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The multisite trial, widely used in mental health research and education, enables

experimenters to assess the average impact of a treatment across sites, the variance

of treatment impact across sites, and the moderating effect of site characteristics on

treatment efficacy. Key design decisions include the sample size per site and the

number of sites. To consider power implications, this article proposes a standard-

ized hierarchical linear model and uses rules of thumb similar to those proposed by

J. Cohen (1988) for small, medium, and large effect sizes and for small, medium,

and large treatment-by-site variance. Optimal allocation of resources within and

between sites as a function of variance components and costs at each level are also

considered. The approach generalizes to quasiexperiments with a similar structure.

These ideas are illustrated with newly developed software.

In multisite experiments, persons within a site are

randomly assigned to one of two or more treatments,

and this process is replicated at each of many sites.

Examples in mental health research include assertive

case management (Bond, Miller, Krumweid, & Ward,

1988), assertive community treatment (Burns & San-

tos, 1995), and the national evaluation of the Robert

Wood Johnson Foundation's Program on Chronic

Mental Illness. A prominent example in education is

the Tennessee Class Size experiment (Finn & Achil-

les, 1990; Mosteller, 1995), in which students within

each of many schools were randomly assigned to at-

tend large or small classes. Such experiments, known

as multisite clinical trials, are common in medicine.

For example, Haddow (1991) investigated the effect

of cotinine-assisted intervention in pregnancy on
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smoking and low birthweight delivery among 2,848

women at 139 clinical sites.

The popularity of the multisite trial may be attrib-

uted partly to logistical advantages. First, it is often

much easier to recruit a large sample in a short period

of time for a multisite trial than for a single-site trial.

Second, the design is easy to manage: The adminis-

tration at each site follows the same principles as in a

small trial. Third, it is typically cheaper to sample

participants who are geographically clustered than to

recruit participants who are widely dispersed geo-

graphically (Fuller et al., 1994).

However, multisite trials differ crucially from

single-site trials in allowing estimation of site-by-

treatment interaction effects. The possibility that

treatment effects will vary across sites can be viewed

as a bane or a blessing. For example, differences in

therapist skill, knowledge, or commitment may pro-

duce site differences in therapy effect, creating extra

uncertainty about the nature and magnitude of the

effect of the intended treatment. Yet the variation in

treatment impact can be a critical dimension of gen-

eralizability. The multisite trial enables a formal test

of the generalizability of the treatment impact over the

varied settings in which the treatment may ultimately

be implemented if its early results prove promising. In

effect, a multisite trial lays the basis for a planned

"meta-analysis," to which each site contributes an in-

dependent study of treatment efficacy.

Key design decisions crucial to the planning of

multisite trials include the number of participants
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sampled per site, the number of sites, and the possi-

bility of incorporating site-level covariates to account

for site variation in treatment effects. Sampling a

large number of persons per site will increase the

precision of the treatment effect estimate at each site.

However, if the treatment effect varies substantially

over sites, having a large number of sites will be

important for inferences about the average impact of

the treatment. Yet the more the treatment impact var-

ies from site to site, the less interesting the average

treatment effect becomes. It therefore is important to

estimate both the mean and the variance of the treat-

ment effect across sites. It also may be important to

study moderator effects: The treatment may be espe-

cially effective at certain kinds of sites. A choice of

sample size of participants per site, say n, and of the

sample size of sites, say J, might be adequate for

estimating certain parameters (e.g., the mean and vari-

ance of the treatment effect) and inadequate for esti-

mating other parameters (e.g., the association between

type of site and expected treatment effect). In con-

templating such design choices, one cannot ignore

costs. It may, for example, be far more expensive to

sample a new site than to sample an additional par-

ticipant within a site. The problem of research design

is thus considerably more complicated for the mul-

tisite experiment than for the single-site experiment.

Below, we consider the determinants of power for

detecting the main effect of treatment, the treatment-

by-site variance, and the moderating effect of a site

characteristic on the treatment effect. We then con-

sider the problem of design. In the case of balanced

designs, choosing a design involves two sample sizes:

the number of participants per site and the number of

sites. But these choices are constrained by the relative

cost of sampling at each level. We address this prob-

lem by adopting the strategy of optimal allocation of

resources.

Optimal allocation has a venerable tradition in sur-

vey research in which the design problem involves

choosing, for example, optimal cluster sizes and the

optimal number of clusters in a multistage cluster de-

sign (Cochran, 1977; Kish, 1965). Psychologists have

used the same principles in constructing measurement

instruments for which tradeoffs arise, for example,

between the number of items and number of occasions

of measurement in maximizing the reliability of the

test (Cleary & Linn, 1969; Marcoulides, 1997). Meth-

odologists have recently advocated the optimal allo-

cation strategy for all features of experimental design

in psychology, including the number of participants

per treatment in an experimental design, the number

of replicate observations per participant, and the

choice of covariates (McClelland, 1997; Allison, Al-

lison, Faith, Paultre, & Pi-Sunyer, 1997). Our ap-

proach closely parallels optimal allocation as applied

to the cluster randomized trial, in which key tradeoffs

involve the number of participants per cluster and the

number of clusters per treatment (Jeanpretre & Kraft-

sik, 1989; Overall & Dalai, 1965; Raudenbush, 1997).

