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Alternative evolutionary histories in the sequence 
space of an ancient protein
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To understand why molecular evolution turned out as it did, we 
must characterize not only the path that evolution followed across 
the space of possible molecular sequences but also the many 
alternative trajectories that could have been taken but were not. A 
large-scale comparison of real and possible histories would establish 
whether the outcome of evolution represents an optimal state driven 
by natural selection or the contingent product of historical chance 
events1; it would also reveal how the underlying distribution of 
functions across sequence space shaped historical evolution2,3. 
Here we combine ancestral protein reconstruction4 with deep 
mutational scanning5–10 to characterize alternative histories in 
the sequence space around an ancient transcription factor, which 
evolved a novel biological function through well-characterized 
mechanisms11,12. We find hundreds of alternative protein sequences 
that use diverse biochemical mechanisms to perform the derived 
function at least as well as the historical outcome. These alternatives 
all require prior permissive substitutions that do not enhance the 
derived function, but not all require the same permissive changes 
that occurred during history. We find that if evolution had begun 
from a different starting point within the network of sequences 
encoding the ancestral function, outcomes with different genetic and 
biochemical forms would probably have resulted; this contingency 
arises from the distribution of functional variants in sequence space 
and epistasis between residues. Our results illuminate the topology 
of the vast space of possibilities from which history sampled one 
path, highlighting how the outcome of evolution depends on a serial 
chain of compounding chance events.

We applied deep mutational scanning to the DNA-binding domain 
of a reconstructed ancestral steroid hormone receptor, whose historical  
trajectory of functional, genetic, and biochemical evolution is well 
understood. Steroid receptors are transcription factors that mediate the 
action of sex and adrenal steroids by binding to specific DNA sequences 
and regulating expression of target genes. The two major clades of 
receptors differ in their DNA specificity (Fig. 1a): oestrogen  receptors 
prefer an inverted palindrome of AGGTCA (oestrogen response  
element, ERE)13, whereas receptors for androgens, progestogens, and 
corticosteroids prefer AGAACA (steroid response element, SRE)14. 
Although some degeneracy is tolerated, these sequences represent the 
high-affinity consensus sites for each class13,14 and have therefore been 
the focus of extensive biochemical characterization15–18. Previously, we 
reconstructed the ancestral protein from which all steroid  receptors 
descend (AncSR1) and found that it specifically binds ERE11,12. After 
AncSR1 duplicated, one daughter protein diverged in function to yield 
AncSR2, which prefers SRE. Re-introducing three substitutions from 
this historical interval radically shifts the relative affinity of AncSR1 
from ERE to SRE, and this effect is robust to uncertainty about the 
ancestral sequence19. These substitutions are located on the protein’s 
recognition helix (RH), which directly contacts the response element’s 
major groove15–17. Although they shift specificity, the RH substitutions 
alone reduce affinity below that required to activate transcription. 

Another eleven substitutions (11P) outside the RH that occurred  
during this evolutionary interval were permissive, increasing 
 affinity for both ERE and SRE, allowing the protein to tolerate the 
 function-switching RH substitutions11.

To characterize alternative ways by which SRE specificity could 
have evolved (Fig. 1a), we focused on the RH, the only portion of the 
 protein that directly contacts the nucleotides that vary between ERE 
and SRE. We prepared a library containing all 160,000 combinations of 
all 20 amino acids at four key sites in the RH: the three that  historically 
shifted DNA specificity, plus a physically adjacent lysine that varies 
among the broader receptor superfamily (Fig. 1b). The library was 
constructed in AncSR1+ 11P, the genetic background that enabled the 
historical RH substitutions to alter DNA specificity. We engineered 
yeast reporter strains in which ERE or SRE drives expression of a flu-
orescent GFP reporter and showed that GFP activation directly relates 
to DNA affinity (Extended Data Fig. 1a)18. We transformed the library 
into each reporter and used fluorescence-activated cell sorting coupled 
to deep sequencing (FACS-seq) to quantify binding of each variant 
in the library to ERE or SRE (Extended Data Figs 1–3 and Extended 
Data Table 1). We classified genotypes as ERE-specific, SRE-specific,  
promiscuous, or inactive; results of all subsequent analyses were robust 
to the specific classification criteria (Extended Data Table 2).

We found 828 new RH variants that are SRE-specific, binding SRE 
as well or better than the historical outcome and displaying no activity 
on ERE (Fig. 1c). These alternative SRE-specific genotypes use amino 
acids with diverse biochemical characteristics (Fig. 1d), and they  
discriminate between SRE and ERE using different physical  contacts 
(Fig. 1e, f and Extended Data Fig. 4). For example, the historical 
 outcome (RH sequence GSKV) binds SRE in part by polar contacts 
from Lys28 to nucleotides A1 and G2, but the alternative outcome KAAI 
makes no polar contacts using residue 28, instead  hydrogen bonding 
from Lys25 to A1, G2, and the opposite-strand nucleotide T-3 (Fig. 1e).  
It also exhibits novel mechanisms of ERE-exclusion: whereas GSKV 
leaves the hydrogen bonding potential of C-3 unsatisfied, KAAI also 
leaves G2 and T4 unpaired, because Ala28—unlike Lys28 of GSKV— 
cannot bond to G2, and Ile29 interferes with a hydrogen bond to T4 
made by the conserved Arg33 residue (Fig. 1f and Extended Data Fig. 4c).

The historical outcome is therefore not unique in its genetic or 
biochemical mechanism of SRE specificity, but it might have been 
uniquely accessible from the ancestral RH. To investigate the distribu-
tion of functions across sequence space, we constructed a force- directed 
graph of functional RH variants (Fig. 2a). Each node represents a func-
tional RH genotype, and edges connect nodes separated by one non- 
synonymous nucleotide mutation (steps). Although the vast majority 
of RH variants are non-functional, virtually all of the 1,351 functional 
variants are part of a single connected network that can be traversed 
without visiting non-functional genotypes2. The network contains 
clusters of densely interconnected variants that share distinguishing 
amino-acid states, with epistasis and the structure of the genetic code 
separating the clusters. ERE-specific, SRE-specific, and promiscuous 
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variants are interspersed throughout the network, resulting in a very 
large number of potential evolutionary paths among functions.

The ancestral and derived RHs (sequences EGKA and GSKV, 
respectively) are connected by a path of just 3 steps, whereas the most 
 distant proteins in the functional network are 13 steps apart. From the 
 ancestral starting point, GSKV is not uniquely accessible: 64 other SRE-
specific RHs are accessible in 3 or fewer steps without passing through 
non-functional intermediates. Some of these alternative outcomes can 
be reached in just one or two steps, and these too exhibit biochemically 

diverse amino-acid states (Extended Data Fig. 5a). The accessibility of 
other SRE-specific outcomes persists when other evolutionary models 
are used. If selection against too-tight or too-weak binding allowed 
access only to genotypes with DNA affinity in a narrow range indistin-
guishable from the historical genotypes, there would still be hundreds 
of alternative SRE-specific outcomes, many of which would be easily 
accessible from the historical starting point (Extended Data Table 2,  
column E). Even when trajectories are allowed only if SRE affinity 
increases at every step—as would occur under positive selection for 
that function—there are numerous alternative SRE-specific genotypes 
with a non-trivial probability of evolving from the ancestral RH, and 
all of these are more likely than the historical outcome (Extended Data  
Fig. 5a–c). Taken together, these data indicate that the historical 
 trajectory was not the only path, or even the shortest, from the  ancestral 
RH to a derived protein that is SRE-specific.

