(* denotes equal first-authorship)
79. Depolymerizable and recyclable luminescent polymers with high light-emitting efficiencies
W. Liu*, Y. Wu*, A. Vriza, C. Zhang, H. Jung, S. Hu, Y. Zhang, D. Chen, P. Guo, B. T. Diroll, G. Wang, R. D. Schaller, H. Chan, J. Mei✉, S. Wang✉, J. Xu✉
Nature Sustainability, DOI: 10.1038/s41893-024-01373-z (2024)
78. Soft mechanical sensors for wearable and implantable applications
R. Papani, Y. Li, S. Wang✉
WIREs Nanomedicine and Nanobiotechnology, DOI: 10.1002/wnan.1961 (2024)
77. intrinsically stretchable electroluminescent materials and devices
W. Liu, G. Wang, S. Wang✉
CCS Chemistry, DOI: 10.31635/ccschem.024.202403837 (2024)
76. An intrinsically stretchable power-source system for bioelectronics
P. Cheng*, S. Dai*, Y. Liu*, Y. Li*, H. Hayashi, R. Papani, Q. Su, N. Li, Y. Dai, W. Liu, H. Hu, Z. Liu, L. Jin, N. Hibino, Z. Wen, X. Sun, S. Wang✉
Device, 2, 100216 (2024)
75. Real-time correlation of crystallization and segmental order in conjugated polymers
S. Luo, Y. Li, N. Li, Z. Cao, S. Zhang, M. U. Ocheje, X. Gu, S. R. -Gagne, G. Xue, S. Wang, D. Zhou, J. Xu✉
Materials Horizons, 11, 196-206 (2024)
74. Exploring the effect of dynamic bond placement in liquid crystal elastomers
C. A. Linderberg, E. Ghimire, C. Chen, S. Lee, N. D. Dolinski, J. M. Dennis, S. Wang, J. J. De Pablo, S. J. Rowan✉
Journal of Polymer Science, 1-9 (2023)
73. Bioadhesive polymer semiconductors and transistors for intimate biointerfaces
N. Li, Y. Li, Z. Cheng, Y. Liu, Y. Dai, S. Kang, S. Li, N. Shan, S. Wai, A. Ziaja, Y. Wang, J. Strzalka, W. Liu, C. Zhang, X. Gu, J. A. Hubbell, B. Tian, S. Wang✉
Science, 381, 686-693 (2023)
72. Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design
Y. Li, N. Li, W. Li, A. Prominski, S. Kang, Y. Dai, Y. Liu, H. Hu, S. Wai, S. Dai, Z. Cheng, Q. Su, P. Cheng, C. Wei, L. Jin, J. A. Hubbell, B. Tian, S. Wang✉
Nature Communications, doi.org/10.1038/s41467-023-40191-3 (2023)
71. High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence
W. Liu*, C. Zhang*, R. Alessandri, B. T. Diroll, Y. Li, X. Fan, K. Wang, H. Cho, Y. Liu, Y. Dai, Q. Su, N. Li, S. Li, S. Wai, Q. Li, S. Shao, L. Wang, J. Xu, X. Zhang, D. V. Talapin., J. J. de Pablo✉, S. Wang✉
Nature Materials, 22, 737-745 (2023)
70. Technology Roadmap for Flexible Sensors
Y. Luo, M. R. Abidian, J. H. Ahn, D. Akinwande, A. M. Andrews, M. Antonietti, Z. Bao, M. Berggren, C. A. Berkey, C. J. Bettinger, J. Chen, P. Chen, W. Cheng, X. Cheng, S. J. Choi, A. Chortos, C. Dagdeviren, R. H. Dauskardt, C. A. Di, M. D. Dickey, X. Duan, A. Facchetti, Z. Fan, Y. Fang, J. Feng, X. Feng, H. Gao, W. Gao, X. Gong, C. F. Guo, X. Guo, M. C. Hartel, Z. He, J. S. Ho, Y. Hu, Q. Huang, Y. Huang, F. Huo, M. M. Hussain, A. Javey, U. Jeong, C. Jiang, X. Jiang, J. Kang, D. Karnaushenko, A. Khademhosseini, D. H. Kim, I. D. Kim, D. Kireev, L. Kong, C. Lee, N. E. Lee, P. S. Lee, T. W. Lee, F. Li, J. Li, C. Liang, C. T. Lim, Y. Lin, D. J. Lipomi, J. Liu, K. Liu, N. Liu, R. Liu, Y. Liu, Y. Liu, Z. Liu, Z. Liu, X. J. Loh, N. Lu, Z. Lv, S. Magdassi,G. G. Malliaras, N. Matsuhisa, A. Nathan, S. Niu, J. Pan, C. Pang, Q. Pei, H. Peng, D. Qi, H. Ren, J. A. Rogers, A. Rowe, O. G. Schmidt, T. Sekitani, D. G. Seo, G. Shen, X. Sheng, Q. Shi, T. Someya, Y. Song, E. Stavrinidou, M. Su, X. Sun, K. Takei, X. M. Tao, B. C. Tee, A. V. Thean, T. Q. Trung, C. Wan, H. Wang, J. Wang, M. Wang, S. Wang, T. Wang, Z. L. Wang, P. S. Weiss, H. Wen, S. Xu, T. Xu, H. Yan, X. Yan, H. Yang, L. Yang, S. Yang, L. Yin, C. Yu, G. Yu, J. Yu, S. H. Yu, X. Yu, E. Zamburg, H. Zhang, X. Zhang, X. Zhang, X. Zhang, Y. Zhang, Y. Zhang, S. Zhao, X. Zhao, Y. Zhao, Y. Q. Zheng, Z. Zheng, T. Zhou, B. Zhu, M. Zhu, R. Zhu, Y. Zhu, Y. Zhu, G. Zou, X. Chen
ACS Nano, (2023)
69. A universal interface for plug-and-play assembly of stretchable devices
Y. Jiang, S. Li, J. Sun, J. Huang, Y. Li, G. Zou, T. Salim, C. Wang, W. Li, H. Jin, J. Xu, S. Wang, T. Lei, X. Yan, W. Y. X. Peh, S.-C. Yen, Z. Liu, M. Yu, H. Zhao, Z. Lu, G. Li, H. Gao, Z. Liu✉, Z. Bao✉, X. Chen✉
Nature, 614, 456-462 (2023)
68. Intrinsically stretchable neuromorphic devices for on-body processing of health data with artificial intelligence
S. Dai*, Y. Dai*, Z. Zhao*, F. Xia✉, Y. Li, Y. Liu, P. Cheng, J. Strzalka, S. Li, N. Li, Q. Su, S. Wai, W. Liu, C. Zhang, R. Zhao, J. J. Yang, R. Stevens, J. Xu, J. Huang, S. Wang✉
Matter, 5, 3375-3390 (2022)
67. Stretchable Redox-Active Semiconducting Polymers for High-Performance Organic Electrochemical Transistors
Y. Dai*, S. Dai*, N. Li, Y. Li, M. Moser, J. Strzalka, A. Prominski, Y. Liu, Q. Zhang, S. Li, H. Hu, W. Liu, S. Chatterji, P. Cheng, B. Tian, I. McCulloch, J. Xu, S. Wang
Advanced Materials, 34, 2201178 (2022)
66. 35 challenges in materials science being tackled by PIs under 35(ish) in 2021
B. Aguado, L. J. Bray, S. Caneva, J.-P. C.-Baena, G. D. Martino, C. Fang, Y. Fang, P. Gehring, G. Grosso, X. Gu, P. Guo, Y. He, T. J. Kempa, M. Kutys, J. Li, T. Li, B. Liao, F. Liu, F. Molina-Lopez, A. Pickel, A. M. Porras, R. Raman, E. M. Sletten, Q. Smith, C. Tian, H. Wang, H. Wang, S. Wang, Z. Wang, G. Wehmeyer, L. Wei, Y. Yang, L. D. Zarzar, M. Zhao, Y. Zheng, S. Cranford
Matter, 4, 3804-3810 (2021)
65. A stretchable and strain-unperturbed pressure sensor for motion-interference-free tactile monitoring on skins
Q. Su*, Q. Zou*, Y. Li*, Y. Chen*, S.-Y. Teng, J. T. Kelleher, R. Nith, P. Cheng, N. Li, W. Liu, S. Dai, Y. Liu, A. Mazursky, J. Xu, L. Jin, P. Lopes, S. Wang
Science Advances, 7, eabi4563 (2021)
64. A universal and facile approach for building multifunctional conjugated polymers for human-integrated electronics
N. Li, Y. Dai, Y. Li, S. Dai, J.Strzalka, Q. Su, N. D. Oliveira, Q. Zhang, P. B. J. S. Onge, S. R.-Gagne, Y. Wang, X. Gu, J. Xu, S. Wang