In the case of the multisite trial, the interplay between

the variation in the treatment effect across sites and

the cost of sampling at each level drives optimal al-

location.

To achieve these goals and to make the results ap-

plicable over many possible applications, we con-

struct a standardized model for the data produced in a

multisite trial. The model includes a standardized ef-

fect size measure, as is now common (e.g., Cohen,

1988), but it also includes standardized measures of

site-by-treatment variance and of site-level moderat-

ing effects. We propose rules of thumb for deciding

whether site-by-treatment variation and moderating

effects are "small," "medium," or "large," and illus-

trate by example how assumptions about these param-

eters and about cost affect optimal allocation of re-

sources and power.

To elucidate key concepts, we restrict our attention

in this article to balanced designs, continuously mea-

sured dependent variables, and the case of two treat-

ment groups, which we label the experimental group

and the control group. However, the general model

and approach can readily be extended to more com-

plex settings.

Statistical Model and Tests

A Hierarchical Linear Model

We find it convenient and illuminating to formulate

the linear model for the multisite trial as a hierarchical

linear model (HLM). The formulation facilitates con-

struction of a standardized model that is useful for

planning studies and extends easily to the case of

unbalanced designs and continuous or discrete covari-

ates measured on participants or sites. Following the

procedure of Raudenbush (1993), we conceive the

Level 1 units as participants nested within the Level 2

units, the sites. Treatment contrasts are Level 1 ex-

planatory variables with random effects that vary over

sites. For simplicity, we consider the case of a contrast

between the experimental and control groups, within

each site.
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Level I model Within site j, the outcome Yfj for

participant i depends on a site mean and a treatment

effect according to the simple regression model

yij = &oJ + PijXij+r,j, rij~U.d.N(0,<S), (1)

where P0;- is the mean outcome for site j; Xl} is a

treatment contrast, with a value of 0.5 for members of

the experimental group and -0.5 for members of the

control group, /' = ! , . . . ,» ; (Jy is thus the mean

difference between outcomes of experimental and

control groups within sitey; and rtj is a person-specific

residual assumed independently and normally distrib-

uted within sites, with constant variance a2.

Level 2 model. Within the framework of the

HLM, the coefficients at Level 1 become outcome

variables at Level 2. Thus, the site mean and the site-

specific treatment effect vary randomly across sites

according to the model

/ ~ Too + uoj (2)

Here, 700 is the grand mean outcome and "yi0 is the

average treatment effect; u0j and «,y are site-specific

random effects that are independent of r^ and are

assumed to have a bivariate normal distribution over

sites, that is,

(3)

Here, TQQ = Var(uOJ) is the variance of the site means,

TM = Var(u\}) is the variance of the site-specific

treatment effects, and TOI = Cov(u0j, utj) is the co-

variance between the site mean and the treatment ef-

fect.

Substituting the Level 2 model (Equation 2) into

the Level 1 model (Equation 1) yields the combined

model

yij = Too + yi (4)

The combined model is widely termed a "mixed

model," with fixed effects -y^, -y10, random effects

«q/> Uy and a within-cell residual rlf Some software

packages encourage users to specify the model in its

hierarchical formulation, as in Equations 1 and 2 (e.g.,

HLM [Raudenbush, Bryk, Cheong, & Congdon,

2000] orMLN {Rasbash, Yang, Woodhouse, & Gold-

stein, 1995]). Other packages require specification of

the "combined" or "mixed" version of the model, as

in Equation 4 (SAS Proc Mixed [Littell, Milliken,

Stroup, & Wolfinger, 1996] and Mixed Reg [Hedeker

& Gibbons, 1996]). Singer (1998) provides a lucid

discussion of the relationship between hierarchical

and mixed formulations.

Estimation

Estimation of site-specific coefficients. To clarify

the logic of estimation, we begin with the data from a

single site. Given a balanced design (equal sample

sizes in the experimental [E] and control [C] groups),

the minimum-variance, unbiased estimators of the site

mean and treatment effect, respectively, are

and

- 2
(5)

where the data are arranged so that the first nil par-

ticipants are those in the experimental group. The

sampling variances of these estimates are equally

straightforward:

Vflr(Pq,IPo,) = v1'", Vflr(P,;IP,,-) = 4a2/«. (6)

The notation Var(p0j\$OJ) can be read as the "condi-

tional variance of (J0j given Pq,," that is, the variance

of the estimator of pq, with its true value held con-

stant. Of course, (30y and ${J do indeed vary across

sites. Thus, the unconditional variances (Dm, Dn) are

and

(7)

In words, the unconditional variance Dgg of the site

mean estimate is the sum of two components: the

variance of the true mean and the variance of the

estimate given the true mean. The conditional vari-

ance D[, of the treatment effect across sites has a

similar structure.