Next, we asked whether the evolution of SRE specificity depended 
on the starting point within the large network of mutually accessible 
ERE-specific genotypes. All but two ERE-specific variants can access 
SRE specificity without passing through non-functional intermediates 
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Figure 1 | Diverse sequences and mechanisms can yield the derived DNA 
specificity. a, The historical transition in DNA-binding specificity in steroid 
receptors occurred during a known phylogenetic interval and was caused 
by three changes in the protein’s recognition helix (RH), which required 
permissive substitutions (11P)11. We searched for other RH mutations 
(RH′ ) that could have produced the derived function in the reconstructed 
ancestral background, before or after 11P. The DNA response element 
and protein RH sequence of each clade on the protein family phylogeny 
(residues 24–33) is shown; underlined, historically variable states. ERs, 
oestrogen receptors; SRs, other steroid receptors. Reconstructed ancestral 
proteins are coloured by their previously determined response element 
preference. b, FACS-seq assay for steroid receptor DNA recognition. 
Libraries of 160,000 RH variants were synthesized in the AncSR1 and 
AncSR1+11P backgrounds and cloned into yeast carrying an integrated 
ERE- or SRE-driven GFP reporter. Red Xs indicate variable residues in the 
RH. Each variant’s activity was estimated by FACS-sorting cells transformed 
with the library, using deep sequencing to determine the distribution 
of each RH variant across fluorescence bins, and then estimating the 
mean fluorescence of cells carrying each variant. RE, response element. 
c, GFP activation on ERE and SRE by each variant in the AncSR1+ 11P 
background (a.u., arbitrary units). Purple dots, variants classified as ERE-
specific; green, SRE-specific; blue, promiscuous; black, non-functional; 
grey, stop-codon variants. Purple line, activity of AncSR1:EGKA on ERE; 
green line, AncSR1+ 11P:GSKV on SRE. d, Frequency of residues at each 
variable position in ERE- and SRE-specific variants; n, number of variants 
in each class. Residues are coloured by biochemical category: red, acidic; 
blue, basic; magenta, polar uncharged; black, large non-polar; green, small 
non-polar. Residues and site numbers in AncSR1 and AncSR2 are shown. 
e, f, Diverse biochemical mechanisms for recognition of SRE (e) or ERE (f) 
by the historical derived RH (GSKV) and an alternative SRE-specific variant 
(KAAI). Contacts in structural models are shown between RH residues 
(circles) and DNA. Arrows, hydrogen bonds from donor to acceptor; dotted 
lines, non-bonded contacts. Red squares, bases that hydrogen bond in 
EGKA-ERE but are unsatisfied in these complexes. Only RH-DNA contacts 
that differ among complexes are shown (see Extended Data Fig. 4).
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Figure 2 | Evolvability of SRE specificity in an ancestral sequence space. 
a, Force-directed graph shows the functional topology of the RH sequence 
space in the AncSR1+ 11P background. Nodes, all functional RH variants, 
coloured by specificity as in Fig. 1c; yellow, SRE-specific variants that are 
accessible from ancestral genotype EGKA in three or fewer mutational steps 
(the length of the historical trajectory). Edges, single non-synonymous 
nucleotide mutations. Clusters of densely connected nodes (grey arcs) are 
labelled by their defining genetic features; X, variable sites within a cluster. 
Historical ancestral and derived RH genotypes are indicated. b, Distribution 
of ERE-specific nodes (starting points) by number of SRE-specific nodes 
(outcomes) reached in three or fewer steps. Black, starting points that reach 
zero outcomes because epistasis results in non-functional intermediates7,8. 
c, Distribution of outcomes by number of starting points that reach it in 
three or fewer steps. Black, outcomes reached from zero starting points 
because of epistasis; white, because all starting points are more than three 
non-synonymous mutations away. d, Distribution of pairs of starting points 
by the fraction of outcomes within three or fewer steps that are shared. 
Black, pairs with zero shared outcomes because of epistasis; white, because 
starting points are too far apart to reach the same genotypes; hatched, 
because no mutually accessible genotypes are SRE-specific.
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(Fig. 2a), and more than 90% can do so by paths no longer than the 
historical trajectory (Fig. 2b). Evolution of the derived specificity per 
se was therefore not strongly dependent on the starting point. Whether 
any particular SRE-specific genotype would evolve,  however, could 
be contingent on where in the network of ERE-specific  variants an 
 evolutionary trajectory begins. For each SRE-specific RH, we there-
fore asked how many ERE-specific starting points could access it by a 
path no longer than the historical three-step trajectory (Fig. 2c). About 
one-third of possible SRE-specific genotypes are not easily reached 
from any possible starting point—some because the large diameter of 
the functional network means that the minimum genetic distance to 
the closest ERE-specific variant is more than three non- synonymous 
mutations, and some because epistasis requires trajectories longer than 
the minimum genetic distance to avoid nonfunctional  intermediates7,8. 
Of the remaining SRE-specific variants, most (including  
the historical outcome GSKV) are readily accessible from just one or 
a few starting points, and even the most accessed outcome is  easily 
reached from fewer than one-third of all possible starting points. 
As a result, most pairs of ERE-specific starting points reach entirely 
non-overlapping sets of SRE-specific outcomes (Fig. 2d), and these 
contain distinct sets of amino acids (Extended Data Fig. 6a). The 
 evidence for dependence on starting point persists when path lengths 
longer than the historical trajectory are considered (Extended Data  
Fig. 6b–d) and when alternative evolutionary models are applied 
(Extended Data Table 2). Taken together, these data indicate that the 
derived specificity for SRE could have evolved in many ways from 
AncSR1+ 11P, but the underlying genetic and biochemical form 
depended strongly on the starting RH genotype that history happened 
to provide.

We next asked how the historical permissive substitutions affected 
the accessibility of the derived specificity and its dependence on 

starting point. We constructed and characterized the same four-
site combinatorial RH library, this time in the AncSR1 background 
without 11P (Figs 1a and 3a and Extended Data Fig. 1). Removing 
11P dramatically reduces the number of functional variants (Fig. 3b) 
and the  connectivity of the network (Fig. 3c). Unlike the AncSR1+ 
11P sequence space, many functional variants in AncSR1 are isolated 
and therefore cannot be reached from most other genotypes without 
passing through non-functional intermediates. Still, most functional 
RHs—including the ancestral RH (EGKA)—are interconnected in the 
primary subnetwork, where many SRE-specific RHs are accessible.  
Therefore, although the historically derived RH genotype GSKV 
requires the historical permissive substitutions, other genotypes with 
the derived specificity could have evolved without 11P. But trajectories 
in the AncSR1 sequence space are more complex. The shortest path 
from the ancestral RH to any SRE-specific variant is five steps long, 
compared to just one step in AncSR1 + 11P. Further, all paths require 
permissive RH steps that do not enhance SRE activity, and all paths 
require promiscuous intermediate genotypes (Extended Data Fig. 7a, b).  
Thus, without the historical permissive substitutions, other permissive 
mutations would have been required for SRE specificity to evolve from 
the ancestral genotype.

The 11P substitutions enhanced the accessibility of SRE specificity 
not only from the ancestral genotype but from all ERE-specific  starting 
points. Whereas virtually all starting points in the AncSR1+ 11P 
 network could access at least one SRE-specific node without passing 
through non-functional intermediates, over a quarter of ERE-specific 
variants in AncSR1 have no path to the derived specificity, and those 
that can access SRE specificity require longer paths (Fig. 3d). Removing 
the historical permissive substitutions also increases the proportion 
of ERE-specific starting points that require a permissive step before 
acquiring SRE activity (Fig. 3e). And, unlike the AncSR1+ 11P network, 
every path from ancestral to derived specificity in AncSR1 must pass 
through a promiscuous intermediate (Fig. 3e).

Finally, we investigated the mechanism by which the historical 
 permissive substitutions enhanced the potential for evolution across 
the RH sequence space. The 11P substitutions were broadly  permissive, 
increasing the number of SRE-specific genotypes in the network by a 
factor of 20 (Fig. 3b). Previous work suggests that increases in  protein 
stability sometimes mediate generalized permissive effects20–23, but 
11P have been shown not to increase the stability of AncSR1 (ref. 11). 
We previously proposed that 11P permitted the historical RH sub-
stitutions by non-specifically increasing affinity for both response 
 elements11, which would explain the broadly permissive effect of 11P 
on many RH genotypes. This hypothesis makes four testable predic-
tions, all of which are corroborated by our experiments. First, RH 
variants that do not depend on 11P to yield SRE specificity should 
have greater SRE affinity than those that require 11P, whether or not 
11P are present; we compared the predicted affinity and FACS-seq 
mean fluorescence of all 11P-independent and 11P-dependent SRE-
specific  variants and found that this prediction holds true (Fig. 4a and 
Extended Data Fig. 8a–d). Second, 11P should not change the genetic 
determinants of binding within the RH; as predicted, the most enriched 
residues among SRE-specific variants do not change between the two 
networks, but 11P weakens the preference for some tolerated states 
over others (Fig. 4b and Extended Data Fig. 8e). Third, 11P should 
not change the biochemical mechanisms by which the RH confers  
specificity, a prediction we tested by identifying the biochemical 
 properties at each RH site that predict specificity for ERE and SRE 
(Extended Data Fig. 8f); we found that the determinants of SRE 
 specificity are not dramatically altered by 11P (Fig. 4c). Fourth, if 11P 
non-specifically enhance affinity by all RHs, they should add new 
functional genotypes across sequence space; we found that the set 
of  variants permitted by 11P are not localized to some region of the 
 network but instead surround the sparser set of variants that functioned 
independently of 11P (Fig. 4d, e). As a result, the non-specific effect 
of 11P on affinity enhanced the connectivity of the ancestral sequence 
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Figure 3 | Historical permissive substitutions enhanced evolvability of 
SRE specificity. a, GFP activation on ERE and SRE by each RH variant 
in the AncSR1 background; colours as in Fig. 1c. b, Number of variants 
in each functional class in the AncSR1 and AncSR1+ 11P backgrounds. 
c, Functional topology of the RH sequence space in AncSR1, represented 
as in Fig. 2a. d, Distribution of ERE-specific starting points by length 
of the shortest path to an SRE-specific outcome in AncSR1 (left) and 
AncSR1+ 11P (right). The 11P substitutions reduce the shortest path 
length (P <  10−12, Wilcoxon rank-sum with continuity correction). e, 11P 
reduce the requirement for permissive and promiscuous intermediate 
steps. The shortest path to SRE specificity from each connected starting 
point in AncSR1 (left) or AncSR1 + 11P (right) was classified by trajectory 
type: permissive (via ERE-specific intermediates), promiscuous (via 
promiscuous intermediates), both, or direct (one-step path without 
permissive or promiscuous intermediates). Starting points with 
multiple equally short paths contribute proportionally to each category. 
Distributions differ between the networks (P <  10−7, χ2 test).
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 network, increasing the number of paths from ERE to SRE specificity 
and reducing their length and complexity.

