
MOLECULAR EVOLUTION

Epistatic drift causes gradual decay of predictability
in protein evolution
Yeonwoo Park1, Brian P. H. Metzger2, Joseph W. Thornton1,2,3*

Epistatic interactions can make the outcomes of evolution unpredictable, but no comprehensive data are
available on the extent and temporal dynamics of changes in the effects of mutations as protein
sequences evolve. Here, we use phylogenetic deep mutational scanning to measure the functional
effect of every possible amino acid mutation in a series of ancestral and extant steroid receptor DNA
binding domains. Across 700 million years of evolution, epistatic interactions caused the effects of most
mutations to become decorrelated from their initial effects and their windows of evolutionary accessibility to
open and close transiently. Most effects changed gradually and without bias at rates that were largely
constant across time, indicating a neutral process caused by many weak epistatic interactions. Our findings
show that protein sequences drift inexorably into contingency and unpredictability, but that the process
is statistically predictable, given sufficient phylogenetic and experimental data.

A
mutation’s evolutionary fate depends
on its phenotypic effects. If the effects
are stable over time, knowledge of them
in the present can help predict the future
course of evolution and explain the

causes of evolutionary change in the past.
Epistatic interactions, however, may cause a
mutation’s effects to change over time and its
evolutionary accessibility to become contin-
gent on the particular sequence changes that
preceded it during history (1, 2).

Despite a recent tide of information about
epistatic interactions within proteins, we lack
a comprehensive understanding of changes in
the effects of mutations (the set of all potential
amino acid changes) caused by interactions
with substitutions (the subset of mutations
that fix during evolution). What fraction of
mutations change in their effects over evolu-
tionary time, and how drastically? Do they
change gradually or episodically and at what
rate? What are the consequences for evolu-

tionary outcomes? Deep mutational scanning
(DMS) experiments have detected epistasis
among mutations within present-day proteins
(3–9), but these studies do not address inter-
actions with historical substitutions or reveal
changes in the effects of mutations over evolu-
tionary time. Some mutations have different
effects when introduced into various present-
day proteins, implying epistatic interactions
with the substitutions that occurred as these
proteins diverged from each other (10–14);
without polarizing and calibrating these dif-
ferenceswith respect to time, however, it is not
possible to illuminate the rate, direction, or
regularity of the process bywhich the effects of
mutations changed during evolution. Ances-
tral protein reconstruction studies have shown
that the effects of particularmutations changed
during particular phylogenetic intervals (15–22),
but these works have examined only the begin-
ning andendof an interval and therefore cannot
reveal the temporal dynamics of epistasis.
Here, we address this knowledge gap by

using DMS to comprehensively assess the
effect of introducing every possible amino acid
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Fig. 1. Phylogenetic DMS. (A) Phylogeny of the DBD of steroid and related
receptors. Circles represent DBDs characterized here by DMS. The complete
phylogeny is shown in fig. S1. ERs, estrogen receptors; kSRs, ketosteroid
receptors, including GR; SRs, steroid receptors; subs/site, substitutions per site.
(B) Phylogenetic relations among the nine characterized DBDs. Colors distinguish
trajectories to C. teleta SR and human GR. Sequence divergence (percent)
and number of sequence differences (in parentheses) in each interval are shown.
(C) Sort-seq assay for DBD activity. For each DBD, a library containing all
possible single-amino-acid mutations was generated using microarray-based
synthesis and cassette assembly (fig. S3) and cloned into yeast carrying a GFP
reporter (left and middle). The activity of each mutant was measured by sorting