Estimation affixed effects. In an unbalanced de-

sign, with varying sample sizes across sites, the esti-

mators of fixed effects would be precision-weighted

averages (cf. Bryk & Raudenbush, 1992, chap. 3). In

a balanced design, the grand mean and average treat-

ment effects are estimated by simple averages:
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•Yoo =

The sampling variances of these estimates are

and

Vfl/-(-y10) = Du/7. (9)

Estimation of variance components. The sample

variances of the (30; and (3,, estimate their uncondi-

tional variances (Equation 7):

- 1 /- 1

where

(10)

(11)
A«-2)

Estimates of the variance components are as follows:'

i -46-2/n. (12)

The sampling variances of these fixed effects esti-

mated are

and

(13)

Hypothesis Tests

Of key interest in the multisite trial are the average

treatment effect, 701, otherwise known as the main

effect of treatment, and the variance of the treatment

effect, TU, otherwise known as the treatment-by-site

variance.

Average treatment effect. Under the null hypoth-

esis H0: yto = 0, an Ftest can readily be constructed:

where F(l, J - 1; X) follows the noncentral F distri-

bution with numerator and denominator degrees of

freedom of 1 and J - 1, respectively, and the noncen-

trality parameter

+4rr2
(15)

The noncentrality parameter is closely related to the

ratio of expected mean squares

/IT, i + 4a2
-=1 + X. (16)

Note that, under the null hypothesis ylg = 0, the

noncentrality parameter, X, is 0 and the ratio of the

expected mean squares is 1.0. However, under the

alternative hypothesis, the noncentrality parameter

exceeds 0 and the ratio of expected mean squares

exceeds 1.0. The larger the value of the noncentrality

parameter, the greater is the power of the test. Inspec-

tion of the noncentrality parameter suggests that un-

less TH is null, increasing J, the number of sites, is

more crucial than increasing n, the number of partici-

pants per site. Thus, the larger the variation of the

treatment impact across sites, the more essential it

becomes to include a large number of sites in the

experiment to obtain high power in detecting a main

effect of treatment. However, if the variation across

sites in the impact of the treatment is truly large, the

main effect of treatment becomes a poor indicator of

the importance of the treatment in any particular site.

For example, reporting only a small positive main

effect of treatment in the context of large treatment-

by-site variation would mask the fact that the treat-

ment, although beneficial in some sites, is harmful in

others.

Variance of the treatment effect. The variance of

the treatment effect can also be tested by an F test. To

test the null hypothesis H0: TU = 0 , we compute

1 The estimates Dm and £>,, use denominators J - 1

under restricted maximum likelihood. Under full maximum

likelihood, these denominators are J. If I>oo — ̂ In, we set
TOO = 0. Similarly, if Ou « 4 a?ln, we set f , , =0 . The

covariance 701 is similarly estimated by subtraction. On

occasion, this covariance estimate, in combination with the

variance estimates, will produce a correlation with an ab-

solute value exceeding 1.0. Then the TOI estimate may be set

to the value that corresponds to the correlation with an

absolute value 1.0. Consideration of these boundary value

cases, though important in data analysis, has no special

bearing on planning a study, the topic of interest in this

article.
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F = —^-. (17)

where F follows the central F distribution with df =

J - 1, J (n - 2). The ratio of the expectation of the

numerator to the expectation of the denominator is, in

this case,

nT +4cr2

4£(r>2) 4o-2
r.

4<r2
(18)

Once again, under the null hypothesis TH =0, that is,

no treatment-by-site variance, the ratio of expected

mean squares is unity. Under the alternative hypoth-

esis Ha: TH > 0, increasing « raises the power of the

test somewhat more efficiently than does increasing J.

This is because the power is greatly determined by the

extra piece mn/(4a2) in the ratio of the expected

mean squares. The power function is related to the

critical F value times the inverse of o>, the ratio of

expected mean squares. The more the ratio exceeds

unity, the larger the power becomes.

Standardized Model for Two Groups

There are good reasons to translate our general

model for the multisite trial into a model that includes

standardized effect sizes (Cohen, 1988; Glass, 1976)

and their variance. First, the logic of power analysis,

sample size determination, and optimal allocation of

resources become clearer in the context of a standard-

ized model because key results do not depend on the

scale of the outcome variable. Second, it is straight-

forward to translate specific examples into the stan-

dardized framework, putting many seemingly dispa-

rate cases on a common footing. Finally, there are

many cases in which investigators have little prior

knowledge of what effect sizes to expect; neverthe-

less, within the framework of the standardized model,

such investigators can examine power and sample

sizes in instances of what social scientists generally

have come to regard as small, medium, and large

effects. The broad utility and appeal of Cohen's

(1988) book on power determination is partly explain-

able by his creation of a standardized framework for

power analysis.

In the case of the multisite trial, however, it is not

enough to specify a standardized effect size for the

main effect of treatment. As we have seen above, the

variance of the treatment impact across sites is also of

interest, not only in itself, but also in determining

power and sample sizes for inferences regarding the

main effect. We therefore need to extend Cohen's

(1988) approach by introducing a standardized metric

for treatment-by-site variance.