Our results shed light on the roles of determinism and chance in 
protein evolution1,3,22,24. The primary deterministic force is natural 
selection, which drives the evolution of forms that optimize fitness. 
Chance appears in two non-exclusive ways: as historical contingency, 
when the accessibility of some outcome depends on prior events that 
cannot be driven by selection for that outcome; and as stochasticity,  
when there are paths to numerous possible genotypes of similar 
 function, and which one is realized is random (Extended Data Fig. 7c)1.  
Previous work has shown that historical function-switching sub-
stitutions in some proteins were contingent on prior permissive 
 substitutions11,20,25–27, but the overall roles of chance and determinism  
in the evolution of a new function can be understood only by 
 characterizing other ways by which the function could have evolved. 
Our results point to strong stochasticity and contingency in the many 
histories by which SRE specificity could have evolved. Hundreds of 
genotypes encoding SRE specificity were accessible from AncSR1, but 
selection for that function alone could not have deterministically driven 
evolution down any of those paths, because all were contingent on  
permissive mutations—either the historical 11P or alternative permis-
sive mutations within the RH. Which particular permissive mutations 
happened to occur determined which SRE-specific genotypes then 
became accessible. Further, given some permissive set of first steps, 
paths to numerous SRE-specific genotypes typically become  available. 
Thus, evolution of any particular SRE-specific outcome— including 
the one that evolved during history—is contingent on the initial 
 stochastic acquisition of some set of permissive mutations, followed 
by the  subsequent stochastic realization of one of many possible ways 
to encode the derived function. These serial stochastic choices result in 
compounding contingency, magnifying the role of chance in evolution.

Some aspects of real and counterfactual history cannot be recon-
structed, but our conclusions are likely to be robust to major forms 
of uncertainty. For example, the precise probability of any trajectory 
depends on population size and on the relationship between  molecular 
function and fitness, but neither of these is known. Still, we found 
that contingency and stochasticity were important not only under 
 scenarios emphasizing purifying selection and drift, but also under 
those  favouring determinism, such as when selection drives continuous 
enhancement of the derived function or allows affinity within only a 
narrow range. Second, sequence space is so vast that we could explore 
only a limited portion. But contingency and stochasticity are likely to 
remain important when larger regions are considered. If these unex-
plored regions contain additional trajectories to SRE-specific outcomes, 
then the role of stochasticity in the choice among options would be even 
more important. Moreover, contingency on starting point arising from 
the distribution of SRE-specific genotypes across sequence space would 
persist even if new potential outcomes were discovered, and it would 
be magnified if those outcomes were even more distant than those we 
characterized. Finally, the dependence on permissive mutations that we 
observed would be eliminated only if there is a mutation at some other 
site that could somehow confer SRE activity on AncSR1 in a single step; 
this seems implausible, because all other residues are distant from the 
variable bases.

Despite the abundance of accessible SRE-specific genotypes near the 
ancestral and derived RHs (Extended Data Fig. 5d, e), the genotype that 
historically evolved is conserved among present-day descendants. It is 
possible that some unknown property made this sequence selectively 
superior to the many genotypes we found that are at least as effective 
at recognizing SRE and excluding ERE. But it could also be conserved 
because of factors that accumulated after it evolved. For example, a 
substitution can become epistatically entrenched by subsequent restric-
tive substitutions at other sequence sites28,29. A transcription factor’s 
sequence may also become pleiotropically entrenched by subsequent 
mutations in the ensemble of response elements it binds30. If one 
of the many alternative SRE-specific outcomes had instead evolved 
from the ancestral protein by chance, it too could have been subse-
quently locked in, yielding conservation and the illusion that it evolved  
deterministically. The singularity of the present seems to rationalize  
the past. History leaves no trace of the many roads it did not take, or 
of the possibility that evolution turned out as it did for no good reason 
at all.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MethOdS
Construction and validation of a yeast assay for steroid receptor DNA-binding 
domain function. All work was performed in Saccharomyces cerevisiae strain K20 
(CEN.PK 102-5B, URA3−, HIS3−, LEU−)31. Oligonucleotide sequences used for 
cloning and sequencing are included in Supplementary Table 1. We constructed 
yeast reporter strains containing yeast enhanced GFP (yeGFP) under the control of 
a minimal CYC1 promoter with two upstream ERE or SRE palindromes, integrated 
into the ADE2 locus31. Colony PCR and Sanger sequencing confirmed correct 
integration of the ERE2–yeGFP or SRE2–yeGFP reporter. An additional 20 μ g ml−1  
adenine hemisulfate was added to all media to ameliorate ADE2 disruption.

The yeast expression plasmid pTNS33 contains the AncSR1 DNA-binding 
domain (DBD, GenBank accession number AJC02122.1)11 with an N-terminal 
SV40 nuclear localization sequence and Gal4 activation domain (AD) connected by 
a nine-residue linker (IQQGGSGGS). Expression of the AD-DBD fusion protein 
is controlled by the galactose-inducible GAL1 promoter, in the background of 
the pRS413 plasmid32 containing a HIS selection marker. We assembled pTNS33 
by yeast homologous recombination using the LiAc/ssDNA/PEG method33, 
 selecting for growth on SC-His plates with 2% dextrose (+  D). We confirmed 
correct  plasmid assembly by Sanger sequencing.

To validate the ERE2–yeGFP and SRE2–yeGFP reporters, a selection of  previously 
assayed DBDs spanning a range of DNA-binding affinities11,12 were cloned into the 
pTNS33 background and transformed into each yeast reporter strain. Individual 
colonies were inoculated in 3 ml SC-His with 2% raffinose (+  R), and incubated for 
16 h at 30 °C and 225 r.p.m. in an orbital shaker incubator. Cells were back-diluted 
to 0.25 A600 nm in SC-His with 2% galactose (+  G) to induce DBD expression and 
grown for an additional 24 h. Cells were pelleted and suspended to 1 A600 nm in 
1×  TBS. We analysed 10,000 cells of each genotype by flow cytometry on a BD 
LSR-Fortessa 4-15, with 488 nm excitation and 530 nm emission. We used gates 
drawn empirically on forward-angle scattering/side-angle scattering (FSC/SSC) 
and forward-angle scattering height/forward-angle scattering area (FSC-H/FSC-A) 
plots (for example, Extended Data Fig. 2) to isolate a homogeneous cell population, 
from which we determined the mean per-cell green fluorescence. The relationship 
between mean GFP activation and previously measured binding affinities was 
fitted to a segmented-linear relationship in R34 with the ‘segmented’ package35.
Library generation. AncSR1 and AncSR1+ 11P RH libraries were constructed by 
synthesizing pools of oligonucleotides containing degenerate NNK codons at four 
variable sites in the RH and inserting these into coding sequences for the  previously 
reconstructed AncSR1 DBD or the AncSR1+ 11P DBD, which  contains the 11 
 previously identified historical permissive mutations11. These libraries encode 
all combinations of all 20 amino acids at the three RH sites that changed during 
the historical evolution of SRE specificity (sites 25, 26, and 29) and at the adja-
cent position (site 28), which physically interacts with the substituted  residues11 
and varies among the broader nuclear receptor superfamily36. Each RH library 
contains 1,048,576 genetic variants, encoding 160,000 full-length proteins and 
34,481 stop-codon-containing variants. To construct the libraries, 53- nucleotide 
single-stranded DNA oligonucleotides were synthesized (DNA2.0, Newark, 
California), containing variable RH sites and invariant flanking sequence  identical 
to the respective plasmid sequences (Supplementary Table 1). Oligonucleotide 
pools were converted to double-stranded DNA by primer extension with Klenow 
polymerase and purified on a Qiagen MinElute column. Yeast expression plasmids 
containing AncSR1 or AncSR1+ 11P were modified by site-directed mutagenesis 
to introduce EcoRI and NcoI sites, which were cut to excise the native RH and 
linearize the vector to receive the oligonucleotide pool. Plasmid libraries were 
assembled via Gibson assembly, incubating 0.56 pmol gel-purified linear vector, 
8.4 pmol oligonucleotide pool, and 120 μ l 2×  GA Master Mix (NEB) at 50 °C for 
1 h. Assembled libraries were purified over DNA Clean & Concentrator columns 
(Zymo) and transformed into electrocompetent NEB5α  Escherichia coli cells with 
a 2.5 kV electroporation pulse in 0.2 mm gap cuvettes. Aliquots of cells were  serially 
diluted and plated on LB +  carbenicillin to estimate transformation  efficiencies. 
Remaining cells were grown overnight in LB +  carbenicillin, and plasmids were 
harvested using a GenElute Midiprep plasmid purification kit. For both the 
AncSR1 and AncSR1+ 11P RH libraries, we obtained at least 20 times more trans-
formants than the effective size of the library (Extended Data Table 1).