the library of cells into fluorescence bins, inferring the distribution of each
mutant among bins by sequencing, and calculating the mean log10-GFP
fluorescence (F). Hypothetical distributions for three variants with high, medium,
and low F are shown (right). ERE, estrogen response element. (D) Tracing
epistatic change across the phylogeny using example mutation S9P. The effect on
each DBD’s activity (points) was quantified as the change in mean log10-GFP
fluorescence (DF). The x axis shows each DBD in order on the phylogeny, positioned
by sequence divergence and colored by trajectory. DDF represents the change in
the mutation’s effect between a pair of DBDs, which is caused by epistatic
interactions with intervening substitutions. Error bars represent SEM (n = 3).
Dashed lines indicate upper and lower measurement bounds.
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mutation into a series of reconstructed ances-
tral and extant proteins along a densely sam-
pled phylogenetic trajectory. We used as a
model the DNA binding domain (DBD) of
steroid hormone receptors, a family of essen-
tial transcription factors in bilaterian animals
that mediate the actions of sex and adrenal
steroids by binding to specific DNA sequences
and regulating the expression of target genes
(23–25). This approach allowed us to measure
changes in the functional effect of every pos-
sible amino acid mutation during a series of
defined intervals across 700 million years of
DBD evolution. To analyze these data, we de-
veloped a quantitative framework that treats
each mutation’s effect as a trait that evolves
probabilistically on a phylogeny,whichwe used
to characterize the temporal dynamics, evolu-
tionary consequences, and underlying genetic
architecture of epistatic interactions.

Results
Phylogenetic DMS

We first inferred the phylogeny of steroid and
related receptors (Fig. 1A and fig. S1) and re-

constructed the maximum a posteriori pro-
tein sequences of seven ancestral DBDs along
two lineages—one leading to the human glu-
cocorticoid receptor (GR) and the other to the
steroid receptor of the annelid Capitella teleta,
which are among the most diverged of all
functionally characterized extant DBDs. The
reconstructed ancetral proteins include the
ancient progenitor protein whose duplication
and divergence gave rise to the first steroid
receptor (AncNR3), the ancestor of all extant
steroid receptors (AncSR, which existed in the
ancestor of all bilaterians), and five descen-
dants of AncSR (Fig. 1B and fig. S2). These
nine DBDs are separated by eight phylogenetic
intervals, each comprising 3 to 42% sequence
divergence. We constructed a yeast strain that
carries a green fluorescent protein (GFP) re-
porter driven by a DNA response element for
these DBDs and confirmed that all recon-
structed ancestral DBDs bind to it, as expected
based on prior studies (25). GFP fluorescence
in this strain correlates well with binding af-
finity, which was previously measured using
fluorescence anisotropy (fig. S4D).

For each of the seven ancestral and two
extant DBDs, we generated a library of variants
that contains all 19 possible amino acid muta-
tions at all 76 sites (fig. S3).We used a bulk assay
of fluorescence-activated cell sorting coupled
with deep sequencing to quantify the GFP
fluorescence of each variant with very high
repeatability [Pearson’s correlation coefficient
squared (r2) = 0.99 across three replicates;
Fig. 1C and figs. S4 and S5]. We calculated
the effect of amutation as the difference in the
mean log10-GFP fluorescence (DF) between
variants that differ by a single amino acid; we
applied this approach to all mutations from
the wild-type amino acid in any of the nine
DBDs to all other 19 amino acids.
Differences in the effect of a mutation

between successive nodes on the phylogeny
(DDF) indicate that the mutation interacts
with historical substitutions that occurred
during that interval (Fig. 1D). We normalized
the effects of the mutations to remove global
background-dependence caused by different
wild-type activity levels (fig. S6). After this
correction, differences in a mutation’s effect
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Fig. 2. Pervasive random changes in the effects of mutations. (A) Maximum
and minimum effect of each mutation (points) across the nine DBDs, colored
according to the stacked column on the right, which shows the proportion
of mutations in four categories: magenta, significant effect of DBD background
on DF and the sign of DF different between the maximum and minimum; red,
significant effect of background but no sign difference; black, no significant
effect of background and DF within measurement limits; and cyan, DF at the
lower bound of measurement in all nine DBDs. Significance was evaluated by
Welch’s analysis of variance, Benjamini-Hochberg FDR ≤ 0.1. Dashed lines
indicate measurement bounds. (B) Number of mutations in each phylogenetic
interval that changed significantly in DF (heteroscedastic t test between parent
and child node, FDR ≤ 0.1) plotted against the number of amino acids that
diverged in the interval. (C) Distribution of epistatic change in the effect of