In the context of our two-group model for site J, let

us standardize the within-treatment, within-site vari-

ance to o-2 = 1.0. Then the treatment effect for site j

becomes a standardized effect size 8,, that is, the stan-

dardized mean difference between experimental and

control groups according to the Level 1 model

N(0, 1), (19)

where Ytj is the outcome, standardized to have unit

variance; JJL.J is the standardized mean at theyth site; 8,

is the standardized treatment effect at the j\h site; and

r,j is the standardized within-cell error with unit vari-

ance.

At Level 2, we mode) the variability of the means

and effect sizes across sites. Thus, our Level 2 model

becomes

(20)

where JJL is the standardized grand mean; 8 is the

standardized main effect of treatment; Var{u0l) = a2

is the variance of the site means; Var{utj) = 0-5 is the

variance of standardized treatment effects across sites;

and Cov(u0j, utj) = cr^ is the covariance between the

standardized site mean and the treatment effect.

Sample Sizes and Power

We now consider how the number of sites and the

sample size per site relate to power in the context of

the multisite trial. Power analysis, of course, requires

specification of the average effect size and the vari-

ance of the effect sizes across sites. Following proce-

dures set forth by Cohen (1988), many social scien-

tists have adopted rules of thumb for what constitutes

a small, medium, or large effect. Cohen viewed stan-

dardized effect sizes of 0.20, 0.50, and 0.80 as small,

medium, and large, respectively, though such inter-

pretations are somewhat subjective and will inevitably

be study-specific. We illustrate power analysis below,

using software we have developed (available on re-

quest without charge)2 that allows specification of a

range of effect sizes. For simplicity, we adhere to

Cohen's rule of thumb for small, medium, and large

main effects of treatment.

2 To obtain this software, please contact Stephen W.

Raudenbush by e-mail at rauden@umich.edu.
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What, then, might constitute reasonable rules of

thumb for small, medium, and large variances of the

treatment effect? Again, the answer to this question

must be somewhat arbitrary. However, we have ten-

tatively settled on 0.05, 0.10, and 0.15 as small, me-

dium, and large variances. A variance of 0.05 implies

that treatment effect sizes have a standard deviation

slightly in excess of 0.20; a variance of 0.10 implies

a standard deviation just over 0.30; and a variance of

0.15 implies a standard deviation just under 0.40.

Thus, if we viewed most effect sizes to lie between

about -0.10 and 0.30, we would view the variability

as small; if most lie between, say, -0.20 and 0.40, the

variability would be medium; and if most lie between

-0.30 and 0.50, the variability would be large. In each

case, the specified range is roughly two standard de-

viations, implying a probability in excess of 0.68 that

a site-specific standardized effect size would fall in

the specified range. It is, of course, a trivial matter to

redefine these rules of thumb, but the current defini-

tions will serve our purposes of illustration in the

present article.

Main Effect of Treatment

The computation of power for the average treat-

ment effect is straightforward. As mentioned, the test

statistic F — F(l, J - 1; X) follows a noncentral F

distribution with numerator and denominator degrees

of freedom equal to 1 and/- 1, respectively, and with

the noncentrality parameter, \ (see Equation 15). Let

F0 represent the critical value of F for a chosen sig-

nificance level. Then power is

Prob[F(l,J-l;\)>F0] =

1 - Proh[F(l, J- 1; X) < F0]. (21)

Computation of power is easy to program once the

degrees of freedom and noncentrality parameter are

given because the distribution function for F, that is

Prob[F(dfnamclMaT, d/denoroim.*,,-; *) < f^ ™ available

as a subroutine on widely used packages such as SAS

or S-plus (see Appendix for the SAS code).

To illustrate the logic of power, Figure 1A graphs

power for a two-tailed test at a = .05 as a function of

« (sample size per site), holding constant the number

of sites at J = 4. The maximum n is 400 for a total

sample size of 1,600. In contrast, Figure IB holds n

constant at 20 and allows J to increase to 80. The

maximum sample size in Figure IB is again 1,600. In

each case, the average effect size is either small

(0.20), or medium (0.50), and the evaluation of power

is displayed across small, medium, and large effect

size variance, according to the definitions of the pre-

vious paragraph. Several principles come clearly into

view. First, power increases as the variance of the

treatment effect decreases. Second, although both n

and J contribute to power, J is more crucial than n. In

particular, allowing J to grow without bound pushes

power inexorably toward 1.0 (Figure IB). In contrast,

as n increases without bound, holding J constant,

power approaches a bound less than 1.0 (Figure 1A).

This will always be the case unless the variance of the

treatment effect is null. Third, the importance of n in

increasing power depends strongly on the variance of

the treatment effect: the larger this variance compo-

nent, the less important is n for increasing power.

Variance of the Treatment Effect

Computation of power for the variance of the treat-

ment effect is again straightforward, although the test

statistic, F divided by o> (Equation 18), now follows a

central F distribution F[J - 1, J(n - 2)]. Let F0 rep-

resent the critical value of F for a chosen significance

level. Then power is given by

Prob{F > F0]
= \-Prob{F/v><F0/u>}
= l-Prob{F[J-l.J(n-2)]<F0/<a}. (22)

The key to programming the computation of power is

to evaluate the cumulative distribution function for

the central F distribution at the value Falu>.