Each RH library (AncSR1 and AncSR1+ 11P) was independently transformed 
twice into each yeast reporter strain (ERE and SRE) for replicate FACS-seq  analyses. 
We followed a yeast electroporation protocol37, scaled up for ten times the number 
of cells and a total of 120 μ g of library plasmid in 600 μ l H2O. An aliquot of cells 
was serially diluted and plated on SC-His +  D to estimate transformation yield, 
which averaged 1.25 ×  107 colony-forming units across the eight transformations 
(Extended Data Table 1). The remaining cells were grown to  saturation in 500 ml 
SC-His +  D. Consistent with previous observations38, we observed that seven 
out of eight colonies post-transformation were multiple-vector  transformants. 
We  performed an additional passage, at which point multiple-vector clones were 

detected at fewer than one in eight colonies. A total of five passages occurred 
before quantification (see below), so at this rate of reduction multiple-vector trans-
formants are expected to occur at a frequency no greater than 0.007 in the library. 
Furthermore, if many RH variants were false  positives caused by co-transformation 
of non-functional with functional genotypes, then ones stop-codon-containing 
variants would have been  classified as functional, but this was never observed. 
Passaged yeast library aliquots of 3 ×  109 cells were flash frozen in liquid nitrogen 
and stored at − 80 °C as 25% glycerol stocks.
Library induction and FACS. Yeast library aliquots were thawed on ice, added to 
500 ml SC-His +  D, and grown for 12 h at 30 °C and 225 r.p.m. Cells were diluted 
to 0.25 A600 nm in 500 ml SC-His +  R, and grown for an additional 12 h at 30 °C and 
225 r.p.m. Cells were then diluted to 0.25 A600 nm in 200 ml SC-His +  G to induce 
DBD expression, and grown for 24 h at 30 °C and 225 r.p.m. Induced cells were 
spun at 3,000 g for 5 min, suspended to 3 ×  107 cells per millilitre in 1×  TBS, passed 
through a 40 μ m nylon cell strainer, and stored on ice for sorting. Alongside each 
library induction, we induced isogenic controls expressing known DBDs according 
to the same protocol but at 3 ml volumes.

Each library was sorted into four bins on a BD FACSAria II. Initial gates 
were drawn to isolate homogenous cells and exclude doublets, using SSC/FSC 
and FSC-H/FSC-A scatterplots (Extended Data Fig. 2). We assigned sort gate 
boundaries to the AncSR1+ 11P/SRE library to correspond to the observed mean 
 fluorescence of a stop-codon-containing variant, of AncSR1+ 11P:GSKV, and 
AncSR1+ 11P:GGKA, the variant with the highest previously known activation; 
these gates yielded four bins that captured 45%, 45%, 9.5%, and 0.5% of the library 
population, respectively. Gates for other libraries were assigned to yield the same 
bin sizes. To calibrate the arbitrary-unit fluorescence scales of sorting experiments 
conducted on different days, we transformed fluorescence values by a linear model 
fitted to the relationship between mean fluorescence of reference isogenic cultures 
induced and analysed in parallel to each library sorting experiment. Cells were 
sorted into SC-His +  D with 34 μ g ml−1 chloramphenicol to prevent bacterial 
contamination and stored on ice until ~ 108 cells were sorted. An aliquot of cells 
sorted into each bin was serially diluted and plated to estimate colony-forming unit 
recovery (Extended Data Table 1). Remaining cells were suspended to an estimated 
200,000 cells per millilitre in SC-His +  D +  chloramphenicol, and grown for 16 h at 
30 °C and 225 r.p.m. Plasmids were extracted from each outgrowth according to the 
protocol of ref. 39, which was scaled up 16-fold for bins 1 and 2, eightfold for bin 
3, and threefold for bin 4 to avoid bottlenecks. Extracted plasmids were estimated 
to be present at a concentration of 2 ×  106 plasmids per microlitre by comparing 
bacterial transformation efficiencies of yeast-extracted plasmid with pUC19 and 
bacterial-purified plasmid standards.
Sequencing and processing. We used PCR to amplify the variable RH region 
from post-sort plasmid aliquots; primers appended in-line barcodes40 to identify 
the experiment and sort bin, along with binding sites for sequencing primers and 
Illumina flow cell adaptor sequences (Supplementary Table 1). Barcodes were 
of different lengths to stagger reads across clusters and were assigned to bins to 
 optimize the distribution of base calls at each position during the initial rounds 
of sequencing. Multiple barcodes were used for bins 1 and 2, which contained 
the majority of cells. For each bin–barcode combination, PCR was conducted 
in eight replicate 50-μ l aliquots, with 10 μ l of plasmid template, 10 μ l 5×  HF 
buffer, 1 μ l 10 mM dNTPs, 2.5 μ l 10 μ M forward and reverse primer, and 0.5 μ l 
Phusion  polymerase per reaction. PCRs were assembled on ice, transferred to a 
 thermocycler block preheated to 98 °C, and subjected to 20 PCR cycles with 60 °C 
annealing. PCRs were gel-purified, quantified via BioAnalyzer and qPCR, and then 
pooled for sequencing according to the relative numbers of cells acquired in each 
bin. Single-end 50 bp reads spanning the barcode and RH sequence were acquired 
on an Illumina HiSeq2500.

We discarded sequence reads with an average Phred score < 30 and sequences 
that did not perfectly match the barcode and invariant portion of the template. 
Reads were demultiplexed by barcode and further processed using tools from the 
FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). RH variants with incon-
sistent read numbers between barcodes in the same bin were considered unchar-
acterized for that entire experiment. This procedure yielded filtered read counts 
in each sort bin greater than the number of cells sorted into that bin (Extended 
Data Table 1). To estimate the number of cells of a genotype that were sorted into a 
bin, we divided the number of sequence reads of a genotype in a bin by the average 
number of reads per cell in that bin.
Estimating mean fluorescence and standard error. We estimated the mean  
fluorescence of each variant in the library from the distribution of its reads across 
fluorescence sort bins using a maximum likelihood approach41. We first assessed 
the fit of various distributions to the observed per-cell fluorescence of a series of 
isogenic cultures of different RH genotypes analysed in isolation via flow  cytometry, 
and found the logistic distribution to have the best fit by Akaike information cri-
terion (Extended Data Fig. 1b, c). We then used the ‘fitdistrplus’ package42 in R to 
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find the maximum likelihood mean fluorescence for each library variant given its 
distribution of cell counts across sort bins, the fluorescence  boundaries of those 
bins, and the logistic distribution; this approach explicitly takes into account the 
fact that the fluorescence of a cell within a sort bin is not precisely measured and 
has been shown to be an unbiased approach for  estimating  underlying activities in 
FACS-seq analyses41. Estimates of mean fluorescence from the FACS-seq library 
characterization were compared between independent  replicates (Extended Data 
Fig. 1d). Interval-censored per-cell observations from the two independent repli-
cates were then pooled, and the maximum likelihood mean fluorescence for each 
variant estimated from these pooled data. These final estimates were compared 
with fluorescence observed directly for isogenic cultures of randomly selected 
clones from each library, which were isolated post-sort,  genotyped, re-induced 
in isogenic cultures, and analysed via flow cytometry according to the protocol 
above (Extended Data Fig. 1e).

We estimated the standard error of mean fluorescence (s.e.m.) for genotypes on 
the basis of their depth of coverage (number of cells sampled) in two ways. First, we 
estimated s.e.m. from stop-codon-containing variants in each library by grouping 
them according to their depth of coverage and calculating the standard deviation 
of the sampling distribution of estimated mean fluorescence for variants in each 
group. Second, we leveraged variability in the mean fluorescence estimates from 
the two replicate FACS-seq experiments for each library: using coding variants for 
which the number of cells sampled between replicates is within 20% of each other, 
we calculated the difference between the estimate of mean fluorescence from the 
pooled data and the estimates from each of the two replicates, grouped variants by 
their average depth of coverage for the two replicates, and calculated the standard 
deviation of the distribution of differences for each group. Every variant in the 
library was then assigned the s.e.m. for the appropriate coverage depth group. 
These two approaches yielded a similar relationship between s.e.m. and sampling 
depth, but the second approach estimated higher s.e.m. at higher coverage depths 
(Extended Data Fig. 1g); to be conservative, we therefore used the second approach 
for further analyses.
Classifying strength of activation on each response element. We used mean 
 fluorescence estimates to classify the strength with which each library variant 
bound to ERE and SRE using non-parametric comparisons with distributions 
of reference genotypes. A variant was classified as active on a response  element 
if its mean fluorescence was significantly greater than that of stop-codon- 
containing variants contained in the library: for each variant, the P value for the 
null  hypothesis that a variant was inactive was calculated as the proportion of 
stop-codon- containing variants of similar sampling depth with greater mean 
 fluorescence than that of the variant of interest; variants were labelled ‘active’ if the 
null hypothesis could be rejected at a 5% false discovery rate (using the Benjamini–
Hochberg procedure) or ‘inactive’ if the null hypothesis could not be rejected.