every mutation during every phylogenetic interval (DDF). Dark gray indicates a
DDF significantly different from zero. Mutations that were always at the
lower bound of measurement were excluded. (D) Fraction of mutations in each
DBD with a DF less than zero (circles) or a DF at the lower bound (L.B.) of
measurement (triangles). (E) Distribution of DDF of all mutations for the
protostome-annelid interval (left) or the AncSR1-human GR interval (right).
The variance of the distribution (Var) quantifies the total epistatic change in the
effects of all mutations during an interval. d, sequence divergence. (F) Total
epistatic change as a function of sequence divergence across the phylogeny.
Red dots represent each of the eight independent phylogenetic intervals
between characterized DBDs; black dots represent all composite intervals.
Dashed lines indicate the best-fit power function for all (black) or the
eight independent (red) intervals.
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Fig. 3. Effects of most mutations changed gradually at characteristic
rates. (A) Models of the tempo of epistatic change. In the null model, the
amount of change in a mutation’s effect per substitution in an interval (unit DDF)
is randomly drawn from a normal distribution centered at 0; the variance
is the same among intervals, so the mutation’s effect changes gradually at
a constant expected rate as substitutions accrue. In the alternative model,
the variance may differ among phylogenetic intervals (cyan versus red),
leading to episodic changes in a mutation’s effect. Seq. div., sequence
divergence. (B) Distribution of the p value of the likelihood-ratio test comparing
gradual and episodic models for each mutation. Darker gray indicates
mutations for which the gradual model is rejected (FDR ≤ 0.2). Mutations
that were always at the lower bound of measurement were excluded from

this analysis. (C) Distribution of the normalized amount of epistatic change in
each interval, for all mutations better fit by the gradual model (left) or the
episodic model (right). Normalized DDF is the DDF of a mutation in an interval
divided by sd1/2, where s is the mutation’s average rate of epistatic change
and d is the length of the interval. Gray columns are observed data; the red line
shows the distribution expected under the null model. (D) Trajectory of
changes in the effect of two sets of example mutations that are better fit
by the gradual model (left) or the episodic model (right); in each category,
one evolves rapidly and the other slowly. Each mutation’s p value in the
likelihood-ratio test is shown. The gray box shows normalized DDF across
each of the eight intervals. Dashed lines indicate measurement bounds.
(E) Phylogenetic cross-validation. In the example shown, DDF in interval 1 is
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among the nine DBDs are attributable to
specific epistatic interactions with intervening
substitutions on the phylogeny.

Pervasive random changes in the effects
of mutations

To analyze the evolutionary dynamics of epista-
sis over time, we adapted a classic quantitative
framework for modeling trait evolution on
phylogenies (26, 27), including the extent,
direction, and rate of evolutionary change of
the trait; the underlying genetic architecture;
and the relative roles of selection and genetic
drift. Our approach treats the phenotypic ef-
fect of each mutation as a trait that changes
probabilistically across phylogenetic intervals,
allowing us to ask these questions about epi-
static change during historical DBD evolution.
Sixty percent of all mutations display sig-

nificantly different effects among the nine back-
grounds, and 22% differ in the direction of their
effects [false discovery rate (FDR) ≤ 0.1; Fig. 2A].
Most of the mutations that show no evidence
of epistasis destroy protein function regard-
less of genetic background (DF always at the
lower bound of measurement, −1.3). Only 5%
of mutations have a nondestructive effect that
did not vary significantly across the phylogeny.
Epistatic changes occurred during all eight

phylogenetic intervals (Fig. 2B and fig. S7A).
Even in the shortest interval, during which
there were only two sequence substitutions,
the effects of more than 200mutations changed
significantly. During the other intervals, even
moremutations changed in effect. On average,
each substitution is associatedwith significant
changes in the effects of about 60 mutations,
about 2% of the total set of possible mutations
(fig. S7B).
These epistatic changes were unbiased over

time. Changes in the effects of mutations (DDF)
are distributed almost symmetrically around
0 (mean = −0.01; Fig. 2C). The fraction of
mutations that reduce activity was nearly
constant among the nine intervals, as was the
fraction ofmutations that destroy activity (Fig.
2D). No individual mutations had effects that
changed with a significant bias in either direc-
tion over time (fig. S7C). These data indicate
that directional selection did not drive long-

term epistatic changes in the effects of muta-
tions, andmutational robustness did not change
systematically over time. Further, the variance
of the distribution of DDF in each interval
increased linearly with sequence divergence,
rather than plateauing (Fig. 2, E and F); this
result suggests that stabilizing selection did
notmaintain the effects ofmutations at inter-
mediate values within defined limits.

