 
(.1340) 

,0063 
(.0438) 

-.1992 
(.1419) 

-.7692 
(.3251) 

- ,4466 
(.0980) 

-.3866 
(.0946) 

5763 
(.0698) 

,2759 
(.1260) 

-.3811 
(.1022) 

1.383 
a: standard error estimates are in parentheses. 

with bj - N(0,  Doo). 
The results across methods of estimation are similar in broad outline: Accessibility of 

textbooks is not significantly related to repetition, but preprimary experience is associated 
with a lower risk of repetition, given the covariates. Covariates meanSES, SES, sex, 
dialect, and breakfast are associated with repetition in the expected directions. 

The comparison of the Laplace6 results with those of Gauss-Hermite method leads 
us to believe Laplace6 is a very accurate approximation. As shown in Table 2, most 
differences between Gauss-10 and Gauss-20 are in the second or third decimal place. 
Gauss-20 and Gauss-30 typically differ in the third decimal place. Gauss-30 and Gauss-40 
tend to differ at the fourth decimal place. Most Laplace6 estimates differ from Gauss-40 in 
the third place or in the fourth place. Laplace6 results are generally closer to Gauss-30 and 
Gauss-40 than to Gauss-10 and Gauss-20. The standard errors of the estimates produced 
by Laplace6 are nearly identical to those of Gauss-30 or Gauss-40. Note that PQL, as 
expected, consistently gives smaller estimates (in absolute values) for all parameters than 
do the better approximations. Of course, these results are based on only one dataset and 
include only one random effect per cluster. 
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Table 3. Averages of the Estimates for Simulated Data 

POL Gauss- 10 Gauss-20 Laplace6 

Do1 = ,100 .0538 .lo03 ,0995 ,0960 
Dll = .250 ,1614 ,2575 ,2562 .2667 

Po, = 1.000 ,9004 1.0081 1.0148 1.0029 

Do0 = 1.625 1.2752 1.6532 1.6546 1.6352 

= -1.200 -1.0904 -1.1977 -1.2045 -1.2007 

PI0 = 1.000 ,9114 .9971 ,9976 ,9975 

Table 4. Mean Squared Errors for Simulated Data 

PQL Gauss-I0 Gauss-20 Laplace6 

Dw = 1.625 ,1522 ,0737 ,0633 ,0563 
Do1 = ,100 ,0080 ,0115 ,0120 ,0108 
Dll = .250 ,0113 ,0073 ,0072 .0075 
Po0 = -1.200 ,0271 ,0231 .0196 ,0190 
Pol = 1.000 .0236 ,0193 ,0175 ,0164 
P i 0  = 1.000 ,0116 ,0051 ,0053 ,0051 

6. SIMULATION STUDY 
6.1 COMPARISON TO PQL AND GAUSS-HERMITE QUADRATURE 

To evaluate the performance of the algorithm proposed in Section 4 in the case 
of dependent random effects, we first simulated 100 datasets and compared its results 
(Laplace6) with those from PQL, Gauss-10 and Gauss-20. The model produced data with 
asymmetric probabilities having an average conditional expectation equal to .14; that is, 
pi:) = Pr(yij = l lbj  = 0) is, on average, -14. The structure of the datasets follows 
Rodriguez and Goldman (1995). These datasets involve 20 hypothetical children nested 
within each of 200 hypothetical communities, with 4,000 children overall. The model 
reflects the belief that the outcome yij depends on a child-level covariate (“childcov”) 
and a community-level covariate (“commucov”), and that intercepts and slopes varying 
across “communities.” [Note: The level-1 covariate, childcov, was sampled from a nor- 
mal distribution with mean .0955621, and variance .0676, while the level-2 predictor, 
commucov, was sampled from a normal distribution with mean -.6857591 and variance 
.2304.] Thus, we have a model for person i in group j 

qij = Po0 + Pol (commucov)j + Pro(childcov)ij + boj + bl j  (childcov)ij 

with boj and b l j  together forming a bivariate normal distribution with means 0, variances 
DOO, Dll ,  respectively, and covariance Dol, where DOO = 1.625, Dll = .25, and Do1 = 

. 1 . The large components of dispersion tend to render simple approximations inaccurate. 
Tables 3 and 4 present averages and mean squared errors of the estimates across 

100 replications. As expected, PQL estimates are biased toward zero for all parameters. 
The underestimation of the variance components range from 22% to 46%, while that 
of the p’s are around 9%. The advantage of Gauss-20 over Gauss-10 is not very clear 
from the tables, since the averages from the two are very similar, though mean squared 
errors tend to be a bit smaller for Gauss-20 than for Gauss-10. In general, the Gauss-10, 
Gauss-20, and Laplace6 are similar, though the Laplace6 results are generally closer to 
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Table 5. Averages of the Estimates for Simulated Dataa 

Laplace6 (n = 100) Laplace6 (n = 97) AGQ (n = 97) 

Do0 = 1.625 1.591 5 1.5826 1.6009 
Do1 = .I00 ,091 6 ,0903 ,0922 
Dll = ,250 ,2460 ,2468 ,2374 
poo = -1.200 -1.1948 -1.1955 -1.1978 
pol = 1.000 .9866 ,9844 ,9949 
a,, = 1.000 ,9929 ,9918 ,9920 
a AGO did not produce estimates for three of the 100 datasets. Therefore, the 
comparison between Laplace6 and AGQ was based on the 97 datasets for 
which both algorithms obtain convergence. 

the Gauss-20 than the Gauss-10 results. Mean squared errors tend to be a bit smaller 
under Laplace6 than under Gauss-10 or Gauss-20 in these results. In particular, when 
Gauss-20 appears nontrivially better than Gauss- 10, Laplace replicates the advantage or 
possibly improves upon it. 