Each active variant was then subclassified as a weak or strong activator by 
comparing its mean fluorescence to that of the relevant ancestral genotypes 
(AncSR1:EGKA on ERE, or AncSR1+ 11P:GSKV on SRE). Specifically, for 
each active variant we performed a test of non-inferiority within an equivalence 
 margin of 20% of the range between the average mean fluorescence of stop-codon- 
containing variants and the mean fluorescence of the ancestral reference. This test 
compares the mean fluorescence of a variant of interest with the fluorescence of 
cells with the relevant ancestral genotype, shifted to 80% of the range between the 
mean of stop-codon-containing variants and the ancestral reference. To determine 
whether a variant’s fluorescence was greater than this shifted ancestral reference, 
we generated 10,000 bootstrap replicates from the shifted distribution of ancestral 
cellular fluorescence, with replicate size of similar sampling depth to the variant  
of interest; the mean fluorescence of each bootstrap replicate was calculated 
using the FACS gates and maximum likelihood procedure described above. The 
P value for the null hypothesis that a variant was a weak activator was calculated 
as the proportion of bootstrap replicates with fluorescence greater than that of 
the  variant of interest; variants were classified as ‘strong’ if the null hypothesis 
could be rejected at a 5% false discovery rate (using the Benjamini–Hochberg 
procedure) or ‘weak’ if the null hypothesis could not be rejected. AncSR1:EGKA 
was represented by  relatively few cells in the ERE library, resulting in an artificially 
low mean  fluorescence determined by FACS-seq and a ‘weak’ classification, so it 
was manually classified as a strong activator on ERE by definition. For library 
classifications, we determined the reference activity of AncSR1:EGKA on ERE from 
an isogenic culture analysed in parallel to library sorts. Using the lower FACS-seq 
mean fluorescence measurement as the reference activity for this genotype did not 
alter our conclusions (Extended Data Table 2, column A).
Extrapolation to missing genotypes. Classification of variants that are rare in the 
library may not be reliable. We examined how agreement in classification between 
FACS-seq replicates is affected by sampling depth, and we found that the probability  
that a variant is classified as positive in one replicate if it is classified as positive in 
the other depends on sampling depth below 15 cells (Extended Data Fig. 1f). We 

therefore considered variants with 15 or fewer cells to be experimentally unde-
termined, accounting for 2.0–8.8% of all variants across the four DBD/response 
element combinations (Extended Data Table 1). To predict the classification of 
these variants, we used a continuation ratio ordinal logistic regression model 
that predicted the probability that a variant was strong, weak, or inactive from its  
genotype, trained on the empirical classification of all the determined genotypes 
in the library. We modelled amino-acid states as potentially contributing first- 
order main effects (20 states ×  4 positions =  80 parameters) and pairwise epistatic 
effects (4C2 ×  202 =  2,400 parameters). We fitted these models to the observed 
classifications in each library using a coordinate-descent fitting algorithm with 
L1 penalization, as implemented in the ‘glmnetcr’ package43 in R. We used  tenfold 
cross-validation to determine the quality of model predictions and to select the 
penalization parameter λ. We set λ =  10−5 to obtain a high true positive rate  
without compromising the positive predictive value (Extended Data Fig. 3).
Classifying response element specificity. The specificity of each variant was 
determined from its functional classification on ERE and SRE. ERE-specific 
 variants are strong on ERE and inactive on SRE; SRE-specific variants are strong 
on SRE and inactive on ERE; promiscuous variants are strong on one response 
element and strong or weak on the other; and non-functional variants are not 
strong on either response element. The false positive rate was very low, with no 
stop-codon-containing variants classified as functional. AncSR1+ 11P:EGKA is 
classified as promiscuous, because it has very strong ERE activity and SRE activity 
that is very weak but statistically distinguishable from background, consistent with 
previous observations11.

A small number of RH variants were unexpectedly inferred to be functional 
in AncSR1 but non-functional in AncSR1+ 11P (Extended Data Fig. 8a–c). To 
validate this observation, we re-cloned the three SRE-specific variants with the 
largest reduction in fluorescence when 11P were included (CARV, HARV, HPRM) 
and assessed their SRE activation in the AncSR1 and AncSR1+ 11P backgrounds 
in isogenic cultures by flow cytometry; for comparison, we also validated a 
 putatively 11P-independent genotype (KASM) and two 11P-dependent variants 
(SPKM, YGKQ), alongside GSKV for reference. Inductions were conducted in 
triplicate, each from an independent transformant. Classifications of the three 
comparison genotypes were all confirmed; however, the three genotypes that were 
putatively restricted by 11P showed no reduction in fluorescence in this assay, 
indicating that they were falsely classified as non-functional in the AncSR1+ 11P 
FACS-seq assay (Extended Data Fig. 8c). Notably, the predictive logistic regression 
 correctly predicts that these three variants are strong SRE-binders in the AncSR1+ 
11P  background. These three variants manifested strong growth defects in the 
AncSR1+ 11P background, even in the ERE strain in which they do not activate 
GFP expression.
Robustness of results to classification method. We tested the robustness of our 
conclusions to alternative methods for classifying variants as functional. These 
included the following: (A) using the internal library AncSR1:EGKA mean 
 fluorescence estimated by FACS-seq as the reference level of AncSR1 activation 
on ERE; (B) increasing the margin of equivalence to 50% of the activity difference 
between ancestral and stop-codon-containing variants; (C) classifying any active 
variant (weak or strong) as functional; (D) using the 80% mark of the range from 
stop-codon-containing to ancestral variants as a hard threshold rather than a null 
hypothesis for statistical testing; (E) defining functional variants as between 80% 
and 120% of the ancestral activity, so that extremely strong binders were classi-
fied as non-functional; (F) using predicted classifications for all variants, with 
experi mental classifications used only to train predictive models; (G) using no pre-
dicted classifications, and labelling all undetermined genotypes as non-functional;  
(H) using for each variant the strongest functional class as predicted or determined 
by experiment; (I) using the experimental classification for a variant only if it was 
identical between replicates and predicting all others; and (J) using the per-variant 
estimates of the s.e.m. on the basis of coverage depth to calculate a P value that a 
variant was inactive or weakly active given a normal distribution, rejecting each 
null hypothesis at a 5% false discovery rate as above. When appropriate, ordinal 
logistic regression models were re-trained to predict missing genotypes under 
each scheme. These alterations made no qualitative differences to our conclusions 
(Extended Data Table 2).
Network construction and trajectories through sequence space. Network 
representations of functional RH variants in the AncSR1 and AncSR1+ 11P 
backgrounds were constructed using the R package ‘rgexf ’44 and the network  
visualization program Gephi45. Nodes representing RH variants were connected 
by edges if any genetic encoding of their protein-coding sequences could be inter-
converted with a single-nucleotide mutation given the standard genetic code. The 
network was represented as a force-directed graph, which clusters nodes in two- 
dimensional space on the basis of connectivity: nodes tend to repel each other, 
but each edge between connected nodes provides an attractive force; in the 
 ‘equilibrium’ layout, sets of densely interconnected nodes tend to cluster to the 
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exclusion of less connected nodes. Force-directed graph layouts were constructed 
with the ForceAtlas2 method in LinLog mode, Gravity 1.0, and Scaling 0.8 
(AncSR1) or 0.125 (AncSR1+ 11P).

We used the ‘igraph’ package46 in R to characterize the set of paths between 
functional nodes. A step was defined as a non-synonymous nucleotide mutation 
between two functional variants; synonymous mutations within a single node were 
not considered as contributing to trajectory length. The graph was directed, so that 
trajectories could proceed from ERE to SRE specificity directly or via a promiscuous  
intermediate; non-functional intermediates2 and functional reversions were not 
allowed, but ‘neutral’ steps within a functional class were allowed. Epistasis was 
inferred when the shortest path between two nodes was longer than the minimum 
genetic distance between genotypes7,8; epistasis could arise because the state at one 
site specifically modulated the functional effect of some state at another site or 
because of nonlinearity in the genotype–phenotype map47, such as the threshold 
we used to classify variants as functional.

The distributions of shortest path length to SRE specificity from ERE-specific 
starting points in the AncSR1 and AncSR1+ 11P networks were compared using 
a Wilcoxon rank-sum test with continuity correction, as observations were not 
 normally distributed. The number of ERE-specific starting points in each  network 
that required permissive steps and/or promiscuous intermediates on their shortest 
path to SRE specificity was compared via a χ2 test. All categories had an expected 
value of 5 or greater.

To compare genotypic states among outcomes reached from different ERE-
specific starting points, we calculated the frequency distribution of amino-acid 
states at each sequence site for the set of outcomes reached from each starting point; 
we then calculated the Jensen–Shannon (J–S) distance between these distributions 
for pairs of starting points. To capture a true amino-acid state distribution across 
outcomes, we only considered ERE-specific starting points that accessed at least 
15 outcomes (the median across all ERE-specific starting points). We compared 
these observed J–S distances with a null expectation of J–S distances in the absence 
of structure in sequence space, in which we randomly sampled two sets of variants 
from all possible SRE-specific outcomes according to the same sample sizes used 
in each real comparison, and calculated the J–S distance between these randomly 
sampled distributions.

