EM of mucocysts
Immunofluorescence of mucocysts
A cartoon of vesicle trafficking involved in phagocytosis.
Expression profiling identifies a set of enzymes that are coregulated with secretory granule cargo genes.

Selected Publications


  1. Sparvoli, D., Zoltner, M., Cheng, C.-Y., Field, M.C., and A.P. Turkewitz (2020) Diversification of CORVET tethers faciliates transport complexity in Tetrahymena thermophila.  J. Cell Sci. 133 (Pubmed)
  2. Luo, G.Z., Hao, Z., Luo, L., Shen, M., Sparvoli, D., Zheng, Y, Zhang, Z., Weng, X., Chen, K., Cui, Q., Turkewitz, A.P., and C. He (2018) N6-methyldeoxyadenosine directs nucleosome positioning in Tetrahymena DNA.  Genome Biol 19
  3. Sparvoli, D., Richardson, E., Osakada, H., Lan, X., Iwamoto, M., Bowman, G.R., Kontur, C., Bourland, W.A., Lynn, D.H., Pritchard, J.K., Haraguchi, T., Dacks, D.B., and A.P. Turkewitz.  (2018) Remodeling the specificity of an endosomal CORVET tether underlies formation of regulated secretory vesicles in the ciliate Tetrahymena thermophila. Curr. Biol. 28: 697-710. (PubMed)
  4. Tsypin, L.M., and A.P. Turkewitz (2017) The Co-regulation Data Harvester: automating gene annotation starting from a transcriptome database. SoftwareX 6: 165-171. (SoftwareX)
  5. Kaur, H., Sparvoli, D., Osakada, H., Iwamoto, M., Haraguchi, T., and A.P. Turkewitz (2017) An endosomal syntaxin and the AP-3 complex are required for formation and maturation of candidate lysosome-related secretory organelles (mucocysts) in Tetrahymena thermophila.  Mol. Biol. Cell 28: 1551-64. (PubMed)
  6. Guerrier, S., Plattner, H., Richardson, E., Dacks, J.B., and A.P. Turkewitz (2017) An evolutionary balance: conservation vs innovation in ciliate membrane trafficking.  Traffic 18: 18-28. (PubMed)
  7. Klinger, C.M., Ramirez-Macias, I., Herman, E.K., Turkewitz, A.P., Field, M.C., and J.B. Dacks (2016) Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology. Mol. & Biochem. Parasitol. (PubMed)
  8. Kontur, C., Kumar, S., Lan, X., Pritchard, J.K., and A.P. Turkewitz (2016) Whole genome sequencing identifies a novel factor required for secretory granule maturation in Tetrahymena thermophila. G3 (Bethesda). (PubMed)
  9. Kumar, S., Briguglio, J.S., and A.P. Turkewitz (2015) Secretion of polypeptide crystals from Tetrahymena thermophila secretory organelles (mucocysts) depends on processing by a cysteine cathepsin, CTH4. Euk. Cell. 14: 817-33. (PubMed)
  10. Lynch, M., Field, M.C., Goodson, H., Malik, H.S., Pereira-Leal, J.B., Roos, D. S., Turkewitz, A.P., and S. Sazer (2014) Evolutionary Cell Biology: Two Origins, One Objective. Proc. Natl. Acad. Sci. 111: 16990-4. (PubMed)
  11. Briguglio, J.S. and A.P. Turkewitz (2014) Tetrahymena thermophila: a divergent perspective on eukaryotic membrane traffic. J Exp Zool B Mol Dev Evol. 2014 Nov;322(7):500-16. (PubMed)
  12. Kumar, S., Briguglio, J.S., and A.P. Turkewitz (2014) An aspartyl cathepsin, CTH3, is essential for proprotein processing during secretory granule maturation in Tetrahymena thermophila. Mol. Biol. Cell 25: 2444-60. (PubMed)
  13. Briguglio, J.S., Kumar, S., and A.P. Turkewitz (2013) Lysosomal sorting receptors are essential for secretory granule biogenesis in Tetrahymena. J. Cell Biol. 203: 537-550. (PubMed)
  14. Nusblat, A.D., Bright, L.J., and A.P. Turkewitz (2012) Conservation and innovation in Tetrahymena membrane traffic: proteins, lipids, and compartments. Meth. Cell Biol. 109: 141-75. (PubMed)
  15. Amaro, F., Turkewitz, A.P., Martin-Gonzalez, A. and J-C Gutierrez (2011) Whole-cell biosensors for detection of heavy metal ions in environmental samples based on metallothionein promoters from Tetrahymena thermophila. Microbial Biotech. 4: 513-22. (PubMed)
  16. Bright, L., Kambesis, N., Nelson, S.B. and A.P. Turkewitz (2010) Comprehensive analysis reveals dynamic and evolutionary plasticity of Rab GTPases and membrane traffic in Tetrahymena thermophila. PLOS Genetics 6(10): e1001155. (PubMed)
  17. Rahaman, A, Elde, NC and AP Turkewitz (2008) A dynamin-related protein required for nuclear remodeling in Tetrahymena. Curr. Biol. 18: 1227-33. (PubMed)
  18. Elde, N.C., Long, M. and A.P. Turkewitz. (2007) A role for convergent evolution in the secretory life of cells. Trends Cell Biol. 17: 157-164. (PubMed)
  19. Elde, N.C., Morgan, G., Winey, M., Sperling, L., Turkewitz, A.P. (2005) Elucidation of Clathrin-Mediated Endocytosis in Tetrahymena Reveals an Evolutionarily Convergent Recruitment of Dynamin. PLoS Genet 1(5) e52. (PubMed)
  20. A. P. Turkewitz (2004) Out with a bang! Tetrahymena as a model system to study secretory granule biogenesis. Traffic. 5(2):63-8. Review. (PubMed)