In summary, for these simulated data with bivariate random effects, Laplace6 seems 
to do as well as or better than Gauss using 10 or 20 quadrature points. To assess compu- 
tational efficiency, we timed analyses on six randomly selected data sets using a Pentium 
233mHz, and found the analysis took on average 35 seconds per dataset using Laplace6. 
These analyses were found to take, on average, 180 seconds for Gauss-10 and 720 sec- 
onds for Gauss-20. 

6.2 COMPARISON TO ADAPTIVE QUADRATURE 

Adaptive Gauss-Hermite quadrature (AGQ) (Pinheiro and Bates 1995) might well 
provide a better comparison to our Laplace approach than does Gauss-Hermite quadrature 
(GQ). Our Laplace approach expands the variable of integration around its approximate 
posterior mode, an approach that should perform better than an expansion around the 
marginal mean of zero, especially when the random effects dispersion is large. Similarly, 
AGQ centers the variable of integration around the approximate posterior mode, and is 
therefore similar in construction to our Laplace method, while nonadaptive GQ centers 
the variable of integration around the marginal mean of zero. 

We therefore replicated the simulation study above using an experimental version 
of SAS PROC NLMIXED that computes AGQ estimates for nonlinear mixed regression 
models (Wolfinger 1999). The SAS algorithm selects the number of quadrature points 

Table 6. Mean Squared Errors for Simulated Data 

Laplace6 (n = 100) Laplace6 (n = 97) AGQ (n = 97) 

Dw = 1.625 ,0847 ,0848 ,0925 
Do1 = ,100 .0094 ,0094 ,0103 
Dll = ,250 ,0083 ,0084 ,0086 
pw = -1.200 ,0122 .0125 .0126 
Po, = 1.000 .0108 .Oil0 ,0112 
p10 = 1.000 ,0047 .0047 ,0048 
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empirically. For our data, seven quadrature points were used per simulation. The results 
(Tables 5 and 6) showed that AGQ and Laplace6 produced similar results. However, 
mean squared errors of Laplace6 never exceeded those from AGQ. The average run time 
for the AGQ analyses was 725 seconds, as compared to 35 seconds for Laplace6. 

7. CONCLUSION 
Highly accurate approximation of difficult integrals via high-order, multivariate 

Laplace approximation appears to be a promising strategy for evaluating likelihoods 
in generalized linear models with nested random effects. The approach can be extended 
to the degree of accuracy required, and can be written for multivariate random effects of 
arbitrary dimension per cluster. We have developed computational formulas for two-level 
generalized linear models with canonical link and multivariate normal random effects. 
When applied to the logistic regression model with random coefficients, computations 
for sixth-order Laplace approximation were much faster than those required for Gauss- 
Hermite quadrature, both adaptive and nonadaptive, and results were as good or better 
than those produced by the Gauss-Hermite method with 20 quadrature points or the 
adaptive method with seven quadrature points. 

Given the current algorithms, the quadrature approach is superior in that one may 
easily choose the number of quadrature points to obtain needed accuracy in approximation 
to ML estimates. In contrast, more work will be required before it becomes easy to specify 
the degree of polynomial in the Taylor series that governs the accuracy of the Laplace 
method. Yet the Laplace method appears to have significant potential as a highly accurate 
and fast approximation to ML for hierarchical models. Much more research is needed: 
(1) on the behavior of this approach in binomial-normal models; (2) in other generalized 
linear models with random effects; (3) in a broader class of hierarchical models; and 
(4) in increasing the degree of accuracy by increasing the degree of the polynomial in 
the Taylor series. We shall also be interested in applications in other difficult integration 
problems, for example, those that confront Bayesian inference. 

APPENDIX 
In this appendix we sketch a proof for Theorem 2. Since T k  is a scalar 

1 E(Tk) = E (l /k!)  8 ( b - 6 ) T  h ( k ' ( & ) ( b - i )  [ ["-' I 
(see Magnus and Neudecker 1988, p. 30, eq. (3)). 

k-I  
Now, E { [  @ ( b  - 6 ) ] ( b  - 6)') = p ( k )  is the kth centered moment of the q-variate 

normal distribution with covariance matrix V. For k odd, p(k) = 0. Using the moment- 
generating function for a multivariate normal distribution, Yang (1998) has shown that for 
k even, p(k) is composed of commutations of Kronecker products of ( k  - l ) (k  - 3) . . . 3  
matrices having the form V or vecV. However, we are not currently interested in p ( k )  
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itself but in the scalar vecT(p(k))vec(S), where S is any conformable matrix of constants. 
Yang (1998) showed that we can ignore the commutations since what we are interested 
in is the trace, a scalar. For example, 

despite the fact that 

~ ( 4 )  = (V 8 vecv) + (vecv 8 V )  + ( K ~ ~  8 1,) (V 8 vecV) , 

where Kqq is the q2 x q2 commutation matrix (Magnus and Neudecker 1988) and Iq is 
the q x q identity matrix. In general, then, vecT(p(k,)vec(S) = (k - l ) (k  - 3 ) .  . . 3  vecT 

8 V vec(S). Substituting S = vec(h(k)(&)) produces Equation (3.3). The proof for (*, ) 
E ( T k z )  is similar. 
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