We also considered a regime in which SRE-binding affinity is under strong 
selection, such that SRE-binding affinity is required to increase with each step; such 
a scenario has a strong potential to make evolution deterministically favour a single 
outcome. In this scheme, a step from one genotype to a neighbour was allowed only 
if the lower bound of the 90% confidence interval of the neighbour’s mean SRE 
fluorescence, estimated from its mean and s.e.m., was greater than the upper bound 
of the confidence interval of the starting genotype (indicating P <  0.02, ref. 48). We 
then calculated the probability of each accessible trajectory using two previously 
described models8: in the equal fixation model, any step that enhances SRE affinity 
from a particular node is equally likely to occur; in the correlated fixation model, 
the probability that an SRE-affinity-enhancing step occurs is directly proportional 
to the degree to which it increases SRE mean fluorescence, relative to the other 
SRE-enhancing steps available from the given node.
Structural modelling and predictions of RE-binding affinity. We used FoldX49 
to predict the affinity to SRE of all RH variants that were 11P-dependent (SRE-
specific in the AncSR1+ 11P background and non-functional in AncSR1), 
or 11P-independent (SRE-specific in AncSR1; Extended Data Fig. 8a). For 
 structure-based affinity prediction, we used the crystal structures of the AncSR1 
DBD bound to ERE (Protein Data Bank (PDB) accession number 4OLN) and the 
AncSR2 DBD bound to SRE (PDB 4OOR) as starting points, with  crystallographic 
waters and non-zinc ions removed. We removed chains E, F, K, and L from the 
4OOR structure. We used the RepairPDB function to optimize both DBD  structures 
according to the FoldX force field, and we used the BuildModel function to mutate 
the AncSR1/ERE structure to AncSR1:GSKV/SRE. The BuildModel function was 
then used to model each SRE-specific RH variant in complex with SRE on each of 
the AncSR1 and AncSR2 DBD structures, and the AnalyzeComplex function was 
used to predict the total DNA-binding energy of each protein variant with SRE. 
The predicted binding energies of 11P-dependent and 11P-independent  variants 
were compared using a non-parametric Wilcoxon rank-sum test with  continuity 
 correction, as data were not normally distributed. This test was conducted 
 independently for energies predicted using the AncSR1 and AncSR2 structures. 
To compare these same groups as directly estimated in FACS-seq, a Wilcoxon rank-
sum test with continuity correction was used, as data were not normally distributed.

To characterize the diversity in biochemical mechanisms of SRE specificity, 
we analysed FoldX models of the ten most active SRE-specific variants that were 
identified in our AncSR1+ 11P FACS-seq experiment. We modelled binding to 
SRE using the AncSR2/SRE structure as described above and binding to ERE using 
the crystal structure of the AncSR2:EGKA DBD bound to ERE (PDB 4OND), 
with water and non-zinc ions removed and optimized using the RepairPDB 

function. To illustrate protein–DNA contacts made in each structural model, we 
used NUCPLOT50 to identify all hydrogen bonds with distances ≤ 3.35Å between 
non-hydrogen atoms and non-bonded packing contacts ≤ 3.90Å. Summary  
figures display the union of contacts made by a residue in either of the half sites of 
the response element palindrome; we only illustrate residues whose contacts vary 
among the analysed structures.

To ensure structural inferences converge, we built each SRE- and ERE-bound 
FoldX model a second time. We observed convergence in all polar contacts (and 
absence thereof in ERE structures) illustrated in Fig. 1 and Extended Data Fig. 4. 
Only several non-bonded contacts were not replicated: I29/T–4 in KAAI/SRE; 
Q29/A4 and Q29/T–4 in YGKQ/SRE; M29/T–3 in KSAM/SRE; and K25/G2 
and K25/T–3 in KASM/SRE. To determine whether electrostatic clashes in ERE-
bound structures could be satisfied by bridged water molecules51, models were 
built again using the BuildModel function with predicted waters. In some cases 
(GGRT, YGKQ, DSKM, CGRV), but not all (GSKV, KAAI, PAKE, KSAM, DPKQ, 
SAKE, KASM), polar groups on ERE that were not satisfied by direct interaction 
with protein side chains are predicted to be satisfied by water bridges between 
protein and DNA.
Biochemical determinants of response-element-binding specificity. Logos  
illustrating the frequency with which each amino-acid state is found at each 
 position among variants of a functional class were constructed using WebLogo52. 
Since our sequence space is combinatorially complete (all 160,000 genotypes are 
classified, either by FACS-seq or via prediction), the logo plots do not need to 
be normalized by background input frequencies. To evaluate similarity of the 
frequency profiles between classes of variants, the frequency of each amino-acid 
state in a class was centred log-ratio transformed, the appropriate transforma-
tion before computing correlations among compositional data; a pseudocount 
of one was added to the number of observations of each amino acid to allow log- 
transformation of states observed zero times. The Spearman rank correlation 
 coefficient was computed for the correlation between functional classes.

To identify the biochemical properties of amino acids that contribute to DNA 
specificity, we developed a multiple logistic regression model that describes the 
probability that an RH variant specifically binds a response element as a function of 
the biochemical properties of the amino-acid states at each of its four variable RH 
positions. The model includes four properties (hydrophobicity, volume, isoelectric 
point, and α -helix propensity), with the values for each amino acid’s properties 
from ref. 53, which we then centred and standardized; the effect of a unit change in 
each property at each site on the log-odds of being a specific binder is reflected in 
a model coefficient, which together make up the model’s free parameters. We used 
R to find the values of these coefficients that best fitted the observed classifications 
for each DBD/RE combination. Differences in the contribution of a property to 
specificity were identified if its associated coefficients in two models differed by a 
Z test (P <  0.05 with no correction for multiple testing)54.
Data and code availability. Raw sequencing data have been deposited in the NCBI 
Sequence Read Archive under BioProject number PRJNA362734. Processed data 
and scripts to reproduce analyses are available at github.com/JoeThorntonLab/
nature-2017_RH-scanning. A list of all RH sequences and their specificity 
 classifications as used in the text is available in Supplementary Table 2. All other 
data are available from the corresponding author upon reasonable request.
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Extended Data Figure 1 | Design and validation of a yeast FACS-seq 
assay for steroid receptor DNA-binding function. a, GFP activation in 
ERE (purple) and SRE (green) yeast reporters correlates with previously 
measured protein–DNA binding affinity11,12. Asterisk, stop-codon-
containing variant. Dashed line, best fit segmented-linear relationship 
between GFP activation and log10(Ka,mac) b, Histogram of the per-cell 
green fluorescence for AncSR1 on ERE measured via flow cytometry, 
fitted to a logistic distribution (dashed line). c, Distributions providing the 
best fit to flow cytometry data for isogenic cultures of 101 DBD variants, 
using Akaike information criterion. d, Comparisons of mean fluorescence 
estimates between FACS-seq replicates of each protein/response element 
combination. Black points, coding RH variants; light grey, stop-codon-
containing variants. R2

pos, squared Pearson correlation coefficient 
for variants with mean fluorescence significantly higher than stop-
codon-containing variants in either or both replicates. e, Comparisons 
between mean fluorescence as determined in FACS-seq and via flow 

cytometry analysis of isogenic cultures for a random selection of clones 
from each library. Dashed line, best-fit linear regression. f, Robustness 
of classification to sampling depth. Variants were binned according to 
the minimum number of cells with which they were sampled in either 
replicate. Below 15 cells sampled (dashed line), the probability that a 
variant called active in one replicate was also called active in the other is 
dependent on sampling depth; to minimize errors due to sampling depth, 
we eliminated as ‘undetermined’ all variants with fewer than 15 cells 
sampled after pooling replicates. g, Standard error of mean fluorescence 
estimates (s.e.m.) in each library as a function of sampling depth. Top: for 
each background, the relationship between s.e.m. and sampling depth for 
ERE (purple) and SRE (green) libraries, as estimated from the sampling 
distribution of stop-codon-containing variants (dotted lines) or variability 
in mean fluorescence estimates between replicates (solid lines). Bottom: 
the cumulative fraction of coding variants in each library having a certain 
number of cells sampled in the pooled data.
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scattering (FSC-A) selects for a homogenous cell population (P1).  
b, A scatterplot of the height of the per-cell forward scatter peak  
(FSC-H) and the integrated area of this peak (FSC-A) excludes events 

where multiple cells pass through the detector simultaneously (P2).  
c, Final sort bins (P3–P6) are drawn on the distribution of green 
fluorescence (FITC-A). d, Table showing the hierarchical parentage  
of sort gates and the percentage of events that fall in each bin.
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Extended Data Figure 3 | Models to predict the function of missing 
genotypes. For each protein/response element combination, a 
continuation ratio ordinal logistic regression model was constructed to 
predict the functional class of a variant as a function of its four RH amino-
acid states, including possible first-order main effects and second-order 
pairwise epistatic effects. Tenfold cross-validation was used to select the 
penalization parameter λ and evaluate performance. a, b, True positive 
rate (left, TPR, the proportion of experimental positives that are predicted 
positive) and positive predictive value (right, PPV, the proportion of 
predicted positives that are experimentally positive) are shown as a 
function of λ for AncSR1+ 11P on ERE. Classifications were evaluated 