The effects of most mutations drifted gradually

To test whether epistatic change was gradual
or episodic, we fit probabilistic models of trait
evolution to the trajectory of changes in the
effect of eachmutation. Brownianmotion rep-
resents a simple model of gradual evolution
at a constant rate without directional bias:
Changes in the trait value among phylogenetic
intervals are normally distributed when nor-
malized for the length of the interval, with a
mean change of zero and constant variance per
unit sequence divergence (which represents the
rate of evolution). In the alternative model of
episodic evolution, the normalized variance is
a free parameter for each interval, which allows
the rate to differ among intervals (Fig. 3A).
We fit both models to the eight DDF values of
eachmutation and used a likelihood-ratio test
to compare the fit of the two models.
We found that the Brownian motion model

was the best-fit model for 92% of mutations
that changed epistatically (Fig. 3, B and C),
irrespective of whether the effects of the mu-
tations changed rapidly or slowly (Fig. 3D). For
the 8% of mutations best fit by the episodic
model, effects were nearly constant in most
intervals, with substantial changes during one
or a few intervals. The functional effects of
mostmutations therefore evolved as a random
variable that changes gradually along the
phylogeny at a characteristic rate and without
bias. We call this process epistatic drift.
Phylogenetic cross-validation confirmed that

the effects of most mutations evolved at a
steady rate across the phylogeny (Fig. 3E).
For each mutation, we predicted the epistatic
change expected in each of the eight intervals
given the rate of epistatic change estimated
from the seven other intervals; we then com-
pared these predictions with experimental

observations, pooling mutations with similar
estimated rates (Fig. 3F). Predicted andobserved
epistatic changes were strongly correlated
(Spearman’s r ≥ 0.94 for every interval; Fig.
3G), indicating that the mutations’ relative
rates of epistatic change did not strongly vary
along the phylogeny. The absolute rate of total
epistatic change, however, was systematically
faster than predicted in some intervals and
slower in others: The mean rate of epistatic
change for all mutations in each interval
ranges from 0.7 to 1.4 of the average across
the phylogeny (Fig. 3H). Epistatic change in
the effect of each mutation therefore varies
stochastically across intervals (consistent with
Brownian motion), but this variation is cor-
related among mutations; as a result, the total
amount of epistatic change across all muta-
tions is systematically greater in some inter-
vals than in others. This pattern is likely to arise
because the total epistatic change depends on
the particular substitutions that fixed during
an interval, and some substitutions are more
epistatic than others because they interact more
strongly or with a larger number ofmutations.
The mean rate of epistatic change was not
systematically different during intervals that
followed gene duplications.
These observations have two major implica-

tions for evolution and the genetic architecture
of epistatic interactions (Fig. 3I). First, epistatic
interactions within the DBD are dense: The
effects of most mutations changed gradually
because of weak interactions withmany substi-
tutions, and each substitution typically modi-
fied the effects ofmanymutations (Fig. 2B). If
most epistatic changes were triggered by rare,
large-effect modifiers, the distribution of DDF
would be enriched near zero and at extreme
values, a pattern that we observed for only
a small fraction of mutations. Most historical
contingency is therefore the cumulative result
of many small-effect epistatic modifications.
Against this background of gradual epistatic
drift, a fewmutations occasionally undergo sub-
stantial changes in their effects.
Second, somemutations aremore epistatic-

ally sensitive than others, with effects that
diverged more rapidly as substitutions accu-
mulated. Conversely, some substitutions are
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predicted from the average rate of epistatic change measured across intervals
2 to 8 (gray box). (F) Distribution of observed DDF during interval 1 (gray
columns) and predicted by cross validation (red line). Mutations were grouped
into deciles by their rate of epistatic change across intervals 2 to 8; predictions
are shown for deciles with the slowest, median, or fastest rates. (G) The
relative rates of epistatic change for mutations are consistent across
phylogenetic intervals. Points represent deciles of mutations grouped by the
predicted rate of epistatic change; observed epistatic change is plotted against
that predicted by cross-validation. The dashed line indicates the linear
regression. (H) Among-interval differences in average rate of epistatic change.
Each column shows the mean rate of epistatic change of all mutations in
one phylogenetic interval, normalized so that the mean across all intervals