To illustrate the determinants of power, Figure 2

parallels Figure 1 in showing the consequences of

increasing n and /, but this time for the variance of the

treatment effect held constant at small, medium, or

large values (0.05, 0.10, and 0.15, respectively). From

Figure 2A, we see that increasing n is highly conse-

quential: As n increases without bound (with J = 4),

power for detecting this variance approaches 1.0. In

contrast, Figure 2B shows that, for fixed n = 20,

increasing J has a somewhat more modest impact on

power. Thus, the effects of n and J on power for

detecting site-by-treatment variance are, roughly, the

reverse of what we found in the case of the average

effect of treatment.

Multisite Trials With Site Characteristics
as Moderators

The results of the previous section have somewhat

ironic implications for design. Given nonzero vari-

ability in treatment effects across sites, increasing the
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Figure I. Power for detecting the average treatment effect as a function of effect size. A:

increasing the number of participants per site (n), holding constant the number of sites (/).

B: variance of the treatment effect for increasing J, holding constant n.

number of sites is essential to increase power in de-

tecting the average effect of treatment. The larger the

treatment-by-site variance, the more important it is to

sample an adequate number of sites to achieve power

in detecting the main effect of treatment. However,

when treatment-by-site variance is large, the main ef-

fect of treatment becomes less interesting. A large

treatment-by-site variance component cries out for

understanding of moderating effects: characteristics

of sites that can account for the large variation in the
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of the variance. A: for increasing the number of participants per site (n), holding constant the

number of sites (J). B: for increasing J, holding constant n.

impact of the treatment effect. Thus, to the extent

treatment effects are context-specific, it becomes sci-

entifically important to understand the characteristics

of context that account for such variation. The search

for such moderators is equivalent to the search in

meta-analysis for study characteristics that account

for variation in findings between studies (cf. Hedges,

1994; Raudenbush, 1994).
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ELM. We can readily elaborate the HLM to in-

clude site characteristics that might account for effect-

size variation over sites. Because such characteristics
vary at Level 2, that is, over sites, they become ex-

planatory variables in the Level 2 model. The Level 1

model remains as before (Equation 19), whereas the

Level 2 model is elaborated (in the case of a single
study characteristic) to be

«oj (23)

where F follows the noncentral F-distribution with df

— 1, / — 2, and the noncentrality parameter

where W, is a site covariate with a mean of 0.0; -y,,, is

the average standardized treatment effect across sites;

•yu is association between the site covariate, Wj, and

the effect at site j; Vart.Uy) = o-j; is the residual vari-

ance of the standardized site means; Var(«y) = o| is

the residual variance of standardized treatment effect

across sites; and Cov(uOJ, «y) = au?> is the covariance

between the standardized site mean and treatment ef-

fect, holding constant W,.

Thus, Wj is a measured characteristic of site./ that is

hypothesized to account for variation in study effect

sizes. We also include Wj in the model for site means.

A failure to specify the effect of W, on the site mean

might cause a misspecification of the model for the

contribution of Wj to the treatment effect (Bryk &
Raudenbush, 1992, chap. 9) because the random ef-

fects («0y, My) of the two Level 2 equations are cor-

related. Of interest are power and sample size require-

ments for inferences about yn, the moderating effect

of Wj on the effect size.
Power and sample sizes. Basic principles for test-

ing the moderating effect of the site characteristic

closely parallel those for detecting the main effects of
treatment. For example, consider the case in which

sites are of two types, with each type consisting of J/2

sites. The estimate of 7,, is thus the difference in

average treatment effect between two types of sites,

namely,

J/2 J/2 '
(24)

where 8^ is the estimate of standardized treatment ef-
fect at the^'th site. Statistical inference closely paral-

lels that for the main effect of treatment, so we omit
the details. The null hypothesis H0: 7U = 0 can be

tested by computing

r"2

F(1,/-2;X) = ̂ , (25)
4o-s

(26)

Power for detecting the moderating effect of a site
characteristic depends on the magnitude of the re-

sidual site-by-treatment variance. Although increas-

ing n increases power, increasing / is more important;

and this relative importance of J is greatest when the
residual site-by-treatment variance is large. Our hope,

of course, is that W} will be a strong predictor of the

effect size, such that the residual site-by-treatment

variance will be small. We can, of course, test the
hypothesis that this residual variance is null.

Optimal Allocation of Resources

Figures 1 and 2 display important trade-offs in de-

signing multisite trials, trade-offs between the number

of participants per site and the number of sites. We
see from Figure 1 that for estimating the main effect

of treatment, maximizing J, the number of sites, has a
greater impact on power than does maximizing n, the

number of participants per site. Testing moderating

effects of site characteristics has similar implications;
J is more important than n in maximizing power for

detecting these moderating effects. Although these re-

sults seem to favor designs with many sites and few

participants per site, such a design may be infeasible.