for (a) all active (weak and strong) versus inactive variants and (b) strong 
active versus weak active and inactive variants. Grey dotted lines, cross-
validation replicates; solid line, mean. Dashed line shows the chosen value 
of λ =  10−5; as λ continues to decrease beyond λ =  10−5, the true positive 
rate plateaus but positive predictive value continues to decline. c, The 
number of non-zero parameters included in each model as a function  
of λ. Dashed line, λ =  10−5. d, Summary of performance metrics from 
tenfold cross-validation for each model with λ =  10−5. Accuracy is the 
proportion of predicted classifications (strong, weak, and inactive) that 
match their experimentally determined classes.
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Extended Data Figure 4 | Biophysical diversity in DNA recognition.  
a, b, Diverse mechanisms for recognition of SRE (a) or ERE (b) by  
the historical RH genotypes (GSKV and EGKA) and alternative  
SRE-specific variants. Contacts from FoldX-generated structural  
models are shown between RH residues (circles) and DNA bases (letters), 
backbone phosphates (small circles) and sugars (pentagons, numbered by 
position in the DNA motif; dashed numbers refer to the complementary 
strand). Hydrogen bonds are shown as dashed arrows from donor to 
acceptor; dotted lines, non-bonded contacts. Red squares, bases that 

form hydrogen bonds in the EGKA-ERE structure that are unsatisfied 
in complex with an SRE-specific RH; red circles, side chains with polar 
groups that are not satisfied in complex with ERE. Only DNA contacts 
that vary among the analysed structures are shown. c, Large side chains 
at position 29 correlate with the loss of a conserved R33 hydrogen bond 
to ERE. For ERE-bound structural models, the distance of the Arg33 
guanidinium hydrogen to the ERE T4 carbonyl oxygen was measured  
and compared with the atomic volume of the residue at position 29 in  
that variant.
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Extended Data Figure 5 | The ancestral RH (EGKA) and derived RH 
(GSKV) can access many SRE-specific outcomes by short paths in 
AncSR1+11P. a, Concentric rings contain RH genotypes of minimum 
path length one, two, or three steps from AncSR1+ 11P:EGKA (centre). 
The historical outcome (GSKV, boxed, bottom) is accessible through a 
three-step path (EGKA–GGKA–GGKV–GSKV). Alternative SRE-specific 
outcomes accessible in three or fewer steps are in green. Lines connect 
genotypes separated by a single non-synonymous nucleotide mutation; 
lines among genotypes in the outer ring are not shown for clarity. Orange 
arrows indicate paths of significantly increasing SRE mean fluorescence. 
b, For trajectories indicated by orange arrows in a, SRE mean fluorescence 
is shown versus mutational distance from AncSR1+ 11P:EGKA (with 
x-axis jitter to avoid overplotting). Grey lines connect variants separated 

by single-nucleotide mutations. Error bars, 90% confidence intervals. 
Green dashed line, activity of AncSR1+ 11P:GSKV on SRE. c, For the SRE-
specific outcomes accessed in orange paths in a, the probability of each 
outcome under models where the probability of taking a step depends on 
the relative increase in SRE mean fluorescence (correlated fixation model), 
or where any SRE-enhancing step is equally likely (equal fixation model)8. 
d, The historical outcome (GSKV) has SRE-specific single-mutant 
neighbours. Concentric rings contain SRE-specific RH genotypes of path 
length one or two steps from AncSR1+ 11P:GSKV (centre). Lines connect 
genotypes separated by a single non-synonymous nucleotide mutation; 
lines among genotypes in the outer ring are not shown for clarity. e, The 
distribution of SRE mean fluorescence of SRE-specific neighbours of 
AncSR1+ 11P:GSKV illustrated in d. Error bars, 90% confidence intervals.
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Extended Data Figure 6 | Evolvability of SRE specificity in an ancestral 
sequence space. a, Alternative ERE-specific starting points reach SRE-
specific outcomes with very different amino-acid states. For each starting 
point accessing at least 15 outcomes (the median of all starting points), 
the frequency profile of amino-acid states at each RH site was determined 
for the set of SRE-specific outcomes reached in three or fewer steps; for 
each pair of starting points, the Jensen–Shannon (J–S) distance between 
profiles was calculated. Blue curve, distribution of pairs of starting points 

by J–S distances of the outcomes they reach; grey, distribution of J–S 
distances between profiles for randomly sampled sets of SRE-specific 
variants. In each modal peak, the amino-acid frequency profiles for 
outcomes reached by a representative pair of ERE-specific starting points 
are shown. b–d, Contingency in the accessibility of individual SRE-specific 
outcomes remains when path lengths longer than the historical trajectory 
are considered. Plots are equivalent to Fig. 2b–d but for trajectories of 
increasing length.
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Extended Data Figure 7 | The historical starting point cannot access 
the derived function without permissive mutations. a, AncSR1 RH 
functional network layout as in Fig. 3c, with the shortest paths from 
AncSR1:EGKA to SRE specificity highlighted. The ancestral RH (EGKA) 
can access SRE specificity. However, all trajectories are at least five 
steps long, require permissive RH changes that confer no SRE activity 
(for example, K28R and G26A), and proceed through promiscuous 
intermediates. b, For paths highlighted in a, SRE mean fluorescence is 
shown versus mutational distance from AncSR1:EGKA; grey lines connect 
variants separated by single-nucleotide mutations. Error bars, 90% 
confidence intervals. Green dashed line, activity of AncSR1+ 11P:GSKV 
on SRE. AncSR1:EGKA was represented by only seven cells in the SRE 
library, so its FACS-seq SRE mean fluorescence estimate is unreliable  
(and its classification was thus inferred by the predictive model).  

In isolated flow cytometry experiments, its SRE mean fluorescence was 
indistinguishable from null alleles; the decrease in SRE mean fluorescence 
from step 0 to step 1 suggested by this figure is therefore more probably 
a flat line (no change in SRE activity). c, Stochasticity and contingency in 
trajectories of functional change. Diagrams illustrate paths from a purple 
starting point (left) to possible green outcomes (right). In a deterministic 
trajectory (i), a particular genotype encoding the green function will 
evolve deterministically if selection favours acquisition of the green 
function and only that genotype is accessible. The outcome of evolution is 
stochastic (ii) if multiple outcomes are accessible, so which one occurs is 
random. An outcome is contingent (iii) if its accessibility depends on the 
prior occurrence of some step that cannot be driven by selection for that 
outcome. Contingency and stochasticity can occur independently (ii and 
iii), or they can co-occur in serial (iv).
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Extended Data Figure 8 | See next page for caption.
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Extended Data Figure 8 | The effect of historical permissive 
substitutions is mediated by non-specific increases in affinity. 
a–d, The 11P substitutions non-specifically increase transcriptional 
activity as measured by FACS-seq, consistent with FoldX predictions of 
effects on binding affinity. a, Classification of SRE-specific variants as 
11P-dependent (orange) and 11P-independent (yellow) on the basis of 
their functions in AncSR1 and AncSR1+ 11P backgrounds. Icons  
for individual variants specifically assessed in b and c are shown.  
b, FACS-seq mean fluorescence estimates for 11P-dependent (orange)  
and 11P-independent (yellow) RH variants in the AncSR1 (left) and 
AncSR1+ 11P (right) backgrounds, shown as box-and-whisker plots as 
in Fig. 4a. Icons represent variants validated in c. P values, Wilcoxon 
rank-sum test with continuity correction. The mean fluorescence 
of 11P-independent genotypes is significantly higher in the AncSR1 
background but not in AncSR+ 11P. c, Validation of apparently restrictive 
effect of 11P on some genotypes. For three variants non-functional in 
AncSR1+ 11P but SRE-specific in AncSR1 FACS-seq assays (× ), we 
measured mean fluorescence of isogenic cultures by flow cytometry. We 
also assayed variants SRE-specific in AncSR1+ 11P and SRE-specific 
(square) or non-functional (open circle) in AncSR1, as validation controls. 
Isogenic mean fluorescence is represented as mean ±  s.e.m. from three 
replicate transformations and inductions analysed via flow cytometry.  
All FACS-seq classifications were validated except for the three apparently 
restricted variants in AncSR1+ 11P (highlighted in red), which are in 
fact strong SRE-activators in this background. Each of these variants was 

predicted to be a strong SRE-binder on the basis of its genotype, but had 
an artificially low FACS-seq mean fluorescence estimate, perhaps because 
of a strong growth defect in inducing conditions. d, After removing the 
three genotypes with inaccurate FACS-seq fluorescence measurements  
(× ), 11P-independent genotypes have significantly higher mean 
fluorescence than 11P-dependent genotypes in the AncSR1+ 11P 
background, consistent with a non-specific permissive mechanism via 
affinity. P values, Wilcoxon rank-sum test with continuity correction. 
e, The 11P substitutions do not alter the genetic determinants of SRE 
specificity. Each plot shows, for a variable site in the library, the frequency 
of every amino-acid state in two functionally defined sets of variants. 
Spearman’s ρ for each correlation is shown. The top row shows that the 
determinants of SRE specificity are similar in AncSR1 and AncSR1+ 11P 
libraries; the bottom row shows a much weaker relationship between the 
determinants of SRE and ERE specificity within the AncSR1+ 11P library. 
f, Biochemical determinants of ERE and SRE specificity in the AncSR1 
(top) and AncSR1+ 11P (bottom) backgrounds. A multiple logistic 
regression model predicts the probability that a variant is response-
element-specific from the biochemical properties of its amino-acid state at 
each of the four variable RH sites. The coefficients of this model represent 
the change in log-odds of being ERE-specific or SRE-specific per unit 
change in each property. Asterisks indicate site-specific determinants that 
differ significantly between ERE and SRE specificity in each background 
(Z test, P <  0.05).
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SRE, 
rep 2