equals one. Error bars represent the estimated standard deviation obtained
by bootstrap-resampling of mutations. Asterisks indicate the intervals
immediately following gene duplication. (I) Inferring the architecture of
epistatic interactions between substitutions (subs; black boxes) and a focal
mutation (star) from phylogenetic DMS. Gradual changes in the mutation’s
effect during evolution arise if many substitutions act as epistatic modifiers
(arrows, with thickness showing the strength of interaction), yielding a normal
distribution of DDF per substitution (left). Episodic changes arise from
interactions with only a few substitutions, yielding a distribution heavy at
zero and the tails (right). In either case, strong versus weak interactions
cause rapid (top) versus slow (bottom) epistatic change. The fraction of all
mutations in each category in our experiments is shown.
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more epistatic than others, changing the effects
of more target mutations or causing changes
of greater magnitude. As a result, there are sys-
tematic differences among intervals in the aver-
age rate of epistatic change across allmutations.

Mutations vary in memory length and the time
scale of contingency

Because the effect of eachmutation drifts at ran-
dom at a steady rate, there should be a charac-
teristic time period after which themutation’s
effect can no longer be reliably predicted from
its known effect at some other time. We call
this period themutation’smemory length, the
measure of which is the memory half-life—the
amount of sequence divergence over which
the correlation of a mutation’s effect with its
initial effect is reduced by half. To estimate
memory half-life, we partitionedmutations into
deciles by their rate of epistatic change and cal-
culated for eachdecile howcorrelated the effects
of mutations are between each pair of DBDs

(Fig. 4, A to D). Wemodeled the correlation co-
efficient as an exponentially decaying function
of sequence divergence. We then used this rela-
tionship to estimate thememoryhalf-life of each
mutation from its rate of epistatic change.
Reflecting the wide variation in the rate of

epistatic change among mutations, memory
half-lives range from just 3% sequencedivergence
to virtually infinite (Fig. 4E). Mutations with
the shortest half-lives therefore forget the
effects they had in the past after just a few
sequence substitutions at other sites. At any
moment, their effect and likely fate depend
primarily on the substitutions that occurred
most recently during their history.
Relative to the time scale of DBD evolution,

about one-fourth of all mutations have short
memories (half-life < 50% sequence divergence);
in this group, the effects in present-day human
GR are almost completely independent of their
initial effects in AncSR (r2 = 0.10; Fig. 4F).
Twenty percent of mutations have medium

memory (half-life 50 to 200%), with present-
day effects that can be partially predicted from
their initial effects (r2 = 0.68). The remaining
54% of mutations have long memories (>200%
divergence) and interacted negligibly with his-
torical substitutions, retaining their initial ef-
fects throughout DBD evolution (r2 = 0.98).

Contingency of historical sequence evolution

Wenext focused on the subset ofmutations that
became substitutions during historical DBD
evolution.We first assessed the functional effects
of the 79 substitutions that occurred during the
phylogenetic intervals that we experimentally
characterized (Fig. 5, A andB).Whenmeasured
in the ancestral background in which they his-
torically occurred, substitutions that reduce
activity by a DF less than −0.2 were nearly
absent; of the few exceptions,most fixed during
intervals immediately after gene duplication
(fig. S8A). This represents a 29-fold depletion
compared with the set of all mutations, most
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Fig. 4. Memory length of mutations and the time scale of historical contin-
gency. (A to D) Measuring the memory length of mutations. In (A), mutations
were grouped into deciles by their rate of epistatic change (s, expected standard
deviation of DDF per 1% sequence divergence). In (B), the effects of mutations in
each decile were compared between every pair of DBDs; shown are comparisons
between AncSR and human GR (42% divergence). In (C), the r2 for each DBD
pair was plotted against the sequence divergence of that pair. The dotted line
represents the best-fit exponential decay curve; memory half-life is the sequence
divergence at which r2 is equal to 0.5. The relationship between the rate of