It may be very expensive to add each additional site,

whereas adding participants per site may be compar-
atively inexpensive. Thus, given the total resources

available for the research, the number of sites that can

be recruited is sharply constrained. Moreover, includ-

ing a large n helps substantially in estimating the

treatment-in-site variance. How, then, should re-

sources be allocated within and between sites to op-
timize power? The answer to this question would de-

pend on whether the aim is to make inferences about
(a) the main effect of treatment, (b) the magnitude of

the treatment-by-site variance, or (c) the moderating

effect of site characteristics.
In each case, we consider a simple linear cost func-

tion:

T > (C,n + C)J, (27)

where T is the total variable cost of the study; C is the
cost of sampling a site; and C, is the cost of sampling
a participant within a site. Thus, the number of sites,
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J, is a function of the total resources available for the

study and of n, the number of participants per site:3

" (C, n + C)'
(28)

Our strategy is to choose "optimal n," that is, the

number of participants per site that maximizes the

noncentrality parameter in the power function given T

and the hypothesized model parameters. J is then de-

termined by inequality 28. Of course, in each case, we

investigate optimal n, ], and power over a range of

possible parameter estimates. We shall see that opti-

mizing n for one purpose (maximizing power for the

test of the main effect of treatment) will not, in gen-

eral, optimize n for another purpose (e.g., estimating

the variance of the treatment effect). Thus, in practice,

it is necessary to weigh the relative importance of the

various parameters that might be estimated and to

ensure that power is at least adequate for all moder-

ately important purposes. Let us consider each key

parameter in turn.

Average Effect of Treatment

Our discussion of Figure 1 suggested that having a

large J is particularly important when the site-by-

treatment variance is large. However, the temptation

to maximize J must be tempered by the relative cost

ratio C/C,, that is, the incremental cost of sampling a

new site relative to the incremental cost of sampling a

person within an already-sampled site. When we

maximize power for the main effect of treatment, sub-

ject to the cost constraint (Equation 27), we see pre-

cisely how this logic plays out. The optimal n is then4

(29)

Equation 29 parallels the well-known formula for

the optimal cluster size in a two-stage cluster sample

(Cochran, 1977) and the optimal sample size per clus-

ter in a cluster randomized trial with no covariates (cf.

Allison et al., 1997; Overall & Dalai, 1965; Waters &

Chester, 1987; Raudenbush, 1997). We see that opti-

mal n is directly proportional to the square root of the

cost ratio C/C, and inversely proportional to the

square root of the treatment-by-site variance. Given

optimal n, the number of sites, J, is then determined

by T, the total resources for the study, that is,

J < r/(C,n^, + C). (30)

Consider a hypothetical example with T — 500 and

C,, implying that if the study were a single-site study,

the investigators could afford a sample size of 500.

Table 1 gives the optimal n, J, and power for varying

values of the cost ratio and the variance of the treat-

ment effect. We see from Table 1 that (a) the greater

the cost of sampling sites relative to sampling partici-

pants within sites, the larger the optimal n per site,

yielding fewer sites; (b) the more variable the treat-

ment effect across sites, the smaller the optimal n,

allowing more sites; and (c) a large main effect size,

a small cost ratio, and a small treatment-by-site vari-

ance contribute to enhanced power for detecting the

main effect of treatment. However, optimizing the

study for the power of detecting the main effect of

treatment does not optimize it for detecting treatment-

by-site variance (compare trends in power between

the last two columns of Table 1). Note that, from the

medium (0.5) to the large (0.8) effect size, power is

usually very high. It is less sensitive to the cost ratio

and effect size variability. A design with moderate n

and J is close to the optimal design in terms of power.

The designs in Table 1 report higher power for the

main effect of treatment than for the variance of treat-

ment effect; powers for the variance are uniformly

poor. Adequate power to detect treatment-by-site

variance generally requires larger nj than is required

to detect the main effect of treatment.

Moderating Effect of a Site Characteristic

Now the question is whether a specific, measured

characteristic of a site predicts the magnitude of the

treatment effect at that site. In the language of the

HLM, we are interested in the relationship between a

Level 1 "slope" (the treatment effect at site j) and a

Level 2 predictor, as described by the Level 2 model

(see Equation 23). In this setting, J is more influential

than n whenever the residual site-by-treatment vari-

ance is non-null. Again, however, the temptation sim-

ply to maximize J in designing the study must be

tempered by C/C,, the cost of sampling sites relative

to the cost of sampling participants within sites. We

therefore choose the optimal n per site that will maxi-

~ The computed optimal n is rounded to the nearest even

integer to maintain a balanced design. Also, J is the largest

possible number of sites, given n, such that the total cost of

the study does not exceed 7*.
4 We derive Equation 29 by substituting J = r/(C,n + C)

into the formula X = rc,/o2/(«o^ + 4) and maximizing X with

respect to n.
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Table 1

Optimal Number of Participants per Site (n), Number of Sites (J), and Power, as a function of Cost Ratio
Treatment-by-Site Variance, and Effect Size

c/c,

2
2
2
2
2
2
2

2
2
5
5
5
5
5
5
5
5

5
10
10
10
10
10
10
10
10
10
20
20
20
20
20
20
20
20
20

Treatment-by-site

variance

0.15

0.15

0.15

0.10

0.10

0.10

0.05

0.05

0.05

0.15

0.15

0.15

0.10

0.10

0.10

0.05

0.05

0.05

0.15

0.15

0.15

0.10

0.10

0.10

0.05

0.05

0.05

0.15

0.15

0.15

0.10

0.10

0.10

0.05

0.05

0.05

Treatment main

effect (8)