2.06e7 2.9e8 2.03e7 3.07e7 5.54e6 5.86e5 5.71e7 3.14e7 5.53e7 2.01e7 1.55e6 yes 82.7 0.873 89.1 0.881

SRE, 
pooled

4.10e7 Not applicable 1.19e8 Not applicable 289.8 0.979 312.1 0.980

extended data table 1 | Library sampling statistics

Sample sizes and sequence read/coverage statistics are shown at various stages of the experimental pipeline for each protein library, yeast reporter strain, and replicate. For details, see Methods.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Classification Scheme

Inference
Main 
text

(A) Use 
FACS-seq ML 
estimate for 

AncSR1/ERE 

(B) Increase 
equivalence 
margin from 
20% to 50% 

(C) 
Classify as 
functional 
if weak or 

strong 
activity

(D) Classify as 
functional if ML 
fluorescence 
>0.8 that of 

ancestral 
reference

(E) Classify 
as functional 

only if ML 
fluor  within 

20% on 
either side 

of ancestral 
reference

(F) Classify 
all variants 
based on 

predictions 
from 

genotype

(G) No 
predictions; 

classify 
undetermined 

variants as  
inactive

(H) Classify 
based on 

prediction or 
experiment, 
whichever 

assigns 
stronger 
function

(I) Keep only 
classifications 

identical 
between 
replicates

(J) Use 
per-

variant 
estimate 

of 
standard 
error to 
classify

# ERE-specific, 
AncSR1

43 138 108 444 67 36 27 39 47 11 47

# promiscuous, 
AncSR1

45 94 84 158 58 38 45 44 60 30 46

# SRE-specific, 
AncSR1

41 41 58 213 45 19 31 38 40 39 40

# ERE-specific, 
AncSR1+11P

144 326 264 619 212 114 101 108 133 76 123

# promiscuous, 
AncSR1+11P

378 525 554 719 464 254 319 341 459 282 358

# SRE-specific, 
AncSR1+11P

829 832 1206 2728 956 296 670 768 899 809 837

AncSR1:EGKA requires 
permissives to access 

SRE-specificity?
TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Shortest path length 
from EGKA to SRE-
specificity in AncSR1

5 5 3 2 5 6 5 5 5 no paths 4

# SRE-specific 
outcomes accessed in 

3 steps from 
AncSR1+11P:EGKA

65 66 89 136 77 10 58 53 72 71 65

Proportion ERE-specific 
starting points unable to 
access SRE-specificity 

in 3 steps, 
AncSR1+11P

0.063 0.037 0.008 0.066 0.014 0.252 0.050 0.139 0.053 0.026 0.089

Proportion SRE-specific 
outcomes not accessed 
from any ERE-specific 

starting point in 3 steps, 
AncSR1+11P

0.276 0.108 0.118 0.071 0.150 0.571 0.378 0.388 0.276 0.425 0.280

Proportion pairs of 
ERE-specific starting 
points with no shared 
outcomes in 3 steps, 

AncSR1+11P

0.542 0.530 0.426 0.229 0.501 0.836 0.543 0.611 0.529 0.390 0.541

Fraction ERE-specific 
variants with no path to 

SRE-specificity, 
AncSR1

0.279 0.058 0.505 0.054 0.176 0.378 0.321 0.350 0.250 0.083 0.104

Fraction ERE-specific 
variants with no path to 

SRE-specificity, 
AncSR1+11P

0.014 0.021 0.004 0.066 0.005 0.470 0.010 0.056 0.015 0 0.033

Average shortest path 
length to SRE-

specificity from all 
connected ERE-specific 

variants, AncSR1 

4.193 4.191 3.796 2.309 4.054 4.304 4.158 4.889 4.278 4.545 4.163

Average shortest path 
length to SRE-

specificity from all 
connected ERE-specific 
variants, AncSR1+11P

2.183 2.122 1.867 1.336 1.986 2.885 2.270 2.333 2.206 2.158 2.294

Fraction ERE-specific 
variants with permissive 
shortest path, AncSR1

0 0.035 0.059 0.242 0 0 0 0 0 0 0

Fraction ERE-specific 
variants with permissive 

shortest path, 
AncSR1+11P

0.290 0.218 0.225 0.191 0.235 0.136 0.207 0.234 0.210 0.140 0.214

Fraction ERE-specific 
variants with 

promiscuous shortest 
path, AncSR1

0.483 0.461 0.381 0.370 0.381 0.445 0.548 0.361 0.594 0.634 0.524

Fraction ERE-specific 
variants with 

promiscuous shortest 
path, AncSR1+11P

0.413 0.462 0.403 0.133 0.441 0.458 0.504 0.426 0.538 0.524 0.475

Fraction ERE-specific 
variants with permissive 

and promiscuous 
shortest path, AncSR1

0.517 0.481 0.530 0.191 0.619 0.555 0.452 0.639 0.406 0.366 0.476

Fraction ERE-specific 
variants with permissive 

and promiscuous 
shortest path, 
AncSR1+11P

0.108 0.120 0.065 0.002 0.082 0.241 0.149 0.164 0.106 0.165 0.135

Fraction ERE-specific 
variants with direct 

shortest path AncSR1
0 0.023 0.030 0.198 0 0 0 0 0 0 0

Fraction ERE-specific 
variants direct shortest 

path, AncSR1+11P
0.190 0.201 0.308 0.673 0.242 0.165 0.14 0.176 0.145 0.171 0.176

extended data table 2 | robustness of inferences to scheme for classification of variants

Each row represents an inference reported in Figs 2 and 3; each column is a scheme for functionally classifying variants from FACS-seq data and FACS-seq-trained predictive models. For details of 
schemes, see Methods.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Nature Research wishes to improve the reproducibility of the work we publish. This form is published with all life science papers and is intended to 
promote consistency and transparency in reporting. All life sciences submissions use this form; while some list items might not apply to an individual 
manuscript, all fields must be completed for clarity. 

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research policies, 
including our data availability policy, see Authors & Referees and the Editorial Policy Checklist. 

    Experimental design
1.   Sample size

Describe how sample size was determined. n/a

2.   Data exclusions

Describe any data exclusions. For FACS-seq, variants with fewer than 15 cells sampled were excluded 
(lines 552-558); for points excluded in Extended Data Fig. 8d, criteria 
described in Methods (lines 577-590). 

3.   Replication

Describe whether the experimental findings were reliably reproduced. Yes, all FACS-seq experiments were replicated, with reproducibility 
illustrated in Extended Data Fig. 1d

4.   Randomization

Describe how samples/organisms/participants were allocated into 
experimental groups.

n/a

5.   Blinding

Describe whether the investigators were blinded to group allocation 
during data collection and/or analysis.

n/a

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or the Methods 
section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample 
was measured repeatedly. 

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. p values) given as exact values whenever possible and with confidence intervals noted

A summary of the descriptive statistics, including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this study. All analysis was performed using custom scripts in R, which are included as 
Supplementary Information and at the included github link. All additional 
packages used are described and cited in the Methods.

For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon 
request.  The Nature Methods guidance for providing algorithms and software for publication may be useful for any submission.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of unique 
materials or if these materials are only available for distribution by a 
for-profit company.

All unique materials are readily available from the authors

9.   Antibodies

Describe the antibodies used and how they were validated for use in 
the system under study (i.e. assay and species).

n/a

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. The yeast strain used was described in Fox et al. (ref. 31)

b.  Describe the method of cell line authentication used. n/a

c.  Report whether the cell lines were tested for mycoplasma 
contamination.

n/a

d.  If any of the cell lines used in the paper are listed in the database 
of commonly misidentified cell lines maintained by ICLAC, 
provide a scientific rationale for their use.

n/a

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived materials used in 
the study.

n/a

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population characteristics of the 
human research participants.

n/a
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 Form fields will expand as needed. Please do not leave fields blank.

    Data presentation
For all flow cytometry data, confirm that:

1.  The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

2.  The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

3.  All plots are contour plots with outliers or pseudocolor plots.

4.  A numerical value for number of cells or percentage (with statistics) is provided.

    Methodological details

5.   Describe the sample preparation. Methods lines 395-443

6.   Identify the instrument used for data collection. BD FACSAria II (Methods line 444)

7.   Describe the software used to collect and analyze the flow 
cytometry data.

Gates drawn using BD FACSDIVA software; all further analyses 
were performed in R (scripts included)

8.   Describe the abundance of the relevant cell populations 
within post-sort fractions.

Recovery yield from post-sort fractions was estimated by plating 
dilutions of cells and counting colony forming units

9.   Describe the gating strategy used. Methods lines 444-450, Extended Data Fig. 2

 Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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