epistatic change and memory half-life inferred by fitting a power function to the
mean rate of epistatic change and memory half-life of the deciles is shown in
(D). This relationship was used to calculate the memory half-life of each mutation
from its rate of epistatic change. (E) Distribution of memory half-life among
mutations. Mutations were classified into short-, medium-, and long-memory
categories using cutoffs of 50 and 200% divergence. (F) Comparing the effects of
mutations between AncSR and human GR (42% divergence) for each memory
category. Red dots are mutations with significant difference in DF (heteroscedastic
t test, FDR ≤ 0.1); black dots are those with no significant difference.
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of which have a DF less than −0.2. These
results imply that the DBD evolved primarily
under purifying selection against mutations
that strongly reduce activity, and they estab-
lish a DF of −0.2 as a boundary that roughly
defines the evolutionary accessibility of muta-
tions under purifying selection.
Epistasis shaped the fate of most historical

substitutions, which occurred during limited
windows when they were transiently acces-
sible. Of all substitutions that fixed between
AncSR and any extant steroid receptor on our
phylogeny, 43% have short or medium mem-
ories (Fig. 5C). Among the short-memory sub-
stitutions, most were inaccessible in AncSR
(DFAncSR < −0.2), implying that they became
accessible in one or more descendant proteins
because of permissive epistatic substitutions,
which render otherwise deleteriousmutations
neutral or advantageous. The remaining short-
memory substitutions were accessible in
AncSR (DFAncSR ≥ −0.2), but almost all of these
became subsequently inaccessible because
of restrictive substitutions, which render pre-
viously neutral or advantageous mutations
deleterious (fig. S8B). By contrast, 95% of long-
memory substitutions were accessible in AncSR

and remained so across the entire phylogeny
(fig. S8B). Medium-memory substitutions dis-
played an intermediate pattern. The evolu-
tionary fate of long-memory substitutions could
therefore have been reliably predicted from
their initial effects, but the accessibility of
substitutions with short or mediummemory
depended on other substitutions that occurred
during history.
Epistasis also shaped the fate of the many

mutations that did not become substitutions.
Of all short-memory mutations that were
accessible in AncSR, 90% became inaccessible
in one ormore descendant proteins, indicating
that evolutionary paths to themwere closed by
restrictive substitutions (Fig. 5D). Conversely,
55% of the short-memorymutations that were
inaccessible in AncSR subsequently became
accessible because of permissive substitutions.
Overall, two-thirds of short-memory mutations
and one-third of medium-memory mutations
changed in accessibility among the DBDs we
tested; each category of mutations was acces-
sible in an average of 2.4 and 4.9 of the 9 DBDs,
respectively (Fig. 5E).
These data indicate that epistatic interac-

tions with the particular set of substitutions

that occurred along the phylogeny contingently
determined the evolutionary fate not only of
themutations that fixed historically because of
permissive substitutions but also of those that
did not have the opportunity to fix because of
restrictive substitutions. Studying only the se-
quence changes that occurred during evolution
therefore underestimates the role of historical
contingency: Doing so cannot detect themany
evolutionary roads that were closed off con-
tingently but which could have been taken if
the trajectory of sequence changes at interact-
ing sites had unfolded differently.

Causes of variation in memory length

Finally, we sought to identify the factors that
determine a mutation’s memory length. Some
variation in memory length is attributable to
the sequence site at which a mutation occurs:
The median memory half-life of mutations
to any of the 19 mutant states at the same
site varies among sites from 11 to >200%
divergence (Fig. 6A). But this variation is not
associated with any obvious structural or func-
tional properties: The median memory half-life
of a site is poorly correlated with relative
solvent accessibility, rate of substitution, rate
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Fig. 5. Impact on sequence evolution of memory length and initial
functional effect. (A) The effect of a substitution at the time it fixed
during history was calculated as the mean of DFs measured by DMS in the
nearest ancestral and descendant nodes. (B) Comparing the effects of
the 79 substitutions that occurred along the phylogenetic trajectories we
characterized to the effects of all possible mutations. Substitutions are
29-fold enriched for a DF greater than or equal to –0.2 compared with
mutations, providing an estimate of the threshold of accessibility during
DBD evolution (dashed line). (C) Distribution of the initial effect (DF on
AncSR) of 275 substitutions that fixed between AncSR and any extant DBD