0.2
0.3
0.4
0.2
0.3
0.4
0.2
0.3
0.4
0.2
0.3
0.4
0.2

0.3
0.4
0.2
0.3
0.4
0.2
0.3
0.4
0.2
0.3
0.4
0.2
0.3
0.4
0.2
0.3
0.4
0.2
0.3
0.4
0.2
0.3
0.4

Optimal «a

8
8
8
8
8
8
12
12
12
12
12
12
14
14
14

20
20
20
16
16
I f i
20
20
20
28
28
28
24
24
24

28
28
28
40
40
40

y
50
50
50
50
50
50
36
36
36
29
29
29
26
26
26
20
20
20
19
19
19
17
17
17

13
13
13
11
11

11
10
10
10
8
8
8

Power for

treatment

main effect

.405

.732

.930

.433

.766

.947

.470

.807

.965

.322

.612

.849

.352

.658

.884

.397

.721

.924

.257

.499

.741

.294

.564

.807

.327

.619

.854

.187

.359

.567

.210

.405

.629

.244

.472

.708

Power for

treatment-by-site

variance

.350

.350

.350

.223

.223

.223

.149

.149

.149

.407

.407

.407

.294

.294

.294

.185

.185

.185

.430

.430

.430

.337

.337

.337

.205

.205

.205

.458

.458

.458

.344

.344

.344

.222

.222

.222

a The computed optimal n is rounded to its nearest even integer,
* The computed J is rounded. The total cost may slightly exceed the budget. For example, the seventh row has n = 12 and J = 36. The total
cost will be 504. If we round the computed J down to 35, then the total cost will be 490. To meet the budget exactly, a researcher might add
an additional site with only g people or use 32 sites with 12 people at each site, plus 4 sites with 10 people at each site. We therefore use
rounding of J for computing consistency and simplicity. The provided power values should be close to the real power in those cases and can

therefore be used as reference.

mize power given the cost ratio and the magnitude of

the residual site-by-treatment variance. The resulting

formula is identical to that given by Equation 29,

keeping in mind that the variance of the treatment

effects is now a residua! variance, that is, the variance

not explained by the moderating effect of the site

characteristic. Given optimal n, J is again determined

by the available resources (Equation 28).

Again let us consider a hypothetical example with

T = 500. Suppose that sites are classified into two

groups (e.g., urban sites vs. rural sites) on the basis of

the hypothesis that the magnitude of the treatment



210 RAUDENBUSH AND LIU

effect depends on this site characteristic (e.g., urban

sites are hypothesized to have smaller treatment ef-

fects than are rural sites). Table 2 gives the optimal n,

J, and power for varying values of the cost ratio and

the variance of the treatment effect.

We see from Table 2 that optimal n and J depend

on the cost ratio and the variance of the treatment

effect, just as in the average treatment effect (Table

1). Similarly, power increases as the cost ratio de-

creases, the variance of the treatment effect decreases,

and the effect size increases. Generally, however,

more data are needed to detect the moderating effect

of a site characteristic than to detect the average effect

of treatment, with the other factors held constant

(compare power for site covariate effect in Table 2 to

power for treatment-by-site variance in Table 1).

Discussion

The multisite trial enables experimenters to assess

the average impact of a treatment across varied set-

tings and the variability of the treatment impact across

Table 2
Optimal Number of Participants per Site (n), Number of Sites (J), and Power far Detecting Moderating Effect of a Site

Covariance {Standardized Model)

Cost ratio

(C/C,)

2
2

2

2

2

2

2

2

2

5

5

5

5

5

5

5

5

5

10

10

10

10

10

10

10

10

10

20

20

20

20

20

20

20

20

20

Treatment-by-site

variance

0.15

0.15

0.15

0.10

0.10

0.10

0.05

0.05

0.05

0.15

0.15

0.15

0.10

0.10

0.10

0.05

0.05

0.05

0.15

0.15

0.15

0.10

0.10

0.10

0.05

0.05

0.05

0.15

0.15

0.15

0.10

0.10

0.10

0.05

0.05

0.05

Optimal

n

8

8

8

8

8

8

12

12

12

12

12

12

14

14

14

20

20

20

16

16

16

20

20

20

28

28

28

24

24

24

28

28

28

40

40

40

J

50

50

50

50

50

50

36

36

36

29

29

29

26

26

26

20

20

20

19

19

19

17

17

17

13

13

13

11
11

11

10

10

10

8

8

8

Effect of

site covariate

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

0.2

0.4

0.6

Power for site

covariate effect

.138

.405

.732

.146

.432

.765

.156

.470

.806

.116

.321

.611

.124

.351

.657

.135

.395

.718

.100

.256

.496

.109

.292

.561

.117

.323

.612

.083

.184

.353

.088

.205

.396

.095

.235

.453
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those settings. If the treatment impact is indeed found

to vary from site to site, it is typically useful to ex-

amine site characteristics that moderate the treatment

effect. In this way, the multisite trial is a kind of

planned meta-analysis, with each site contributing a

"study" of the treatment impact, and the synthesis of

findings across sites allowing for a study of the con-

ditions under which the treatment appears most prom-

ising. It must be kept in mind that studies of the mod-

erating effect of site characteristics on treatment

effects are nonexperimenal (unless sites can be ran-

domly assigned to characteristics). Nevertheless, the

multisite trial can go well beyond the single-site trial

in facilitating a study of generalizability of the treat-

ment effect.

