Skip to content

About Becca

Rebecca Willett
Professor of Statistics and Computer Science
Courtesy Appointment at the Toyota Technological Institute at Chicago

Email: willett@uchicago.edu

Research Interests

My research interests include signal processing, machine learning, and large-scale data science. In particular, I have studied methods to leverage low-dimensional models in a variety of contexts, including when data are high-dimensional, contain missing entries, are subject to constrained sensing or communication resources, correspond to point processes, or arise in ill-conditioned inverse problems. This work lies at the intersection of high-dimensional statistics, inverse problems in imaging and network science (including compressed sensing), learning theory, algebraic geometry, optical engineering, nonlinear approximation theory, statistical signal processing, and optimization theory. My group has made contributions both in the mathematical foundations of signal processing and machine learning and in their application to a variety of real-world problems. I have active collaborations with researchers in astronomy, materials science, microscopy, electronic health record analysis, cognitive neuroscience, precision agriculture, biochemistry, and atmospheric science.

Upcoming or recent activities

Bio

Rebecca Willett is a Professor of Statistics and Computer Science at the University of Chicago. Her research is focused on machine learning, signal processing, and large-scale data science. Prof. Willett received the National Science Foundation CAREER Award in 2007, was a member of the DARPA Computer Science Study Group 2007-2011, and received an Air Force Office of Scientific Research Young Investigator Program award in 2010, and was named a Fellow of the Society of Industrial and Applied Mathematics in 2021. She is a co-principal investigator and member of the Executive Committee for the Institute for the Foundations of Data Science, helps direct the Air Force Research Lab University Center of Excellence on Machine Learning, and currently leads the University of Chicago’s AI+Science Initiative. She serves on advisory committees for the National Science Foundation’s Institute for Mathematical and Statistical Innovation, the AI for Science Committee for the US Department of Energy’s Advanced Scientific Computing Research program, the Sandia National Laboratories Computing and Information Sciences Program, and the University of Tokyo Institute for AI and Beyond. She completed her PhD in Electrical and Computer Engineering at Rice University in 2005 and was an Assistant then tenured Associate Professor of Electrical and Computer Engineering at Duke University from 2005 to 2013. She was an Associate Professor of Electrical and Computer Engineering, Harvey D. Spangler Faculty Scholar, and Fellow of the Wisconsin Institutes for Discovery at the University of Wisconsin-Madison from 2013 to 2018.  Prof. Willett has also held visiting researcher positions at the Institute for Pure and Applied Mathematics at UCLA in 2004, the University of Wisconsin-Madison 2003-2005, the French National Institute for Research in Computer Science and Control (INRIA) in 2003, and the Applied Science Research and Development Laboratory at GE Medical Systems (now GE Healthcare) in 2002. She is also an instructor for FEMMES (Females Excelling More in Math Engineering and Science; news article here) and a local exhibit leader for Sally Ride Festivals. She was a recipient of the National Science Foundation Graduate Research Fellowship, the Rice University Presidential Scholarship, the Society of Women Engineers Caterpillar Scholarship, and the Angier B. Duke Memorial Scholarship.