in our phylogeny. Distributions are shown by memory half-life category.
Enrichment of substitutions with a DF greater than or equal to –0.2
(dashed line) relative to mutations is shown. (D) The proportion of initially
accessible mutations (DFAncSR ≥ –0.2) that become inaccessible in at
least one descendant DBD is shown on the left. The proportion of initially
inaccessible mutations that become accessible in at least one descendant DBD
is shown on the right. (E) Distribution of the number of characterized DBDs in
which each mutation is accessible (DF ≥ –0.2), classified by memory-length
category. The percentage of mutations that were accessible in some, but not
all, DBDs is shown.
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of substitution at physically adjacent sites, dis-
tance to the DNA-binding residues, and dis-
tance to the dimerization interface (r2 < 0.1 for
every factor; fig. S9). Further, memory length
varies extensively within each site, with 59 of
76 sites in the DBD containing both short-
and long-memorymutations. As a consequence,
predicting a mutation’s memory half-life by
themedian of allmutations at that site achieves
an r2 of only 0.25 (Fig. 6B).
Another possibility is that certain types of

mutations (to and from the same pair of states)
might be consistently associated withmemory
length, irrespective of the sites at which they
occur. Predicting the memory length of in-
dividual mutations from the medianmemory
length of all mutations of the same type at
any site achieved an r2 of only 0.13 (Fig. 6C).
Explaining memory length variation therefore
requires analysis of each particular mutation
at each site in the protein.
To estimate a mutation’s memory length,

experiments are necessary in multiple genetic
backgrounds across a phylogenetic trajectory.
But how many backgrounds are necessary?
When the rate of epistatic change ofmutations
is estimated from two backgrounds that were
randomly chosen from the ninewe assayed, the

correlation (r2) with the rate measured using
all nine backgrounds is, on average, equal to
0.40, and the rate of epistatic change is sys-
tematically underestimated (Fig. 6, D and E).
The correlation improves asmore backgrounds
are sampled and reaches 0.8 when estimates
are based on five backgrounds. A moderate
number of experiments is therefore sufficient
to provide a rough estimate of amutation’s rate
of epistatic change and hence its memory length.

Robustness to uncertainty in ancestral
sequence reconstruction

Our conclusions are robust to uncertainties in
the reconstruction of ancestral sequences. The
ancestral DBDs were generally inferred with
high confidence and contained zero to 10 sites
at which more than one amino acid state is
plausible. For each ancestral DBD with more
than one ambiguous site, we generated an “Alt-
All” reconstruction, which contains the alter-
native plausible amino acid at all ambiguously
reconstructed sites (28); this sequence repre-
sents the least likely of all plausible recon-
structions and allows a conservative estimate
of robustness to sequence uncertainty.We then
constructed a complete DMS library of each
Alt-All protein and repeated all of our exper-

iments and analyses. Although the effects of
somemutations differ between the Alt-All and
maximum-posterior-probability reconstruc-
tions, all conclusions concerning the temporal
dynamics of epistasiswere unchanged (fig. S10).

Discussion

Prior experimental studies have identified cases
in which the functional effects of a few muta-
tions changed substantially during particular
intervals of evolutionaryhistory (12, 15–18,29,30).
Our observations show that such rare, large-
effect epistatic modifications occur against a
background of pervasive gradual drift in the
effects of most mutations (11, 20, 31–36). Most
epistatic changes were of small magnitude
when they occurred, but across an evolutionary
trajectory of moderate length (<50% sequence
divergence), theywere sufficient to completely
or partially decorrelate the effects of most mu-
tations from their initial effects and substan-
tially alter the set of available opportunities for
future sequence change. The fold and function
of all proteins depend on interactions among
many residues, so we expect that epistatic drift
will be a widespread feature of protein evolu-
tion. The temporal dynamics anddistribution of
memory lengthsmay depend on each protein’s

Park et al., Science 376, 823–830 (2022) 20 May 2022 7 of 8

A

0

100

200

M
em

or
y 

ha
lf-

lif
e 

(%
 d

iv
.)