Matter, 4, 3015-3029, (2021)
63. Implantable bioelectronics toward long-term stability and sustainability
Y. Li*, N. Li*, N. D. Oliveira, S. Wang
Matter, 4, 1125–1141, (2021)
62. Observation of Stepwise Ultrafast Crystallization Kinetics of Donor−Acceptor Conjugated Polymers and Correlation with Field Effect Mobility
S. Luo, N. Li, S. Zhang, C. Zhang, T. Qu, M. U. Ocheje, G. Xue, X. Gu, S. Rondeau-Gagné, W. Hu, S. Wang, C. Teng✉, D. Zhou✉, J. Xu✉
Chemistry of Materials, 33, 5, 1637–1647, (2021)
61. Strain-insensitive intrinsically stretchable transistors and circuits
W. Wang*, S. Wang✉, R.Rastak, Y. Ochiai, S. Niu, Y. Jiang, P. K. Arunachala, Y. Zheng, J. Xu, N. Matsuhisa, X. Yan, S.-K. Kwon, M. Miyakawa, Z. Zhang, R. Ning, A. M. Foudeh, Y. Yun, C. Linder, J. B.-H. Tok & Z. Bao✉
Nature Electronics, 4, 143–150, (2021)
60. Stretchable transistors and functional circuits for human-integrated electronics
Y. Dai*, H. Hu*, M. Wang, J. Xu, S. Wang
Nature Electronics, 4, 17, (2021).
59. Building the Nexus Between Electronics and the Human Body for Enhanced Health
S. Wang
The Bridge (National Academy of Engineering). 50, 157 (2020). The 50th anniversary special issue, invited essay.
58. A wireless body area sensor network based on stretchable passive tags
S. Niu, N. Matsuhisa, L. Beker, J. Li, S. Wang, J. Wang, Y. Jiang, X. Yan, Y. Yun, W. Burnett, A. S. Y. Poon, J. B.-H. Tok, X. Chen & Z. Bao
Nature Electronics, 2, 361, (2019).
57. Inkjet-printed Stretchable and Low Voltage Synaptic Transistor Array
F. Molina-Lopez, T. Z. Gao, U. Kraft, C. Zhu, T. Öhlund, R. Pfattner, V. R. Feig, Y. Kim, S. Wang, Y. Yun & Z. Bao
Nature Communications, 10, 2676, (2019).
56. Multi-scale Ordering in Highly Stretchable Polymer Semiconducting Films
J. Xu, H.-C. Wu, C. Zhu, A. Ehrlich, L. Shaw, M. Nikolka, S. Wang, F. Molina-Lopez, X. Gu, S. Luo, D. Zhou, Y.-H. Kim, G.-J. N. Wang, K. Gu, V. R. Feig, S. Chen, Y. Kim, T. Katsumata, Y.-Q. Zheng, H. Yan, J. W. Chung, J. Lopez, B. Murmann & Z. Bao
Nature Materials, 18, 594, (2019).
55. Nonhalogenated Solvent Processable and Printable High-Performance Polymer Semiconductor Enabled by Isomeric Nonconjugated Flexible Linkers
G.-J. N. Wang , F. Molina-Lopez, H. Zhang, J. Xu, H.-C. Wu , J. Lopez, L. Shaw , J. Mun, Q. Zhang, S. Wang, A. Ehrlich, Z. Bao
Macromolecules, 51, 4976, (2018).
54. Skin-Inspired Electronics: An Emerging Paradigm
S. Wang*, J. Y. Oh*, J. Xu*, H. Tran, Z. Bao
Accounts of Chemical Research, 51, 1033, (2018).
53. Quadruple H-Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes
X. Yan*, Z. Liu*, Q. Zhang*, J. Lopez, H. Wang, H.-C. Wu, S. Niu, H. Yan, S. Wang, T. Lei, J. Li, D. Qi, P. Huang, J. Huang, Y. Zhang, Y. Wang, G. Li, J. B-H Tok, X. Chen, Z. Bao
Journal of the American Chemical Society, 140, 5280, (2018).
52. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array
S. Wang*, J. Xu*, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, S. Niu, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B.-H. Tok, Z. Bao
Nature, 555, 83, (2018).
51. Ultra-transparent and stretchable graphene electrodes
N. Liu*, A. Chortos*, T. Lei*, L. Jin, T.R. Kim, W.-G. Bae, C. Zhu, S. Wang, R. Pfattner, X. Chen, C. Linder, R. Sinclair, Z. Bao
Science Advances, 3, e1700159, (2017).
50. Highly stretchable polymer semiconductor films through the nanoconfinement effect
J. Xu*, S. Wang*, G.-J. N. Wang, C. Zhu, S. Luo, L. Jin, X. Gu, S. Chen, V. R. Feig, J.W.F. To, S. Rondeau-Gagné, J. Park, B. C. Schroeder, C. Lu, J. Y. Oh, Y. Wang, Y.-H. Kim, H. Yan, R. Sinclair, D. Zhou, G. Xue, B. Murmann, C. Linder, W. Cai, J. B.-H. Tok, J. W. Chung, Z. Bao
Science, 355, 59, (2017).
49. Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators
S. Li*, J. Wang*, W. Peng*, L. Lin, Y. Zi, S. Wang, G. Zhang, Z. L. Wang
Advanced Energy Materials, 7, 1602832, (2017).
48. Effective energy storage from triboelectric nanogenerators
Y. Zi*, J. Wang*, S. Wang*, S. Li, Z. Wen, H. Guo, Z. L. Wang
Nature Communications, 7, 10987, (2016).
47. Molecular surface functionalization to enhance power output of triboelectric nanogenerators
S. Wang*, Y. Zi*, Y. S. Zhou, S. Li, F. Fan, L. Lin, Z. L. Wang
Journal of Materials Chemistry A, 4, 3728, (2016).
46. A streaming potential/current based micro-fluidic direct-current generator for self-powered nanosystems
R. Zhang*, S. Wang*, M.-H. Yeh*, C. Pan*, R. Yu, Y. Zhang, L. Lin, L. Zheng, Z. Jiao, Z. L. Wang
Advanced Materials, 27, 6482, (2015).
45. Self-powered triboelectric nanosensor for microfluidics and cavity-confined solution chemistry
X. Li*, M.-H. Yeh*, Z.-H. Lin, H. Guo, P.-K. Yang, J. Wang, S. Wang, R. Yu, T. Zhang, Z. L. Wang
ACS Nano, 9, 11056, (2015).
44. A flexible fiber-based supercapacitor–triboelectric nanogenerator power system for wearable electronics
J. Wang*, X. Li*, Y. Zi, S. Wang, Z. Li, L. Zheng, F. Yi, S. Li, Z. L. Wang
Advanced Materials, 27, 4830, (2015).
43. Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states
S. Li*, S. Wang*, Y. Zi, Z. Wen, L. Lin, G. Zhang, Z. L. Wang
ACS Nano, 9, 7479, (2015).
42. Highly porous piezoelectric PVDF membrane as effective lithium ion transfer channels for enhanced self-charging power cell
Y.-S. Kim, Y. Xie, X. Wen, S. Wang, S. J. Kim, H.-K. Song, Z. L. Wang
Nano Energy, 14, 77, (2015).
41. Theory of freestanding triboelectric-layer-based nanogenerators
S. Niu*, Y. Liu*, X. Chen*, S. Wang, Y. S. Zhou, L. Lin, Y. Xie, Z. L. Wang
Nano Energy, 12, 760, (2015).
40. Triboelectric–pyroelectric–piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing
Y. Zi*, L. Lin*, J. Wang, S. Wang, J. Chen, X. Fan, P.-K. Yang, F. Yi, Z. L. Wang
Advanced Materials, 27, 2340, (2015).
39. Optimization of triboelectric nanogenerator charging systems for efficient energy harvesting and storage
S. Niu, Y. Liu, Y. S. Zhou, S. Wang, L. Lin, Z. L. Wang
IEEE Transactions on Electron Devices, 62, 641, (2015).
38. Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼55%
L. Lin*, Y. Xie*, S. Niu, S. Wang, P.-K. Yang, Z. L. Wang
ACS Nano, 9, 922, (2015).
37. Triboelectric nanogenerators as self-powered active sensors
S. Wang*, L. Lin*, Z. L. Wang
Nano Energy, 11, 436, (2014).
36. Self-powered trajectory, velocity, and acceleration tracking of a moving object/body using a triboelectric sensor
F. Yi*, L. Lin*, S. Niu*, J. Yang, W. Wu, S. Wang, Q. Liao, Y. Zhang, Z. L. Wang
Advanced Functional Materials, 24, 7488, (2014).
35. Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator
S. Wang, S. Niu, J. Yang, L. Lin, Z. L. Wang
ACS Nano, 8, 12004, (2014).
34. Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system
S. Niu, Y. S. Zhou, S. Wang, Y. Liu, L. Lin, Y. Bando, Z. L. Wang
Nano Energy, 8, 150, (2014).
33. Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency
Y. Xie*, S. Wang*, S. Niu*, L. Lin, Q. Jing, J. Yang, Z. Wu, Z. L. Wang
Advanced Materials, 26, 6599, (2014).
32. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and understanding
S. Wang, Y. Xie, S. Niu, L. Lin, C. Liu, Y. S. Zhou, Z. L. Wang
Advanced Materials, 26, 6720, (2014).
31. In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator
Q. Zheng, B. Shi, F. Fan, X. Wang, L. Yan, W. Yuan, S. Wang, H. Liu, Z. Li, Z. L. Wang
Advanced Materials, 26, 5851, (2014).
30. Dipole-moment-induced effect on contact electrification for triboelectric nanogenerator
P. Bai*, G. Zhu*, Y. S. Zhou*, S. Wang, J. Ma, G. Zhang, Z. L. Wang
Nano Research, 7, 990, (2014).
29. Multi-layered disk triboelectric nanogenerator for harvesting hydropower
Y. Xie*, S. Wang*, S. Niu, L. Lin, Q. Jing, Y. Su, Z. Wu, Z. L. Wang
Nano Energy, 6, 129, (2014).
28. A theoretical study of grating structured triboelectric nanogenerators
S. Niu*, S. Wang*, Y. Liu*, Y. S. Zhou, L. Lin, Y. Hu, Z. L. Wang
Energy & Environmental Science, 7, 2339, (2014).
27. Non-contact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor
L. Lin*, S. Wang*, S. Niu*, C. Liu, Y. Xie, Z. L. Wang
ACS Applied Materials & Interfaces, 6, 3031, (2014).
26. Manipulating nano-scale contact electrification by applied electric field
Y. S. Zhou, S. Wang, Y. Yang, G. Zhu, S. Niu, Z.-H. Lin, Y. Liu, Z. L. Wang
Nano Letters, 14, 1567, (2014).
25. Theoretical investigation and structure optimization of single-electrode triboelectric nanogenerators
S. Niu*, Y. Liu*, S. Wang, L. Lin, Y. Zhou, Y. Hu, Z. L. Wang
Advanced Functional Materials, 24, 3332, (2014).
24. Freestanding-triboelectric-layer based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes
S. Wang*, Y. Xie*, S. Niu*, L. Lin, Z. L. Wang
Advanced Materials, 26, 2818, (2014).
23. Motion charged battery as sustainable flexible-power-unit
S. Wang, Z.–H. Lin, S. Niu, L. Lin, Y. Xie, K. C. Pradel, Z. L. Wang
ACS Nano, 7, 11263, (2013).
22. Theoretical study of the contact-mode triboelectric nanogenerators as effective power source
S. Niu*, S. Wang*, L. Lin, Y. Liu, Y. S. Zhou, Y. Hu, Z. L. Wang
Energy & Environmental Science, 6, 3576, (2013).
21. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging
L. Lin*, Y. Xie*, S. Wang*, W. Wu, S. Niu, X. Wen, Z. L. Wang
ACS Nano, 7, 8266, (2013).
20. Theory of sliding-mode triboelectric nanogenerators
S. Niu*, Y. Liu*, S. Wang, L. Lin, Y. S. Zhou, Y. Hu, Z. L. Wang
Advanced Materials, 25, 6184, (2013).
19. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy
Y. Xie*, S. Wang*, L. Lin, Q. Jing, Z.-H. Lin, S. Niu, Z. Wu, Z. L. Wang
ACS Nano, 7, 7119, (2013).
18. Enhanced performance of flexible ZnO nanowire based room-temperature oxygen sensors by piezotronic effect
S. Niu, Y. Hu, X. Wen, Y. Zhou, F. Zhang, L. Lin, S. Wang, Z. L. Wang
Advanced Materials, 25, 3701, (2013).
17. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy
L. Lin*, S. Wang*, Y. Xie, Q. Jing, S. Niu, Y. Hu, Z. L. Wang
Nano Letters, 13, 2916, (2013).
16. Enhanced Triboelectric nanogeneratorsand triboelectric nanosensor using chemically modified TiO2 nanomaterials
Z.-H. Lin, Y. Xie, Y. Yang, S. Wang, G. Zhu, Z. L. Wang
ACS Nano, 7, 4554, (2013).
15. Sliding-triboelectric nanogenerator based on in-plane charge-separation mechanism
S. Wang*, L. Lin*, Y. Xie, Q. Jing, S. Niu, Z. L. Wang
Nano Letters, 13, 2226, (2013).
14. Elastic-spring-substrated nanogenerator as an active sensor for self-powered balance
L. Lin, Q. Jing, Y. Zhang, Y. Hu, S. Wang, Y. Bando, R. P. S. Han, Z. L. Wang
Energy & Environmental Science, 6, 1164, (2013).
13. Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs
J. Zhong, Q. Zhong, F. Fan, Y. Zhang, S. Wang, B. Hu, Z. L. Wang, J. Zhou
Nano Energy, 2, 491, (2013).
12. Progress in nanogenerators for portable electronics
Z. L. Wang, G. Zhu, Y. Yang, S. Wang, C. Pan
Materials Today, 15, 532, (2013).
11. Pyroelectric nanogenerators for driving wireless sensors
Y. Yang*, S. Wang*, Y. Zhang, Z. L. Wang
Nano Letters, 12, 6408, (2012) .
10. Nanoscale-triboelectric-effect enabled energy conversion for sustainably powering of portable electronics
S. Wang*, L. Lin*, Z. L. Wang
Nano Letters, 12, 6339, (2012).
9. A self-powered electrochromic device driven by a nanogenerator
X. Yang*, G. Zhu*, S. Wang, R. Zhang, L. Lin, W. Wu, Z. L. Wang
Energy & Environmental Science, 11, 9462, (2012) .
8. Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell
X. Xue*, S. Wang*, W. Guo, Y. Zhang, Z. L. Wang
Nano Letters, 12, 5048, (2012).
7. Strain-gated piezotronic transistors based on vertical zinc oxide nanowires
W. Han, Y. Zhou, Y. Zhang, C.-Y. Chen, L. Lin, X. Wang, S. Wang, Z. L. Wang
ACS Nano, 6, 3760, (2012).
6. An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays
W. Guo*, X. Xue*, S. Wang, C. Lin, Z. L. Wang
Nano Letters, 12, 2520, (2012).
5. Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells
W. Guo, C. Xu, X. Wang, S. Wang, C. Pan, C. Lin, Z. L. Wang
Journal of the American Chemical Society, 134, 4437, (2012).
4. A hybrid piezoelectric structure for wearable nanogenerators
M. Lee*, C.-Y. Chen*, S. Wang, S. N. Cha, Y. J. Park, J. M. Kim, L.-J. Chou, Z. L. Wang
Advanced Materials, 24, 1759, (2012).
3. Synthesis of vertically aligned ultra-long ZnO nanowires on heterogeneous substrates with catalyst at the root
G. Zhu, Y. Zhou, S. Wang, R. Yang, Y. Ding, X. Wang, Y. Bando, Z. L. Wang
Nanotechnology, 23, 055604, (2012) .
2. Flexible high-output nanogenerator based on lateral ZnO nanowire array
G. Zhu*, R. Yang*, S. Wang, Z. L. Wang
Nano Letters, 10, 3151, (2010).
1. Nanostructuring HfO2 thin films as antireflection coatings
J. Ni, Y. Zhu, S. Wang, Z. Li, Z. Zhang, B. Wei
Journal of the American Ceramic Society, 92, 3077, (2009).