As this article has shown, costs and variance com-

ponents drive the trade-off between maximizing the

number of participants per site and maximizing the

number of sites. If the goal is to maximize power in

testing the average effect of treatment (or to minimize

the length of the confidence interval for treatment

impact), the logic is clear. The larger the variation in

the treatment impact across sites, the more sites are

needed to attain adequate power. However, the wish

to maximize the number of sites will typically be

constrained by cost: the larger the cost of sampling

sites (relative to sampling participants within sites),

the larger the optimal sample size per site needed to

maximize power. A similar logic holds in maximizing

power of tests of the moderating effect of a site char-

acteristic. That is, adding sites is more consequential

for power than is adding participants per site, and this

advantage is greatest when the residual variation in

the treatment impact across sites is large. Again, how-

ever, cost considerations cannot be ignored; and the

desire to include many sites is tempered by the rela-

tive cost of sampling sites. This article has illustrated

how these considerations can facilitate optimal design

by using appropriate software.

However, the multiple purposes of a multisite trial

create potential dilemmas in allocating resources. Op-

timizing the design to detect the main effect of treat-

ment or the moderating effect of a site characteristic

does not typically optimize the design for estimating

the magnitude of the variance of the treatment effect.

To estimate this variance component precisely gener-

ally requires a larger sample size per site than is op-

timal for the other purposes. Again, this article has

illustrated software useful in determining power for

this variance component.

The principles and the computations provided in

this article generally extend to nonexperimental stud-

ies assessing the association between a person-level

predictor and an outcome in each of many sites. For

example, Raudenbush, Kidchanapanish, and Rang

(1991) examined the association between preschool

attendance and academic achievement of children in a

nationally representative sample of elementary

schools in Thailand. Of course, students were not as-

signed at random to attend preschool. However, it was

possible to assess the mean difference between those

attending and those not attending preschool in each of

many schools, conceived as sites. Though causal in-

ference is tentative in such nonexperimental studies,

the power considerations are similar to those in true

experiments.

In the current article we have limited our study to

continuous outcomes, balanced designs, equal costs at

each site (and for each treatment within each site), and

the case of two treatments per site. Extensions to more

general cases, including discrete outcomes, unbal-

anced designs, multiple treatments, and unequal costs

are important. However, we can anticipate that the

logic of optimal design and power determination will

extend quite naturally to this broader class of cases.
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Appendix

SAS Program

The sas program will produce table 1 and table 2 in text format in the files 'c:\tablel.txt' and 'c:\table2.txt'

213

options nodate;

data_null_;

filename tablel 'c:\tablel.txt'; 'power for treatment in mst;

filename tablel 'c:\table2.txt'; *power for site characteristic;

%letT=500;

array r{4| (2, 5, 10, 20); * r is the cost ratio;

array sigma{3) (0.15, 0.10, 0.05); * effect size variability;

array ses{3) (0.2, 0.3. 0.4); * standardized effect size for treatment;

array ses_cov{3) (0.2, 0.4, 0.6); * ses for site characteristic;

alpha =0.05;

do i = 1 to 4;

do m = l to 3;

d o k = l to 3;

nl =sqrt (r{i}/sigma{rni);

nl = round(nl,l);

n = 2*nl; * n now is the site size;

J = round (J,l);
lambdal= n*J*ses{k)**2/(sigma{m}*n+4);

pi = l-probf(fmv(l-alpha,l, J-l),l, J-l, lambdal);

*power for treatment main effect;

omega=l+n*sigma(m)/4;

* equation 15;

* equation 21;

* equation 18;

p2= l-probf(fmv(l -alpha, J-l, J*(n-2))/omega, J-l, J*(n-2)); * equation 22;

*power for treatment*site in mst;
Iambda3 = n*J*ses_cov(k)**2/(4*(sigma{m)*n+4));

p3 = l-probf(fmv(l-alpha,l, J-2),l, J-2, Iambda3);

*power for site characteristic;

equation 26;

file tablel;
put @1 r{i} 2.0 @8 sigma{ml 3.2 ©15 sesjk) 2.1 @20 n 3.0 @30 J 3.0 @40 pi 5.3 @48 p2 5.3;

file table2;
put @1 r( i ) 2.0 @8 sigmafm} 3.2 @20 n 3.0 @30 J 3.0 @40 ses_cov(k} 2.1 @48 p3 5.3;

end;

end;

end;
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