50

150

Sites, ordered by median

Median
Range

0

100

200

50

150

0 100 20050 150
Site median

M
em

or
y 

ha
lf-

lif
e 

(%
 d

iv
.)

r 2 = 0.25B C

0

100

200

50

150

0 100 20050 150
Mutation-type median

M
em

or
y 

ha
lf-

lif
e 

(%
 d

iv
.)

r 2 = 0.13

Number of backgrounds
2 3 4 5

1.5

0

1

0.5

D

Number of backgrounds
2 3 4 5

1

0

0.75

0.5

0.25

E

C
or

re
la

tio
n 

w
ith

 9
-b

ac
kg

ro
un

d
es

tim
at

e 
(r

 2
)

S
lo

pe
 o

f r
eg

re
ss

io
n 

to
9-

ba
ck

gr
ou

nd
 e

st
im

at
e

Fig. 6. Variation of memory half-life of mutations among and within
sites. (A) Distribution of memory half-life among sites. Each line shows the
range of memory half-life of all mutations at one site in the DBD sequence.
(B and C) Predicting the memory half-life of a mutation (points) by the
median memory half-life of all possible mutations at the same site (B) or
by the median of mutations of the same type (between the same wild-type
and mutant amino acid) at all sites (C). Dashed lines indicate the linear

regression. (D and E) Effect of the number of DBDs characterized by DMS on
estimates of rate of epistatic change. The rate of epistatic change of every
mutation was estimated using a subset of the nine DMS experiments; the
relationship between the estimated rate from each subset to that estimated
from all nine experiments was analyzed by linear regression. The graphs
show the distribution of correlation coefficient (D) and best-fit regression
slope (E) across every possible subset of a given size.
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structure, function, and the selective regime
under which it evolved.
Our findings establish strong limits on the

ability to predict future evolution and interpret
evolutionary history, but they also provide a
quantitative framework for understanding
those limits. Classical evolutionary theories
assume that the constraints imposed by puri-
fying selection do not change as sequences
diverge, so the effects and evolutionary fate
of mutations can be predicted or retroactively
inferred based on their effectsmeasured in the
present. Our results show that this assumption
of constancy and independence is wrong for
about half of DBD mutations, which have
short or medium memories. Because epistatic
modification occurs at a mostly constant rate
for each mutation, however, an estimate of
memory length from experimental data across
phylogenetic time can quantify the extent to
which any mutation’s effect can be predicted
at any point in time, either future or past.
Further, although point projections of the
effects of short- and medium-memory muta-
tions across long time scales are unreliable, a
probability distribution of those effects can be
generated if we know any mutation’s memory
length and its effect at some other time.
Ancestral protein reconstruction can replace
predictions with experimental knowledge, but
only for proteins in the past.
A probabilistic description of contingency

and uncertainty using memory length does
not require detailed knowledge of the partic-
ular genetic interactions that cause epistatic
change. If we had microscopic knowledge of
all the interactions thatmodify eachmutation’s
effect and a dense phylogenetic reconstruction
of past trajectories of sequence change, we
could reliably predict the effect of every possi-
blemutation in any past historical background.
But even complete knowledge like this would
not be sufficient to predict future evolutionary
trajectories: the accessibility of each future mu-

tation depends on the chain of epistatic substi-
tutions that occur before it, many of which will
occur by chance.We can use experimental and
phylogenetic data to tame evolutionary uncer-
tainty by recognizing and quantifying it, but
the future will always surprise.
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Epistatic drift causes gradual decay of predictability in protein evolution
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Proteins adrift in a sea of mutations
In two related proteins, one might expect the same mutation to have the same effect, but whether this is true greatly
depends on context. Looking at nine ancestral reconstructions of a DNA-binding domain, Park et al. evaluated the
effects of 275 substitutions at predicted evolutionary steps. The effects of mutations were highly contingent on a dense
network of epistatic interactions. There were mutations with both short and long memory length, but the average
rate of epistatic change was generally constant. The landscape of potential and actual interactions is thus constantly
shifting at a rate that can be known, but the direction of the change is contingent on evolutionary history and becomes
unpredictable after a time. —MAF
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