This is the website for Don’s statistical methodological work, which contains PDF presentation files, syntax examples, and PDFs of publications in a number of areas:

Don Hedeker’s CV

Recent publications
  • Dousti Mousavi N, Yang J, Mermelstein R, Hedeker D. (2025, epub).  Enhanced modeling approaches for count data analysis with focus on substance use outcomes. J Behav Med.  doi: 10.1007/s10865-025-00610-w. PMID: 41326905.  pdf file
  • Wei, Y., Siddique, J., Spring, B., & Hedeker, D. (2025, epub).  A Bayesian Two-Step Multiple Imputation Approach Based on Mixed Models for Missing EMA Data.  Statistics in Medicine 44, no. 25-27: e70325, https://doi.org/10.1002/sim.70325pdf file
  • Ma, Q., Dunton, G.F., & Hedeker, D.  (2025).  Negative binomial mixed effects location-scale models for intensive longitudinal count-type physical activity data provided by wearable devices, Biometrics, Volume 81, Issue 3, https://doi.org/10.1093/biomtc/ujaf099  pdf file  supplemental materials
  • Hedeker, D. Mermelstein, R.J., & Siddique, J. (2025, epub).  A note on ordinal modeling of smoking rate data.  Nicotine & Tobacco Research.  pdf file   appendices
  • Hedeker, D., Brooks, J., Diviak, K., Jao, N., & Mermelstein, R.J. (2024).  Pleasure and satisfaction as predictors of future cigarette and e-cigarette use: A novel two-stage modeling approach. Nicotine & Tobacco Research, 26, 1472–1479.  pdf file
  • Kypriotakis, G., Bernstein, S.L., Bold, K.W., Dziura, J.D., Hedeker, D., Mermelstein, R.J., & Weinberger, A.H.  (2024).  An Introduction and Practical Guide to Strategies for Analyzing Longitudinal Data in Clinical Trials of Smoking Cessation Treatment: Beyond Dichotomous Point-Prevalence Outcomes, Nicotine & Tobacco Research, 26, 796–805.  pdf file
  • Hedeker, D., Pereira, S., Garbeloto, F., Barreira, T. V., Garganta, R., Farias, C., Tani, G., Chaput, J.-P., Stodden, D. F., Maia, J., & Katzmarzyk, P. T. (2024). Statistical analysis of
    the longitudinal fundamental movement skills data in the REACT project using the multilevel ordinal logistic model. American Journal of Human Biology, e24015. https://doi.org/10.1002/ajhb.24015  pdf file
  • Hedeker, D., Siddique, J., Zhang, X., & Spring, B. (2024).  Multivariate and shared parameter mixed-effects models for intensive longitudinal data.  In D.E.K. Martin, A.S.R. Srinivasa Rao, & C.R. Rao (Eds.), Handbook of Statistics Volume 50: Modeling and Analysis of Longitudinal Data, Elsevier.  pdf file